

Professional
IIS 7 and ASP.NET Integrated Programming

Dr. Shahram Khosravi

Wiley Publishing, Inc.

52539ffirs.qxd:WroxPro 9/17/07 6:50 PM Page iii

www.wiley.com

Professional IIS 7 and ASP.NET Integrated Programming
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-15253-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Khosravi, Shahram, 1963–
Professional IIS 7 and ASP.NET integrated programming / Shahram Khosravi.

p. cm.
Includes index.

ISBN 978-0-470-15253-9 (paper/website)

1. Microsoft Internet information server. 2. Active server pages. 3. Internet programming. 4. Microsoft .NET I. Title.
QA76.625.K555 2007

005.2’768 — dc22
2007032156

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DIS-
APPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

52539ffirs.qxd:WroxPro 9/17/07 6:50 PM Page iv

www.wiley.com

About the Author

Shahram Khosravi, Ph.D.
Dr. Shahram Khosravi is a senior software engineer, consultant, author, and instructor specializing in
ASP.NET, Windows Communications Foundation (WCF), ASP.NET AJAX, Windows Workflow Foundation
(WF), IIS 7 and ASP.NET Integrated Programming, ADO.NET, Web services, .NET, and XML technologies
such as XSD, XSLT, XPath, SOAP, and WSDL. He also has years of experience in object-oriented analysis,
design, and programming, architectural and design patterns, service-oriented analysis, design, and pro-
gramming, 3D computer graphics programming, user interface design, and usability.

Shahram is the author of the following four books: Professional ASP.NET 3.5 and .NET 3.5 Programming
(ASP.NET Internals plus ASP.NET AJAX, IIS 7.0, Windows Workflow Foundation, and Windows Communication
Foundation), ASP.NET AJAX Programmer’s Reference with ASP.NET 2.0 or ASP.NET 3.5, Professional IIS 7 and
ASP.NET Integrated Programming, and Professional ASP.NET Server Control and Component Development. He
has written articles on the ASP.NET, ADO.NET, .NET, and XML technologies for the industry’s leading
magazines such as Dr. Dobb’s Journal, asp.netPRO magazine, and Microsoft MSDN Online.

52539ffirs.qxd:WroxPro 9/17/07 6:50 PM Page v

Senior Acquisitions Editor
Jim Minatel

Development Editor
Brian MacDonald

Technical Editor
Dan Kahler

Production Editor
Daniel Scribner

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Osborn

Compositor
Happenstance Type-O-Rama

Proofreader
Nancy Riddiough

Indexer
Robert Swanson

Anniversary Logo Design
Richard Pacifico

Credits

52539ffirs.qxd:WroxPro 9/17/07 6:50 PM Page vi

Acknowledgments

First and foremost, I would like to thank Jim Minatel, the senior acquisitions editor on the book, for giv-
ing me the opportunity to work on this exciting project. Huge thanks go to Brian MacDonald, the book’s
development editor. I greatly appreciate your input, comments, and advice throughout the process.
Thanks Brian, for everything! Special thanks go to Dan Kahler, the book’s technical editor. Thanks Dan
for all your input and comments. Additional thanks also go to Daniel Scribner, the book’s production
editor. Thanks also go to Kim Cofer, the copy editor, and Nancy Riddiough, the proofreader.

52539ffirs.qxd:WroxPro 9/17/07 6:50 PM Page vii

52539ffirs.qxd:WroxPro 9/17/07 6:50 PM Page viii

Contents

Acknowledgments vii
Introduction xvii

Chapter 1: IIS 7 and ASP.NET Integrated Architecture 1

Modular Architecture of IIS 7 1
IIS-WebServer 3
IIS-WebServerManagementTools 6
IIS-FTPPublishingService 7
WAS-WindowsActivationService 7

Extensible Architecture of IIS 7 8
IIS 7 and ASP.NET Integrated Request Processing Pipeline 8
IIS 7 and ASP.NET Integrated Configuration Systems 10
IIS 7 and ASP.NET Integrated Administration 11
Building a Customized Web Server 11

Update Dependencies 12
Windows Features Dialog 13
Server Manager 14
Command-Line Setup Option 20
Unattended Setup Option 20
Upgrade 21

Summary 21

Chapter 2: Using the Integrated Configuration System 23

Integrated Configuration System 23
Hierarchical Configuration Schema 24
Distributed Configuration System 26
<location> Tags 28
Include Files 31
<configSections> 32

Protocol Listeners 34
Windows Process Activation Service 34
World Wide Web Publishing Service 35
The Structure of the applicationHost.config File 36

<system.applicationHost> 36
<system.webServer> 45

Summary 60

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page ix

x

Contents

Chapter 3: Managing the Integrated Configuration System from
IIS Manager and the Command Line 61

Server Management 61
Internet Information Services (IIS) Manager 62

Application Pools 63
Web Sites 66
Hierarchical Configuration 68
Delegation 73

Command-Line Tool 76
LIST 80
ADD 81
DELETE 81
SET 81

Summary 81

Chapter 4: Managing the Integrated Configuration System
with Managed Code 83

Class Diagrams 83
ConfigurationElement 86
ConfigurationElementCollectionBase<T> 86
ApplicationPool 88

ApplicationPoolProcessModel 89
ApplicationPoolRecycling 90
ApplicationPoolCpu 93

ApplicationPoolCollection 94
Site 95

Binding 96
BindingCollection 97

Application 98
ApplicationCollection 99
VirtualDirectory 100
VirtualDirectoryCollection 101
ConfigurationSection 101
ServerManager 102
Putting It All Together 103

Recipe for Loading a Specified Configuration File 104
Recipe for Accessing the Specified Attribute of a Specified Configuration Section 104
Recipe for Adding or Removing an Element from the Specified Collection Element
of a Specified Configuration Section 106
Recipe for Accessing the Configuration Sections in the <system.applicationHost>
Section Group 108

Summary 113

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page x

xi

Contents

Chapter 5: Extending the Integrated Configuration System and
Imperative Management API 115

IIS7 and ASP.NET Integrated Configuration Extensibility Model 116
IIS7 and ASP.NET Integrated Declarative Schema Extension Markup Language 117
Adding a Custom Configuration Section 124

IIS7 and ASP.NET Integrated Imperative Management Extensibility Model 134
Representing the Collection Item 136
Representing the Collection Element 136
Representing the Non-collection Element 138
Representing the Outermost Element 139
Putting It All Together 141

Summary 143

Chapter 6: Understanding the Integrated Graphical Management System 145

Module Pages 146
ModuleDialogPage 147
ModuleListPage 147
ModulePropertiesPage 147
Writing a Custom Module Page 148

Tasks 149
Page Navigation 149
Task Forms 150
Wizard Forms 150

The IIS7 Manager Object Model 152
Service 152
ManagementConfigurationPath 154
Connection 155
Navigation Item 156
Navigation Service 156
TaskItem 158
TaskList 163
ModulePageInfo 165
TaskListCollection 166

Putting It All Together 167
Summary 174

Chapter 7: Extending the Integrated Graphical Management System 175

Client-Side Managed Code 175
Custom Module Pages and Task Forms in Action 179

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page xi

xii

Contents

Proxies 184
ModuleServiceProxy 186
What’s PropertyBag Anyway? 189

MyConfigSectionPage 193
Constructor 196
Event Handlers 200
HasChanges Property 201
CanApplyChanges Property 202
OnActivated 202
GetSettings 203
OnWorkerGetSettings 205
OnWorkerGetSettingsCompleted 205
MyConfigSectionInfo 207
InitializeUI 210
ApplyChanges 213
GetValues 214
CancelChanges 215
Adding Support for New Task Items 216
Refreshing 221

MyCollectionPage 229
InitializeListPage 234
OnActivated 235
GetCollectionItems 235
OnWorkerGetCollectionItems 235
OnWorkerGetCollectionItemsCompleted 236
MyCollectionItemInfo 238
MyCollectionItemListViewItem 239
AddItem 239
Adding Support for New Task Items 240
OnListViewBeforeLabelEdit 247
OnListViewAfterLabelEdit 248
OnListViewDoubleClick 251
OnListViewKeyUp 252
OnListViewSelectedIndexChanged 252
Grouping 252
Refreshing 257

MyCollectionItemTaskForm 258
Constructors 262
InitializeComponent 262
OnAccept 265
OnWorkerDoWork 265
OnWorkerCompleted 266

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page xii

xiii

Contents

Module 267
Module 267
MyConfigSectionModule 268

Server-Side Managed Code 269
Module Service 270
Module Provider 281

Deployment 283
Summary 287

Chapter 8: Extending the Integrated Request Processing Pipeline 289

Extending the Integrated Pipeline through Managed Code 289
Managed Handlers 290

Developing Custom Managed Handlers 291
Plugging Custom Managed Handlers into the Integrated Request Processing Pipeline 302
Using the RssHandler HTTP Handler 314

Managed Modules 315
Developing Custom Managed Modules 318
Plugging Custom Managed Modules into the Integrated Request Processing Pipeline 322
Using the UrlRewriterModule HTTP Module 332

Managed Handler Factories 333
Developing Custom Managed Handler Factories 334
Plugging Custom Managed Handler Factories into the Integrated Request
Processing Pipeline 336

Extending the Integrated Pipeline with Configurable Managed Components 336
Configuration Support for the URL Rewriting Managed Module 337
Imperative Management Support for the URL Rewriting Managed Module 340

UrlRewriterRule 341
UrlRewriterRules 342
UrlRewriterSection 343
Testing the Managed Classes 344

Graphical Management Support for the URL Rewriter Managed Module 346
Client-Side Managed Code 346

Communications with the Back-End Server 348
UrlRewriterPage 351
UrlRewriterRuleTaskForm 371
UrlRewriterModule 380

Server-Side Managed Code 381
UrlRewriterModuleService 382
UrlRewriterModuleProvider 387

Registering UrlRewriterModuleProvider 389
Configurable UrlRewriterModule 390

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page xiii

xiv

Contents

Rewriting Non-ASP.NET URLs 393
Postback Problem with URL Rewriting 393
Summary 396

Chapter 9: Understanding the Integrated Providers Model 397

Why You Need Provider-Based Services 398
The Integrated Providers Model in Action 400
Under the Hood of the Integrated Providers Model 405

ProviderFeature 406
ProviderConfigurationSettings 412
Putting it All Together 415
IProviderConfigurationService 436

Summary 444

Chapter 10: Extending the Integrated Providers Model 445

Recipe 445
Custom Provider Base Class 448
Custom Provider Collection 449
Extending the Integrated Configuration System 450
Extending the Integrated Imperative Management System 454

ProviderSettings 454
ProviderSettingsCollection 455
ProvidersHelper 457
RssSection 460

Implementing the Service Class 462
Implementing Custom Providers 467

SqlRssProvider 467
XmlRssProvider 477

Extending the Integrated Graphical Management System 485
Client-Side Managed Code 493
Server-Side Managed Code 526

Summary 536

Chapter 11: Integrated Tracing and Diagnostics 537

Integrated Tracing Components 537
Tasks Performed from within Your Code 540

Instantiating a Trace Source 540
Adding Trace Events 546
Defining the Conditional Compilation Symbol “TRACE” 550

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page xiv

xv

Contents

Tasks Performed from the Configuration File 550
Instantiating and Attaching a Switch 550
Instantiating and Attaching an IisTraceListener 557
Instantiating and Attaching a Trace Filter 562

Putting It All Together 570
Configurable Tracing 578
Runtime Status and Control API 587

ServerManager 589
WorkerProcessCollection 590
WorkerProcess 590
RequestCollection 591
Request 592
ApplicationDomain 593
ApplicationDomainCollection 594
ApplicationPool 595
Site 596
Putting It All Together 596

LogRequest 600
Summary 604

Chapter 12: ASP.NET and Windows Communication Foundation
Integration in IIS 7 605

Installing the Required Software 605
Bug Report Manager 606
Windows Communication Foundation Service 607
Windows Communication Foundation Endpoint 608
Windows Communication Foundation Service Model 609
Developing a WCF Service 610
Developing a WCF Service Contract 611
Implementing a WCF Service Contract 614
Hosting a WCF Service 617
Administrative Tasks 619
Developing a Windows Communication Foundation Client 625

Adding a Web Reference 625
Using the svcutil.exe Tool 627
Imperative Approach 632

Taking Advantage of ASP.NET and WCF Integration in IIS 7 635
Using Different Bindings 638
Putting It All Together 646
Summary 648

Index 651

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page xv

52539ftoc.qxd:WroxPro 9/17/07 6:50 PM Page xvi

Introduction

Welcome to Professional IIS 7 and ASP.NET Integrated Programming. The deep integration of IIS 7 and
ASP.NET provides both IIS 7 administrators and ASP.NET developers with a rich integrated program-
ming environment to implement features and functionalities that were not possible in earlier versions
of IIS.

This book provides in-depth coverage of all the major systems that make up the IIS 7 and ASP.NET inte-
grated infrastructure, as follows:

❑ IIS 7 and ASP.NET integrated request processing pipeline

❑ IIS 7 and ASP.NET integrated configuration system and its associated declarative schema exten-
sion markup language

❑ IIS 7 and ASP.NET integrated imperative management system

❑ IIS 7 and ASP.NET integrated graphical management system

❑ IIS 7 and ASP.NET integrated providers model

❑ IIS 7 and ASP.NET integrated tracing and diagnostics

❑ ASP.NET and Windows Communication Foundation integration in IIS 7

This book not only shows how these major systems work from the inside out and how to use them in
your own applications, but also provides comprehensive coverage of the extensibility points of these sys-
tems and shows you how to take advantage of them to add support for new features and functionalities.

The discussions of this book are presented in the context of numerous step-by-step recipes and detailed
code walkthroughs and in-depth analyses of real-world examples that use these recipes to help you gain
the skills, knowledge, and experience you need to use and extend these major systems.

Who This Book Is For
This book is aimed at the ASP.NET developer and IIS 7 administrator who want to learn IIS 7 and
ASP.NET integrated programming for the first time. No knowledge of IIS 7 and ASP.NET integrated pro-
gramming is assumed.

What This Book Covers
This book is divided into 12 chapters as follows:

❑ Chapter 1, “IIS 7 and ASP.NET Integrated Architecture,” covers the IIS 7 package updates and
their constituent feature modules. It shows you five different ways to custom build your own

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xvii

Web server from the various package updates to decrease the footprint of your Web server. The
chapter also provides an overview of the systems that make up the IIS 7 and ASP.NET inte-
grated architecture.

❑ Chapter 2, “Using the Integrated Configuration System,” discusses the new IIS 7 and
ASP.NET integrated configuration system, including the hierarchical structure of its configura-
tion files, the hierarchical relationships among these configuration files, and the notion of the
declarative versus imperative schema extension. The chapter also uses numerous examples to
walk you through important sections of the new IIS 7 machine-level configuration file named
applicationHost.config, where you’ll also learn how to override the configuration settings
specified in different sections of this file in a particular site, application, or virtual directory.

❑ Chapter 3, “Managing the Integrated Configuration System from IIS 7 Manager and the
Command Line,” shows how to use the IIS 7 Manager and appcmd.exe command-line tools to
manage the IIS 7 and ASP.NET integrated configuration system. You’ll also learn how the IIS
Manager takes the hierarchical nature of the integrated configuration system into account and
how you can configure both the IIS 7 Web server and ASP.NET Web applications from the IIS 7
Manager. This chapter also covers the delegation feature of this integrated configuration system.

❑ Chapter 4, “Managing the Integrated Configuration System with Managed Code,”
provides in-depth coverage of those types of the IIS 7 and ASP.NET integrated imperative
management system that allow you to manage the IIS 7 and ASP.NET integrated
configuration system from managed code. Those types include the ConfigurationElement,
ConfigurationElementCollectionBase<T>, ApplicationPool,
ApplicationPoolCollection, Site, Application, ApplicationCollection,
VirtualDirectory, VirtualDirectoryCollection, ConfigurationSection, and
ServerManager. This chapter also provides step-by-step recipes for using these types and
examples where these recipes are used.

❑ Chapter 5, “Extending the Integrated Configuration System and Imperative
Management API,” uses examples to walk you through the XML constructs that make up
the IIS 7 and ASP.NET integrated declarative schema extension markup language including
<sectionSchema>, <attribute>, <element>, and <collection>. It provides a step-by-step
recipe for using these XML constructs to extend the integrated configuration system to imple-
ment the XML constructs that make up a custom configuration section, including its containing
XML element and attributes, Non-collection XML elements and attributes, Collection XML ele-
ments and their child add, remove, and clear XML elements and their attributes. The chapter
uses this recipe to implement the XML constructs that make up a custom configuration section,
including its containing XML element and the associated attributes, a Non-collection XML ele-
ment, a Collection XML element, and the add, remove, and clear child XML elements.

The chapter also gives you recipes for extending the integrated imperative management API to
add support for new imperative management classes that allow managed code to manage the
XML constructs making up a configuration section in strongly-typed fashion.

❑ Chapter 6, “Understanding the Integrated Graphical Management System,” provides in-
depth coverage of the integrated graphical management system. This chapter first covers mod-
ule dialog pages, module list pages, module properties pages, task forms, and wizard forms. It
then dives into the IIS 7 Manager’s object model where types such as IServiceProvider,
IServiceContainer, ManagementConfigurationPath, Connection, NavigationItem, and
TaskListCollection are discussed. The chapter then takes you under the hood where you’ll
see for yourself how these types work together.

Introduction

xviii

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xviii

❑ Chapter 7, “Extending the Integrated Graphical Management System,” gives you step-by-step
recipes for implementing the client-side and server-side code that extend the IIS 7 and ASP.NET
integrated graphical management system to add graphical management support for a custom
configuration section. The chapter uses these recipes to add support for custom graphical man-
agement components that allow users to configure the <myConfigSection> configuration sec-
tion right from the IIS 7 Manager.

❑ Chapter 8, “Extending the Integrated Request Processing Pipeline,” shows you how to imple-
ment your own custom HTTP modules, HTTP handlers, and HTTP handler factories, and plug
them into the IIS 7 and ASP.NET integrated request processing pipeline to extend this pipeline
to add support for custom request processing capabilities.

The chapter shows you three different ways to plug your custom HTTP modules, HTTP han-
dlers, and HTTP handler factories into the IIS 7 and ASP.NET integrated pipeline: declaratively
through a configuration file, graphically through the IIS 7 Manager, and imperatively through
managed code.

Finally the chapter shows you how to implement a fully configurable UrlRewriterModule
HTTP module and plugs the module into the IIS 7 and ASP.NET integrated request processing
pipeline.

❑ Chapter 9, “Understanding the Integrated Providers Model,” begins by showing you the inte-
grated providers model in action. Next, it takes you under the hood where you see for yourself
the important roles that the following classes play in the integrated providers model and how
you can take advantage of them when you’re implementing your own custom provider-based
services:

❑ The ProviderFeature abstract base class and its sub. You also learn how to implement
a custom provider feature to describe your own custom provider-based service and
how to register your custom provider feature with the integrated providers model.

❑ The ProviderConfigurationSettings abstract base class and its sub. This chapter
also teaches you how to implement a custom provider configuration settings class to
describe the configuration settings of the providers of your own custom provider-based
service and how to register your custom provider configuration settings class with the
integrated providers model.

❑ The PropertyGrid control. This chapter walks you through several exercises to help
you gain a better understanding of this control, the role it plays in the integrated
providers model, and how to customize this control for your own custom provider-
based services.

❑ The AddProviderForm task form.

❑ The ProviderConfigurationConsolidatedPage module list page.

❑ The IProviderConfigurationService interface and its standard implementation
named ProviderConfigurationModule. This chapter shows you how to take advan-
tage of this standard implementation in your own provider-based services.

❑ Chapter 10, “Extending the Integrated Providers Model,” begins by providing a detailed step-
by-step recipe for extending the integrated providers model to implement and to plug your own
fully configurable custom provider-based services into this model. It uses this recipe to imple-
ment a fully configurable RSS provider-based service and plug it into the integrated providers

Introduction

xix

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xix

model. The RSS provider-based service enables you to generate RSS documents from any type
of data store such as SQL Server databases, XML documents, and so on.

❑ Chapter 11, “Integrated Tracing and Diagnostics,” shows you how to use the IIS 7 and
ASP.NET integrated tracing and diagnostics infrastructure to instrument your managed
code with tracing. This chapter demonstrates how to emit trace events from within your
managed code, how to route these trace events to the IIS 7 tracing infrastructure, and how
to configure modules such as Failed Request Tracing to consume these trace events. This chap-
ter uses practical examples to provides in-depth coverage of the TraceSource data source,
the SourceSwitch switch, the IisTraceListener listener, the EventTypeFilter and
SourceFilter filers, and how to enable Failed Request Tracing and define new rules in the
IIS 7 Manager.

The chapter then uses a real-world example to show you how to make the tracing feature of
your managed code fully configurable from configuration files, from managed code, and from
the IIS 7 Manager.

The chapter then discusses the Runtime Status and Control API (RSCA), which is an unman-
aged API. Next, this chapter provides in-depth coverage of the various types of the integrated
imperative management system and uses an example to show you how to use these types to
indirectly program against the RSCA unmanaged API from your managed code to access and to
manipulate the runtime state of the IIS 7 runtime objects.

The chapter finally discusses the LogRequest event of the HttpApplication object and imple-
ments an HTTP module that registers an event handler for this event where it stores request
data in an XML document. This request data provides a powerful diagnostic tool.

❑ Chapter 12, “ASP.NET and Windows Communication Foundation Integration in IIS 7,” uses a
practical example to show you how to use the Windows Communication Foundation Service
Model to model the communications of your own components with the outside world and how
to take advantage of the deep integration of ASP.NET and WCF services in the IIS 7 environ-
ment in your own Web applications. This chapter covers the following topics:

❑ A WCF endpoint and its address, binding, and contract.

❑ WCF service model and its attribute-based, configuration-based, and imperative pro-
gramming facilities for modeling the communications of your own components with
the outside world.

❑ Defining WCF service contracts.

❑ Implementing WCF service contracts.

❑ Adding, updating, removing, and configuring WCF endpoints.

❑ Adding behaviors.

❑ Hosting a WCF service. This chapter shows you how to host your WCF service in IIS 7
to take full advantage of the great features of IIS 7 discussed throughout this book.

❑ Developing WCF clients. This chapter discusses three different ways to develop a WCF
client: adding a Web reference, using the Svcutil.exe tool, and the imperative
approach. This chapter uses each approach to develop a separate WCF client.

This chapter uses a practical example that consists of the following three different applications
to demonstrate the deep integration of ASP.NET and WCF services in IIS 7.

Introduction

xx

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xx

What You Need to Use This Book
You’ll need the following items to run the code samples in this book:

❑ Windows Vista or Windows Server 2008

❑ Visual Studio 2005, Visual Studio 2005 Express Edition, Visual Studio 2008, or Visual Studio
2008 Express Edition

❑ SQL Server 2005 or SQL Server 2005 Express Edition

You can download free copies of Visual Studio 2005 Express Edition or Visual Studio 2008 Express Edition
and SQL Server 2005 Express Edition from http://msdn.microsoft.com/vstudio/express/.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and italicized, like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Introduction

xxi

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xxi

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-15253-9.

Once you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fix the problem in subse-
quent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Introduction

xxii

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xxii

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

xxiii

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xxiii

52539flast.qxd:WroxPro 9/17/07 6:50 PM Page xxiv

IIS 7 and ASP.NET
Integrated Architecture

Internet Information Services 7.0 (IIS 7) is the latest version of Microsoft Web server. IIS 7 has gone
through significant architectural changes since the last version. The most notable change for
ASP.NET developers is the deep integration of the IIS 7 and ASP.NET framework. This provides
both ASP.NET developers and IIS 7 administrators with an integrated programming environment
that allows them to implement features and functionalities that were not possible before. The main
goal of this chapter is twofold. First, it covers the IIS 7 package updates and their constituent fea-
ture modules, discusses five different IIS 7 setup options, and shows you how to use each option
to custom-build your own Web server from these package updates. Second, it provides you with
an overview of the IIS 7 and ASP.NET integrated architecture and its constituent systems, setting
the stage for the next chapters where you’ll dive into the details of this integrated architecture and
programming framework.

Modular Architecture of IIS 7
The main priority of the Microsoft IIS team for IIS 6.0 was to improve its security, performance,
and reliability. For that reason, modularity and extensibility didn’t make it to the list of top priori-
ties for IIS 6.0. That said, IIS 6.0 introduced a very important notion: selectively disabling IIS 7 fea-
tures such as ISAPI extensions and CGI components. One of the main problems with the earlier
versions of IIS was that all features of IIS had to be installed and enabled. There was no way to dis-
able features that your application scenario did not need.

IIS 6.0 enables only static file serving by default on a clean install of the Web server. In other
words, dynamic features such as ISAPI extensions and CGI components are disabled by default
unless the administrator explicitly enables them. Such customization of the Web server allows
you to decrease the attack surface of your Web server by giving attackers fewer opportunities for
attacks.

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 1

Disabling unwanted features was the first step toward the customizability of IIS. However, this step
didn’t go far enough because IIS 6.0 still installs everything, which introduces the following problems:

❑ Disabled features consume server resources such as memory, and therefore increase the Web
server footprint.

❑ Administrators still need to install service packs that address bugs in the disabled features, even
though they’re never used.

❑ Administrators still need to install software updates for the disabled features.

In other words, administrators have to maintain the service features that are never used. All these prob-
lems stem from the fact that the architecture of IIS 6.0 is relatively monolithic. The main installation
problem with a monolithic architecture is that it’s based on an all-or-nothing paradigm where you have
no choice but to install the whole system.

IIS 7.0 is modular to the bone! Its architecture consists of more than 40 feature modules from which you
can choose. This allows you to install only the needed feature modules to build a highly customized,
thin Web server. This provides the following important benefits:

❑ Decreases the footprint of your Web server.

❑ Administrators need to install only those service packs that address bugs in the installed feature
modules.

❑ Administrators need to install software updates only for the installed feature modules.

So, administrators have to maintain and service only installed feature modules.

Next, I provide an overview of the IIS 7 feature modules or components. These feature components are
grouped into what are known as functional areas, where each functional area maps to a specific IIS pack-
age update. That is, each package update contains one or more feature modules or components. As
you’ll see later, you’ll use these package updates to custom-build your Web server.

The top-level IIS update is known as IIS-WebServerRole, and contains the updates shown in Figure 1-1.
As the name suggests, the IIS-WebServerRole update enables Windows Server 2008 and Windows Vista
to adopt a Web server role, which enables them to exchange information over the Internet, an intranet, or
an extranet.

Figure 1-1

IIS-WebServerRole

IIS-WebServer

IIS-WebServerManagementTools

IIS-FTPPublishingService

2

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 2

IIS-WebServer
The IIS-WebServer update contains five updates as shown in Figure 1-2. As you can see, this update con-
tains the feature modules that make up the core functionality of a Web server.

Figure 1-2

IIS-CommonHttpFeatures
The IIS-CommonHttpFeatures update contains the feature modules or components described in the fol-
lowing table:

Feature Module Description

IIS-StaticContent Use this module to enable your Web server to service requests for static
content. Web site resources with file extensions such as .html, .htm,
.jpg, and the like that can be serviced without server-side processing
are known as static content.

IIS-DefaultDocument This module allows you to specify a Web resource that will be used as
the default resource when the request URL does not contain the name
of the requested resource.

IIS-DirectoryBrowsing Use this module to enable your Web server to display the contents of a
specified directory to end users when they directly access the directory
and no default document exists in the directory.

IIS-HttpErrors Use this module to enable your Web server to support sending custom
error messages to end users.

IIS-HttpRedirect Use this module to enable your Web server to support request redirects.

IIS-WebServer

IIS-CommonHTTPFeatures

IIS-ApplicationDevelopment

IIS-HealthAndDiagnostics

IIS-Security

IIS-Performance

3

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 3

IIS-ApplicationDevelopment
The IIS-ApplicationDevelopment update contains the feature modules that support different application
types as described in the following table:

IIS-HealthAndDiagnostics
The IIS-HealthAndDiagnostics package update contains the feature modules described in the following
table:

Feature Module Description

IIS-HttpLogging Use this module to enable your Web server to log Web site activities.

IIS-LoggingLibraries Use this module to install logging tools and scripts on your Web server.

IIS-RequestMonitor Use this module to enable your Web server to monitor the health of the
Web server and its sites and applications.

IIS-HttpTracing Use this module to enable your Web server to support tracing for
ASP.NET applications and failed requests.

IIS-CustomLogging Use this module to enable your Web server to support custom logging
for the Web server and its sites and applications.

IIS-ODBCLogging Use this module to enable your Web server to support logging to an
ODBC-compliant database.

Feature Module Description

IIS-ASPNET Use this module to enable your Web server to host ASP.NET applications.

IIS-NetFxExtensibility Use this module to enable your Web server to host managed modules.

IIS-ASP Use this module to enable your Web server to host ASP applications.

IIS-CGI Use this module to enable your Web server to support CGI executables.

IIS-ISAPIExtensions Use this module to enable your Web server to use ISAPI extension mod-
ules to process requests.

IIS-ISAPIFilter Use this module to enable your Web server to use ISAPI filter to cus-
tomize the server behavior.

IIS-ServerSideIncludes Use this module to enable your Web server to support .stm, .shtm, and
.shtml include files.

4

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 4

IIS-Security
The IIS-Security package update contains the feature modules described in the following table:

IIS-Performance
The following table describes the performance feature modules:

Performance Feature Module Description

IIS-HttpCompressionStatic Use this module to enable your Web server to compress static con-
tent before sending it to the client to improve the performance.

IIS-HttpCompressionDynamic Use this module to enable your Web server to compress dynamic
content before sending it to the client to improve the performance.

Security Feature Module Description

IIS-BasicAuthentication Use this module to enable your Web server to sup-
port the HTTP 1.1 Basic Authentication scheme. This
module authenticates user credentials against
Windows accounts.

IIS-WindowsAuthentication Use this module to enable your Web server to
authenticate requests using NTLM or Kerberos.

IIS-DigestAuthentication Use this module to enable your Web server to sup-
port the Digest authentication scheme. The main dif-
ference between Digest and Basic is that Digest
sends password hashes over the network as opposed
to the passwords themselves.

IIS-ClientCertificateMappingAuthentication Use this module to enable your Web server to
authenticate client certificates with Active Directory
accounts.

IIS-IISCertificateMappingAuthentication Use this module to enable your Web server to map
client certificates 1-to-1 or many-to-1 to a Windows
security identity.

IIS-URLAuthorization Use this module to enable your Web server to per-
form URL authorization.

IIS-RequestFiltering Use this module to enable your Web server to deny
access based on specified configured rules.

IIS-IPSecurity Use this module to enable your Web server to deny
access based on domain name or IP address.

5

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 5

IIS-WebServerManagementTools
Figure 1-3 presents the Web server management feature modules.

Figure 1-3

The following table describes the feature modules contained in the IIS-WebServerManagementTools
update:

The following table presents the feature modules in the IIS-IIS6ManagementCompatibility update:

Feature Module Description

IIS-ManagementConsole This module installs the Web Server Management Console, which
allows administration of local and remote IIS Web servers.

IIS-ManagementScriptingTools Use this module to enable your Web server to support local Web
server management via IIS configuration scripts.

IIS-ManagementService Use this module to enable your Web server to be managed
remotely via Web Server Management Console.

IIS-WebServer

IIS-CommonHTTPFeatures

IIS-ApplicationDevelopment

IIS-HealthAndDiagnostics

IIS-Security

IIS-CommonHTTPFeatures

IIS-ApplicationDevelopment

IIS-HealthAndDiagnostics

IIS-Security

IIS-WebServerManagementTools

IIS-ManagementConsole

IIS-ManagementScriptingTools

IIS-ManagementService

IIS-IIS6ManagementCompatibility

IIS-Metabase

IIS-WMICompatibility

IIS-LegacyScripts

IIS-LegacySnapIn

6

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 6

IIS-FTPPublishingService
The feature modules contained in the IIS-FTPPublishingService package update are discussed in the fol-
lowing table.

At the time of this writing, Microsoft announced that it would be releasing a significantly enhanced IIS
7 FTP server for Longhorn and (as a separate download) for Vista.

WAS-WindowsActivationService
Figure 1-4 presents the feature modules in the WAS-WindowsActivationService package update. These
modules provide the base infrastructure for process activation and management.

Figure 1-4

IIS-WebServerRole

IIS-WebServer

IIS-WebServerManagementTools

IIS-FTPPublishingService

WAS-WindowsActivationService

WAS-ProcessModel

WAS-NetFxEnvironment

WAS-ConfigurationAPI

Feature Module Description

IIS-FTPServer Use this module to install the FTP service.

IIS-FTPManagement Use this module to install the FTP Management Console.

Feature Module Description

IIS-Metabase Use this module to enable your Web server to support metabase
calls to the new IIS 7 configuration store.

IIS-WMICompatibility Use this module to install the IIS 6.0 WMI scripting interfaces to
enable your Web server to support these interfaces.

IIS-LegacyScripts Use this module to install the IIS 6.0 configuration scripts to
enable your Web server to support these scripts.

IIS-LegacySnapIn Use this module to install the IIS 6.0 Management Console
to enable administration of remote IIS 6.0 servers from this
computer.

7

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 7

Extensible Architecture of IIS 7
IIS 6.0 allows you to extend the functionality of the Web server by implementing and plugging in your
own custom ISAPI filter and extension modules. Unfortunately, ISAPI suffers from fundamental prob-
lems such as:

❑ Because ISAPI is not a convenient or friendly API, writing an ISAPI filter or extension module is
not an easy task to accomplish. It can take a lot of time and tends to be error-prone.

❑ ISAPI is not a managed API, which means that ASP.NET developers cannot benefit from the rich
features of the .NET Framework when they’re writing ISAPI filter and extension modules.

IIS 7.0 has replaced ISAPI with a new set of convenient object-oriented APIs that make writing new fea-
ture modules a piece of cake. These APIs come in two different flavors: managed and native. The native
API is a convenient C++ API that you can use to develop and plug native modules into the core Web
server. The managed API, on the other hand, allows you to take full advantage of the .NET Framework
and its rich environment. This allows both ASP.NET developers and IIS 7 administrators to use conven-
ient ASP.NET APIs to extend the core Web server.

IIS 7 and ASP.NET Integrated Request
Processing Pipeline

Take a look at the request processing model of IIS 6.0 for processing requests for ASP.NET content as
shown in Figure 1-5. Notice that this figure contains two different request processing pipelines: IIS 6.0
and ASP.NET. Each request processing pipeline is a pipeline of components that are invoked one after
another to perform their specific request processing tasks. For example, both pipelines contain an
authentication component, which is called to authenticate the request.

Figure 1-5

Request

IIS6.0 Request Processing Pipeline

Preprocessing

Authentication

…

Request

Handler Mapper

Postprocessing

…

Response

Request

ASP.NET Request Processing Pipeline

Preprocessing

Authentication

…

Request

Handler Mapper

Postprocessing

…

Response

8

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 8

As Figure 1-5 shows, the incoming request first goes through the IIS 6.0 pipeline. At some point along
this pipeline, IIS 6.0 uses its metabase to map the request to a particular handler. The requests for
ASP.NET resources such as ASP.NET pages are mapped to the aspnet_isapi.dll handler. This han-
dler then loads the CLR and the target ASP.NET application, if they haven’t already been loaded.
This is where the ASP.NET request processing pipeline kicks in.

At the beginning of the request, ASP.NET allows the components in its request processing pipeline to
register one or more event handlers for one or more ASP.NET application-level events. ASP.NET then
fires these events one after another and calls these event handlers to allow each component to perform
its specific request processing task. At some point along the pipeline, ASP.NET uses the configuration
file to map the request to a particular handler. The main responsibility of the handler is to process the
request and generate the appropriate markup text, which will then be sent back to the requesting
browser.

Having two separate pipelines, that is, IIS and ASP.NET pipelines working on the same request, intro-
duces the following problems:

❑ There’s a fair amount of duplication. For example, both pipelines contain an authentication
component, which means that the same request gets authenticated twice.

❑ Because the ASP.NET pipeline begins after the IIS pipeline maps the request to the
aspnet_isapi extension module, the ASP.NET pipeline has no impact on the IIS pipeline steps
prior to handler mapping.

❑ Because the rest of the IIS pipeline steps don’t occur until the ASP.NET pipeline finishes, the
ASP.NET pipeline has no impact on the IIS pipeline steps either.

❑ Because the ASP.NET pipeline kicks in only when the IIS pipeline maps the request to the
aspnet_isapi extension module, and because this mapping is done only for requests
to ASP.NET content, the ASP.NET pipeline components cannot be applied to requests to
non-ASP.NET content such as .jpg, .js, asp, CGI, and the like. For example, you cannot
use the ASP.NET authentication and authorization modules to protect the non-ASP.NET con-
tents of your application.

IIS 7 has changed all that by removing the aspnet_isapi extension module and combining the
ASP.NET and IIS pipelines into a single integrated request processing pipeline as shown in Figure 1-6.

This resolves all the previously mentioned problems as follows:

❑ The integrated pipeline does not contain any duplicate components. For example, the request is
authenticated once.

❑ The ASP.NET modules are now first-class citizens in the integrated pipeline. They can come
before, replace, or come after any native IIS 7 modules. This allows ASP.NET to intervene at any
stage of the request processing pipeline.

❑ Because the integrated pipeline treats managed modules like native modules, you can apply
your ASP.NET managed modules to non-ASP.NET content. For example, you can use the
ASP.NET authentication and authorization modules to protect the non-ASP.NET contents of
your application, such as asp pages.

9

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 9

Figure 1-6

IIS 7 and ASP.NET Integrated
Configuration Systems

In IIS 6.0, two separate configuration systems govern the IIS and ASP.NET pipelines. These configura-
tion systems store their configuration settings in two different storage media, with two different
schemas. IIS configuration settings are stored in the IIS 6.0 metabase, whereas ASP.NET configuration
settings are stored in ASP.NET configuration files. Such separation of configuration systems makes the
task of administering the Web server and its sites and applications much more complex and trouble-
some. For one thing, there’s no way to delegate site- and application-specific IIS configuration settings to
site and application administrators without compromising the integrity and security of the Web server,
because all IIS configuration settings are centralized. This also takes away from the ASP.NET developers
the opportunity to tailor the IIS configuration settings toward their own applications. Having two sepa-
rate configuration systems for IIS and ASP.NET configuration settings also means that you have to learn
two separate APIs to programmatically access and edit these configuration settings.

IIS 7 has changed all that. Having a single integrated pipeline made it possible for the IIS 7 team to intro-
duce a single integrated configuration system for both IIS and ASP.NET settings. Because this integrated
configuration system is an extension of the ASP.NET configuration system, the existing ASP.NET config-
uration files can easily merge into the new integrated configuration system with a little or no changes.

Request

Request

Response

Integrated Request Processing Pipeline

Preprocessing Modules

Handler Mapper

Postprocessing Modules

Authentication Module

Authorization Module

…

…

…

PageHandlerFactory

StaticFile

Compression Module

Logging Module

10

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 10

This integrated configuration system provides a lot of benefits to system administrators and developers
alike. For one thing, both IIS and ASP.NET configuration settings are stored in storage media with the
same schema. This is great news for ASP.NET developers because the new integrated schema is an
extension of the ASP.NET configuration schema. Another obvious benefit of the integrated configura-
tion system is that you can use the same set of APIs to programmatically access and set both IIS 7 and
ASP.NET configuration settings.

One of the great new features of the IIS 7 and ASP.NET integrated configuration system is its declarative
extensibility through a new integrated declarative schema extension markup language. Thanks to this
integrated markup language, you can extend this integrated configuration system to add support for
new configuration sections without writing a single line of imperative code such as C# or VB. This is a
departure from the imperative extensibility model of the ASP.NET configuration system, which requires
developers to write a fair amount of imperative code to extend the system.

IIS 7 and ASP.NET Integrated
Administration

Having two separate configuration systems for ASP.NET and IIS in IIS 6.0 also means having two sepa-
rate administration tools, GUIs, and APIs to administer and to manage them. Having a single integrated
configuration system made it possible for the IIS 7 team to introduce brand new administration or man-
agement tools, GUIs, and APIs that make the task of server, site, and application administration a whole
lot easier. This allows you to use the same integrated management tools, GUIs, and APIs to configure
ASP.NET and IIS.

Two very important components of the IIS 7 and ASP.NET integrated administration are the integrated
graphical management system and the integrated imperative management system. This book covers both
of these systems and their extensibility models in detail. You will learn how to extend these two systems
to add graphical and imperative management support for your own custom configuration sections.

Building a Customized Web Server
IIS 7 setup is completely modular, allowing you to custom-build your Web server from a list of more
than 40 available feature modules. This ensures that your Web server contains only the feature modules
you need, thereby decreasing the attack surface and footprint of your server. In this section, I walk you
through the steps that you need to take to build your very own custom Web server on Windows Vista
(including Windows Vista Home Premium, Windows Vista Professional, and Windows Vista Ultimate
editions) and Windows Server 2008 operating systems.

In general, there are five different IIS 7 setup options:

❑ Windows Features dialog (Windows Vista only)

❑ Server Manager tool (Windows Server 2008 only)

❑ pkgmgr.exe command-line tool (both Windows Vista and Windows Server 2008)

11

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 11

❑ Unattended (both Windows Vista and Windows Server 2008)

❑ Upgrade (both Windows Vista and Windows Server 2008)

Before drilling down into the details of these five setup options, you need to understand the dependen-
cies between the installable updates.

Update Dependencies
When you’re installing an update, you must also install the updates that it depends on. In general, there
are two types of dependencies: interdependencies and parent-dependencies. The following table pres-
ents the update interdependencies:

Every update also depends on its parent update. For example, to install IIS-WebServer, you must also
install its parent update, IIS-WebServerRole.

Update Depends On

IIS-WebServer WAS-ProcessModel

IIS-ASP IIS-ISAPIExtensions
IIS-RequestFiltering

IIS-ASPNET IIS-DefaultDocument
IIS-NetFxExtensibility
WAS-NetFxEnvironment
IIS-ISAPIExtensions
IIS-ISAPIFilter
IIS-RequestFiltering

IIS-NetFxExtensibility WAS-NetFxEnvironment
IIS-RequestFiltering

IIS-ManagementService IIS-WebServer
IIS-ManagementConsole
WAS-NetFxEnvironment
WAS-ConfigurationAPI

IIS-ManagementConsole WAS-ConfigurationAPI

IIS-ManagementScriptingTools WAS-ConfigurationAPI

IIS-LegacyScripts IIS-Metabase
IIS-WMICompatibility

12

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 12

Windows Features Dialog
Follow these steps to use the Windows Features dialog to set up and custom-build your Web server on
Windows Vista:

1. Launch the Control Panel.

2. Click the “Programs” option if Control Panel is displayed in its default view, or the “Programs
and Features” option if Control Panel is displayed in Classic View.

3. Click “Turn on or off Windows features” to launch the Windows Features dialog shown in
Figure 1-7. If you haven’t logged in as the built-in Administrator account, Vista will launch
the User Account Control dialog. The content of this dialog depends on the privileges of your
account. If your account has administrator privileges, the dialog will just ask you for confirma-
tion. If your account does not have administrator privileges, the dialog will present you with
the list of accounts with administrator privileges asking you to choose one and enter the
required password. Keep in mind that you’ll get this dialog even if you have logged in as an
account that has administrator privileges. This is one of the new security features.

Figure 1-7

4. Expand the Internet Information Services option to see the tree of update nodes discussed in the
previous sections. You can install or uninstall each update by simply toggling it on or off and
finally clicking the OK button. Notice that when you select an update, its parent update and the
update that it depends on are automatically selected.

13

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 13

As you can see, building your own custom Web server with the Windows Features dialog is a piece of
cake. You don’t have to worry about the update dependencies; it’s all taken care of behind the scenes. As
you’ll see in the following section, you don’t have this luxury if you use the other two IIS 7 installation
options.

Server Manager
In this section, I show you how to use the Server Manager tool to build your customized Web server on
the Windows Server 2008 operating system. Before doing so, you need to familiarize yourself with three
basic Windows Server 2008 terms known as roles, role services, and features.

Every server provides its clients with a set of services. These services are grouped into what are known
as roles. Installing a server role means installing one or more role services that belong to the role. In
other words, when you’re installing a server role, you don’t have to install all its associated role services.

Here is an example: There is a server role known as Web Server, which enables a server to exchange
information over the Internet, an intranet, or an extranet. Another example of a server role is UDDI
Services. This role enables a server to provide its clients with Universal Description, Discovery, and
Integration (UDDI) services to exchange information about Web services over the Internet, an intranet,
or an extranet.

A feature is a piece of software that does not belong to any particular role, but it provides services to one
or more server roles and their associated role services. An example of a feature is the Windows Process
Activation Service. This service enables the server in the Web Server role to process requests made
through all kinds of communication protocols, such as TCP or HTTP.

A role, role service, or feature may depend on other roles, role services, and features. For example, the
UDDI Services depend on the Web Server role for the actual exchange of information over the Internet,
intranet, or extranet. When you attempt to install a role, role service, or feature that depends on other
roles, role services, and features, the Server Manager prompts you to approve the installation of the
roles, role services, and features on which the role, role service, or feature being installed depends.

Now back to the business at hand, which is building a customized Web server. Take one of the following
steps to launch the Server Manager:

❑ Select Start ➪ All Programs ➪ Administrative Tools ➪ Server Manager from Administrative
Tools to launch the Server Manager tool shown in Figure 1-8.

❑ First launch the Control Panel, double-click the Administrative Tools icon in the Control Panel,
and then double-click the Server Manager to launch the Server Manager tool shown in Figure 1-8.

As Figure 1-8 shows, the left pane contains a node named Server Manager, which in turn contains a child
node named Roles. As just discussed, a server can be in one or more roles. As you can see from Figure 1-8,
in a clean install of Windows Server 2008 the server is originally in no roles. The role that you’re inter-
ested in is the Web Server role. Recall that this is the role that allows the server to share information on
the Internet, an intranet, or an extranet. The first order of business is to launch a wizard named Add
Roles to add this role to your server.

14

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 14

Figure 1-8

To launch the Add Roles Wizard, do one of the following:

❑ Click the Add Roles link button in Roles Summary panel.

❑ Right-click the Roles node in the Server Manager panel and select Add Roles.

❑ Click the Action menu and select Add Roles.

The first page of the Add Roles Wizard provides you with some preliminary instruction. Read the
instructions and make sure your account meets the specified requirements as shown in Figure 1-9.

Figure 1-9

Machine Level 1 (machine.config and root web.config)

Machine Level 2 (applicationHost.config)

Site Level (web.config)

Application Level (web.config)

Virtual Directory Level (web.config)

15

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 15

Click the Next button to go to the page shown in Figure 1-10.

Figure 1-10

Check the Web Server (IIS) item shown in Figure 1-10. It should show you the popup shown in
Figure 1-11 informing you that you need to install the Windows Process Activation Service. Click the
Add Required Features button on this popup to install the Windows Process Activation Service.

Now click Next to go the next page, which provides some preliminary information. Click Next again to
go to the page shown in Figure 1-12.

Notice that some package updates are already selected. These updates form the default installation of
the Web server. Note that when you turn on an update that depends on other updates, the Server
Manager tool pops up a message showing the updates on which the selected update depends and
informing you that you need to install the dependent updates as well. For example, when you check the
ASP.NET option, the Server Manager pops up the message shown in Figure 1-13.

After you’re done with toggling on the desired updates, click the Next button in Figure 1-13 to move on
to the confirmation page shown in Figure 1-14, which lists all the selected updates and their dependent
updates. At this point these updates have not been installed yet.

16

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 16

Figure 1-11

Figure 1-12

17

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 17

Figure 1-13

Figure 1-14

18

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 18

Click the Install button in Figure 1-14 to have Server Manager install the specified updates. This will take
you to the progress page where you have to wait for a while for the updates to be installed. When the
installation completes, the Add Roles Wizard automatically takes you to the page shown in Figure 1-15.

Figure 1-15

If you click the Close button in Figure 1-15, you’ll be back to the Server Manager shown in Figure 1-16. Note
that the Roles nodes on the left panel and the middle panel now contain a role named Web Server (IIS).

Figure 1-16

19

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 19

Command-Line Setup Option
Windows Vista and Windows Server 2008 come with a new command-line tool named pkgmgr.exe that
you can use to custom install IIS 7. The following table describes the available options on this command-
line tool:

When you use the pkgmgr.exe command-line tool to install specified updates, you must also explicitly
specify and install the updates that your specified updates depend on. For example, if you decide to
install the IIS-CommonHttpFeatures update, you must also install its parent update, that is, IIS-
WebServer. To install the IIS-WebServer update you must also install its parent update, IIS-
WebServerRole, and the update that it depends on, WAS-ProcessModel (see the update dependencies
table). To install the WAS-ProcessModel update you must also install its parent update, WAS-
WindowsActivationService update:

start /w /iu:IIS-WebServerRole;WAS-WindowsActivationService;WAS-ProcessModel;
IIS-WebServer;IIS-CommonHttpFeatures

Notice that if you don’t specify the start /w option, the command-line tool will return immediately
and process everything in the background, which means that you won’t be able to see when the setup is
completed.

Unattended Setup Option
As mentioned earlier, the pkgmgr.exe command-line tool comes with the /n:unattend.xml option.
unattend.xml is the XML file that contains the updates to be installed or uninstalled. This XML file
provides you with two benefits. First, you don’t have to directly enter the names of the updates on
the command line. Second, you can store this file somewhere for reuse in other Web server machines.
This XML file must have the same schema as the XML file shown in Listing 1-1. This listing installs
the IIS-CommandHttpFeatures update and the updates that it depends on as discussed in the previous
section.

Option Description

/iu:update1;update2… Run the tool with this option to install the specified updates. Notice
that the update list contains a semicolon-separated list of update
names discussed in the previous sections.

/uu:update1;update2… Run the tool with this option to uninstall the specified updates. Notice
that the update list contains a semicolon-separated list of update
names discussed in the previous sections.

/n:unattend.xml Run the tool with this option to install or uninstall the updates speci-
fied in the specified unattend.xml file. I cover this file in the follow-
ing section.

20

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 20

Listing 1-1: The unattend.xml File

<?xml version=”1.0” ?>
<unattend xmlns=”urn:schemas-microsoft-com:unattend”
xmlns:wcm=”http://schemas.microsoft.com/WMIConfig/2002/State”>
<servicing>
<!--Install a selectable update in a package that is in the
Windows Foundation namespace-->
<package action=”configure”>
<assemblyIdentity name=”Microsoft-Windows-Foundation-Package”
version=”6.0.5308.6” language=”neutral” processorArchitecture=”x86”
publicKeyToken=”31bf3856ad364e35” versionScope=”nonSxS” />

<selection name=”IIS-WebServerRole” state=”true”/>
<selection name=”WAS-WindowsActivationService” state=”true”/>
<selection name=”WAS-ProcessModel” state=”true”/>
<selection name=”IIS-WebServer” state=”true”/>
<selection name=”IIS-CommonHttpFeatures” state=”true”/>

</package>
</servicing>

</unattend>

Notice that the <servicing> element contains one or more <selection> child elements, and each
child element specifies a particular update. The <selection> child element features two attributes
named name and state. The name attribute contains the update name to be installed or uninstalled. Set
the state attribute to true to install or false to uninstall the specified update.

Upgrade
If you’re upgrading from Windows XP to Windows Vista, or from Windows Server 2003 to Windows
Server 2008, and if your old operating system has IIS installed, the Windows Vista or Windows Server
2008 setup automatically scans through the capabilities of the installed IIS and ensures that the new
install of IIS 7 supports those features and capabilities. Unfortunately, due to the monolithic architecture
of IIS 5.1 and IIS 6.0, this installation ends up installing almost all of the feature modules of IIS 7. I highly
recommend that after the upgrade you use one of the previously discussed installation options to unin-
stall the updates that you do not need to decrease the attack surface and footprint of your Web server.

Summary
This chapter first covered the IIS 7 package updates and their constituent feature modules, and showed
you how to custom-build your own Web server from the desired package updates to decrease the foot-
print of your Web server. The chapter then provided in-depth coverage of five different IIS7 setup
options. The chapter also gave an overview of the main systems that make up the IIS7 and ASP.NET
integrated infrastructure. As discussed, one of these systems is the IIS7 and ASP.NET integrated configu-
ration system, which will be discussed thoroughly in the next chapter.

21

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 21

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 22

Using the Integrated
Configuration System

This chapter discusses the new IIS 7 and ASP.NET integrated configuration system. You’ll learn
about the hierarchical structure of the configuration files that make up this integrated system, the
hierarchical relationships among the files themselves, and the notion of the declarative versus
imperative schema extension. The chapter then dives into the structure of the new IIS 7 machine-
level configuration file named applicationHost.config, where you’ll also learn how to over-
ride the configuration settings specified in different sections of this file in a particular site,
application, or virtual directory.

Integrated Configuration System
IIS 7 comes with a new configuration system that has the following important characteristics:

❑ It has the same format, grammar, and syntax as the .NET Framework configuration sys-
tem. This is great news for ASP.NET developers. They should immediately feel at home
with this configuration system.

❑ It’s heavily dependent on the file system for backup, restore, and security. This makes
deployment easier because you can simply copy the configuration files from the develop-
ment machine to the production machine. The file system security is based on file ACLs,
which are very straightforward and easy to manage.

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 23

❑ It’s hierarchical. A flat configuration file, such as the one used in IIS 6.0, introduces problems
such as:

❑ Readability: If you take a look at the MetaBase.xml file in IIS 6.0 you’ll see that it
consists of a long list of sections, which makes it extremely difficult to read and locate
sections.

❑ Updatability: Updating sections in MetaBase.xml is very error-prone due to the flat-
ness of the document.

❑ It’s distributed. Because the IIS 6.0 configuration system is centralized, every little configuration
change requires direct involvement of the machine administrator. This causes many problems
such as:

❑ It doesn’t give the opportunity to the site and application administrators and develop-
ers to perform site- and application-specific configuration tuning.

❑ It puts too much on the machine administrator’s plate.

❑ Its schema is declarative. As you’ll see later, one of the problems with the .NET Framework
configuration system is that you have to write a lot of code to extend the configuration schema.
IIS 7 allows what is known as declarative schema extension, which does not require a single line
of code.

❑ Configuration files are the master of the configuration state. This is very different from IIS 6.0
where the master is an in-memory configuration database that maintains the configuration
state. IIS 7 has made things simple because it has removed this in-memory configuration data-
base and relies completely on the content of the configuration files themselves. IIS 7 automati-
cally picks up any changes made to the configuration files without any effort on the part of the
administrator or developer. For example, administrators don’t need to restart the server, site, or
application. If there’s a need for a restart, IIS 7 automatically takes care of it. This makes your
life much easier. Make the configuration change in the configuration file, and IIS 7 picks it up
right away. No more in-memory configuration database to worry about. Simple is good!

I discuss these and some other characteristics in more detail in the following sections.

Hierarchical Configuration Schema
One of the main problems with the IIS 6.0 MetaBase.xml configuration file is that it is flat. This flatness
leads into an XML document that contains a very long list of sections. As discussed earlier, this makes it
hard to read the document and locate and edit sections. Editing such a file is always error-prone.

An IIS 7 configuration file is hierarchical as follows. Following the .NET Framework configuration sys-
tem, IIS 7 makes use of the notion of configuration sections and section groups. Configuration sections
and section groups should be familiar notions to ASP.NET developers. Many ASP.NET features have a
dedicated configuration section that allows page developers to configure the feature. For example, the
page developer can use the <sessionState> configuration section to configure the ASP.NET session
state infrastructure. As you’ll see later, the configuration section is also the unit of extension. In other
words, you have to add a configuration section to extend the existing configuration system.

24

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 24

To help you understand the notion of a hierarchical configuration file, let’s examine a configuration sec-
tion that most ASP.NET developers are already familiar with, that is, the <compilation> configuration
section. This configuration section allows you to configure the ASP.NET dynamic compilation system.
Listing 2-1 presents the portion of the <compilation> section of the root web.config file. I discuss the
root web.config file in more detail later in this chapter.

Listing 2-1: Portion of the <compilation> Section of the Root web.config File

<configuration>
<system.web>
<compilation batch="true">
<assemblies>
<add assembly="mscorlib" />
<add assembly="System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

</assemblies>
<buildProviders>
<add extension=".aspx" type="System.Web.Compilation.PageBuildProvider" />
<add extension=".wsdl" type="System.Web.Compilation.WsdlBuildProvider" />

</buildProviders>
</compilation>

<system.web>
</configuration>

The inspection of Listing 2-1 reveals the characteristics described in the following sections.

Section Groups
The <compilation> configuration section is enclosed within the opening and closing tags of the
<system.web> element. The <system.web> element is an example of what is known as a section group.
Whereas a configuration section such as <compilation> is used to configure a particular feature such
as the compilation system, a section group such as <system.web> does not represent any particular fea-
ture. Instead it is used to organize and group configuration sections. For example, the <system.web>
section group contains all the configuration sections that are used to configure ASP.NET features, but
the section group itself is not used to configure any particular ASP.NET feature.

Here are some rules about configuration sections and section groups:

❑ A configuration section cannot belong to more than one section group.

❑ A configuration section does not have to belong to any group. This is because section groups
are used for organizational and grouping purposes and have no impact on the feature being
configured.

❑ A configuration section cannot contain another configuration section.

❑ A section group can contain other section groups, and can be contained by another section
group. This is the secret of the hierarchical structure of configuration files.

❑ Because a section group does not configure any particular feature, it does not expose any attrib-
utes (see the <system.web> section group shown in Listing 2-1).

25

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 25

Configuration Sections
As discussed earlier, each configuration section is specifically designed to configure a particular feature.
A configuration section provides you with one or more of the following means to set the configuration
settings for the specified feature:

❑ Most configuration sections, such as <compilation>, expose XML attributes that you can set to
specify the configuration settings. These XML attributes are known as configuration properties.

<compilation batch="true">

❑ Some configuration sections contain child XML elements that you can set to specify the configu-
ration settings. These XML elements are known as configuration elements.

❑ Some configuration sections contain child XML elements that contain one or more <add>,
<remove>, or <clear> elements, which you can set to specify the configuration settings. These
child XML elements are known as configuration collections. Configuration collections do not
expose any XML attributes. In this example, <assemblies> is the configuration collection
because it contains the <add> elements that add new referenced assemblies.

<compilation batch="true">
<assemblies>
<add assembly="mscorlib" />
<add assembly="System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

</assemblies>
</compilation>

Distributed Configuration System
So far I’ve been talking about the hierarchical nature of the internal structure of a given configuration
file. Following the .NET Framework configuration system, the IIS 7 configuration system extends
this hierarchical notion to the relationships between the configuration files themselves, as shown in
Figure 2-1.

Figure 2-1

As Figure 2-1 shows, the IIS 7 and ASP.NET integrated or unified configuration system consists of five
hierarchical levels as described in the following table:

Machine Level 1 (machine.config and root web.config)

Machine Level 2 (applicationHost.config)

Site Level (web.config)

Application Level (web.config)

Virtual Directory Level (web.config)

26

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 26

Upon installation, the IIS 7 and ASP.NET unified configuration system contains only the machine-level
configuration files, that is, machine.config, the root web.config, and applicationHost.config.
However, the site-, application-, and virtual directory–level web.config files can be added as needed to
tailor the IIS 7, .NET, and ASP.NET configuration settings toward a specific site, application, or virtual
directory.

One consequence of the hierarchical relationship between the configuration files shown in Figure 1-17 is
that the lower-level configuration files inherit configuration settings from the upper-level configuration
files. The lower-level configuration files have the option of overriding the configuration settings they
inherit from the upper-level configuration files to tailor them to their specific requirements.

Hierarchical Level Description

Machine Level 1 This level consists of two configuration files named machine.config and
the root web.config. The machine.config configuration file specifies the
global .NET configuration settings except for a few settings that are specific
to ASP.NET.

The root web.config configuration file specifies the global ASP.NET con-
figuration settings that apply to all ASP.NET applications running on the
machine except for those settings specified within <location> tags. I dis-
cuss the location tags later in this chapter.

Both of these machine-level configuration files reside in the %WINDIR%\
Microsoft.NET\Framework\v2.0.50727\CONFIG directory.

Machine Level 2 This level consists of a single configuration file named applicationHost
.config, which specifies the global IIS 7 configuration settings that apply
to all sites, applications, and virtual directories running on the machine
except for those IIS 7 configuration settings specified within <location>
tags.

The applicationHost.config file resides in the %WINDIR%\system32\
inetsrv\config directory.

Site Level This level consists of a configuration file named web.config, which speci-
fies the IIS 7, .NET, and ASP.NET configuration settings that apply to all
applications and virtual directories in the specified site. This file resides
within the site root directory.

Application Level This level consists of a configuration file named web.config, which speci-
fies the IIS 7, .NET, and ASP.NET configuration settings that apply to the
specified application and all its virtual directories. This file resides within
the application root directory.

Virtual Directory
Level

This level consists of a configuration file named web.config, which speci-
fies the IIS 7, .NET, and ASP.NET configuration settings that apply to the
specified virtual directory. This file resides within the root of the virtual
directory.

27

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 27

Another important feature of the IIS 7 and ASP.NET unified configuration system is that an upper-level
configuration file can lock down specified IIS 7, .NET, or ASP.NET configuration settings to prevent the
lower-level configuration files from changing the values of these configuration settings. Upon installa-
tion, all IIS 7 configuration settings specified in applicationHost.config are locked down by default
to ensure that only the machine administrator can change these settings. However, the machine adminis-
trator has the option of unlocking specified configuration settings to allow site and application adminis-
trators and developers to tailor these settings toward their specific needs. This is known as delegation,
and is discussed in the next section.

The hierarchical/override/lockdown relationship between the configuration files in the IIS 7 and
ASP.NET unified configuration system make up a distributed configuration system. This allows an
application to xcopy its configuration file from the development to the test and production machine,
where the application can start to work immediately without any further configuration.

You may be wondering why there are two sets of machine-level configuration files. Why not merge the
machine.config and root web.config files into the applicationHost.config file so you could have
a single configuration file at the machine level? Recall that the machine.config and root web.config
files specify .NET- and ASP.NET-specific configuration settings, whereas the applicationHost.config
file specifies the IIS 7-specific configuration settings. Because IIS 7 is an integral part of the Microsoft
operating system, its release cycle follows the operating system. The .NET Framework, on the other
hand, follows the release cycle of Visual Studio. As such it makes sense to keep the machine-level IIS 7
and .NET configuration settings in separate configuration files.

You may be also wondering why there are two-machine level .NET configuration files, machine
.config and the root web.config. As you may have noticed, ASP.NET 1.x has a single machine-level
configuration file, machine.config. Packing both ASP.NET and general .NET configuration settings in
a single file leads into a very long file that is hard to read and edit. That’s why .NET Framework 2.0
has moved the ASP.NET configuration settings to a different file known as the root web.config. As
Figure 1-17 shows, the machine.config and root web.config files are at the same configuration sys-
tem hierarchy level.

<location> Tags
As discussed earlier, you can add a web.config file to a site, application, or virtual directory to
customize the IIS 7 and ASP.NET configuration settings at the site, application, or virtual directory
level. There are scenarios where such configuration customization may not be possible by adding a
web.config file, such as:

❑ The machine administrator wants to enforce certain configuration settings on a particular site,
application, or virtual directory. Adding a new web.config file is not a viable solution because
it allows the site or application administrator or the developer to change the specified configu-
ration settings at will.

❑ The site administrator wants to enforce certain configuration settings on a particular application
or virtual directory. Adding a new web.config file is not a viable solution because it allows the
application administrator or developer to change the specified configuration settings at will.

28

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 28

❑ The application administrator wants to enforce certain configuration settings on a particular vir-
tual directory. Adding a new web.config file is not a viable solution because it allows develop-
ers to change the specified configuration settings at will.

❑ Two or more virtual directories mapped to the same physical directory require different config-
uration settings. Adding a new web.config file is not a viable solution because both virtual
directories will share the configuration settings specified in the web.config file.

❑ The machine, site, or application administrator wants to specify configuration settings that
apply only to a particular file. Adding a new web.config file to the directory where the speci-
fied file is located is not a viable solution because all files in that directory and its subdirectories
will share the same configuration settings specified in the web.config file.

This is where the <location> tags come into play. A <location> tag allows the configuration file at a
higher level to enforce configuration settings on a lower level without adding web.config files. A
<location> tag contains configuration settings for one or more configuration sections. The <location>
tag features an XML attribute named path that can be set to one of the following values:

❑ ”.” or “”: Specifies the configuration settings that apply to the level at which the <location>
tag is added. For example, if you add the <location> tag to the applicationHost.config
file, which is at the machine level, the configuration settings specified in the <location> tag
will be global.

❑ ”SiteName”: Specifies the configuration settings that apply only to the site with the specified
name. The following listing is an excerpt from the applicationHost.config file. This
<location> tag specifies the Default.aspx, Default.htm, Default.asp, index.htm, and
iisstart.asp files as the default document for the “Default Web Site” site. If the URL of a
request does not contain the name of the requested resource, it will default to the
Default.aspx file.

<location path="Default Web Site">
<system.webServer>
<defaultDocument>
<files>
<clear />
<add value="Default.aspx" />
<add value="Default.htm" />
<add value="Default.asp" />
<add value="index.htm" />
<add value="iisstart.asp" />

</files>
</defaultDocument>

</system.webServer>
</location>

❑ ”SiteName/AppName”: Specifies the configuration settings that apply only to the application
with the specified name that belongs to the site with the specified name. The following listing is
an excerpt from an applicationHost.config file. This <location> tag specifies Windows
Authentication as the authentication mechanism for the application named MyApplication
that belongs to the “Default Web Site” site.

<location path="Default Web Site/MyApplication">
<system.webServer>

29

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 29

<security>
<authentication>
<windowsAuthentication enabled="true" />

</authentication>
</security>

</system.webServer>
</location>

❑ ”SiteName/AppName/VirDirName”: Specifies the configuration settings that apply only to the
virtual directory with the specified name that belongs to the application with the specified
name, which in turn belongs to the site with the specified name.

❑ ”SiteName/AppName/VirDirName/PhysDirName”: Specifies the configuration settings that
apply only to the physical directory with the specified name that maps to the virtual directory
with the specified name that belongs to the application with the specified name, which in turn
belongs to the site with the specified name.

❑ ”SiteName/AppName/VirDirName/PhyDirName/PhysDirName”: Specifies the configuration
settings that apply only to the physical directory with the specified name, which is a subdirec-
tory of the physical directory with the specified name that maps to the virtual directory with the
specified name that belongs to the application with the specified name, which in turn belongs to
the site with the specified name.

❑ ”SiteName/AppName/VirDirName/PhysDirName/FileName”: Specifies the configuration set-
tings that apply only to the file with the specified name, which is located in the physical direc-
tory with the specified name that maps to the virtual directory with the specified name that
belongs to the application with the specified name, which in turn belongs to the site with the
specified name.

❑ ”SiteName/AppName/VirDirName/FileName”: Specifies the configuration settings that apply
only to the file with the specified name, which is located in the virtual directory with the speci-
fied name that belongs to the application with the specified name, which in turn belongs to the
site with the specified name.

Keep the following four characteristics of <location> tags in mind:

❑ <location> tags can be used in configuration files at all levels.

❑ The value of the path attribute cannot reference a location above the current level. For example,
you cannot specify a “site” location from within a web.config file that resides in a virtual
directory.

❑ The same <location> tag can contain multiple configuration sections.

❑ Multiple <location> tags are allowed in the same configuration file in a given level provided
that no two <location> tags have the same path values.

The <location> tag features an attribute named overrideMode with the possible values described in
the following table:

30

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 30

Include Files
As discussed earlier, moving from the flat IIS 6.0 configuration file structure to the hierarchical IIS 7 config-
uration file structure makes it easier to read and edit configuration files. However, it doesn’t address the
situations where you may have a few very long configuration sections that clutter your configuration file.

In these cases you can move a selected configuration section from your configuration file to a new con-
figuration file and assign the physical path of the new configuration file to the configSource attribute
of the selected section. For example, Listing 2-2 presents the very small portion of the following <site>
element that represents the Default Web Site in the applicationHost.config file.

As you can see, a site could have numerous <application> child elements where each child element in
turn could have numerous <virtualDirectory> child elements.

Listing 2-2: The Original Configuration File

<configuration>
<system.applicationHost>
<sites>
<site name="Default Web Site" id="1" serverAutoStart="false">
<application path="/" applicationPool="DefaultAppPool">
<virtualDirectory path="/Example1" physicalPath="D:\IIS 7\Example1" />
<virtualDirectory path="/junk2" physicalPath="D:\IIS 7\Example2" />
. . .
</application>
<application path="/IISHelp" applicationPool="AppPool_Medium">

<virtualDirectory path="/" physicalPath="C:\Windows\help\iishelp" />
</application>
. . .
<bindings>

<binding protocol="http" bindingInformation="127.0.0.1:80:" />
</bindings>
<traceFailedRequestsLogging enabled="true" />
<logFile customLogPluginClsid="{FF160663-DE82-11CF-BC0A-00AA006111E0}" />

</site>
. . .

</sites>
</system.applicationHost>

</configuration>

Value Description

Allow Use this value to allow the lower-level configuration files to override the configuration
settings of all the configuration sections contained in the <location> tag for a particu-
lar path.

Deny Use this value to prevent the lower-level configuration files from overriding the config-
uration settings of the configuration sections contained in the <location> tag for a
particular path.

Inherit Use this value to have the contained configuration sections use their own default val-
ues for the overrideMode attribute. This is the default.

31

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 31

Listing 2-3 presents the same configuration file where the long <site> element has been replaced with a
<site> element whose configSource attribute has been set to the physical path of the new configura-
tion file, DefaultWebSite.config, that contains the original <site> element, as shown in Listing 2-4.

Listing 2-3: The Configuration File Where the configSource Attribute Is Used

<configuration>
<system.applicationHost>
<sites>
<site configSource=”DefaultWebSite.config” />
. . .

</sites>
</system.applicationHost>

</configuration>

Listing 2-4: The New DefaultWebSite.config File

<configuration>
<system.applicationHost>
<sites>
<site name="Default Web Site" id="1" serverAutoStart="false">
<application path="/" applicationPool="DefaultAppPool">
<virtualDirectory path="/Example1" physicalPath="D:\IIS 7\Example1" />
<virtualDirectory path="/junk2" physicalPath="D:\IIS 7\Example2" />
. . .
</application>
<application path="/IISHelp" applicationPool="AppPool_Medium">

<virtualDirectory path="/" physicalPath="C:\Windows\help\iishelp" />
</application>
. . .
<bindings>

<binding protocol="http" bindingInformation="127.0.0.1:80:" />
</bindings>
<traceFailedRequestsLogging enabled="true" />
<logFile customLogPluginClsid="{FF160663-DE82-11CF-BC0A-00AA006111E0}" />

</site>
</sites>

</system.applicationHost>
</configuration>

<configSections>
This is an optional section; when used, it is always the very first section of a configuration file. The
<configSections> section is used to register sections that can be used in the configuration file and all
the lower-level configuration files. Note that there’s a difference between registering and implementing
a section. <configSections> can only register already-implemented configuration sections. Later in
Chapter 5, I show you how to implement a new configuration section. The following listing presents an
excerpt from the applicationHost.config configuration file. This listing registers a section named
<applicationPools> that belongs to the <system.applicationHost> section group.

<configuration>
<configSections>

32

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 32

<sectionGroup name="system.applicationHost"
type="System.ApplicationHost.Configuration.SystemApplicationHostSectionGroup,

System.ApplicationHost, Version=7.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35">

<section name="applicationPools" overrideModeDefault="Deny"
allowDefinition="MachineOnly" />
. . .

</sectionGroup>
. . .

</configSections>
. . .
<system.applicationHost>
<applicationPools>
. . .

</applicationPools>
. . .

</system.applicationHost>
</configuration>

Note that the <section> element is used to register a configuration section and the <sectionGroup>
element is used to specify the section group to which the section being registered belongs. Also notice
that the <section> element features an XML attribute named overrideModeDefault that specifies the
default value of the overrideMode attribute of the section being registered. The overrideMode attrib-
ute of a section specifies whether the lower-level configuration files can override the configuration set-
tings specified in the section.

This allows a higher-level configuration file to lock certain configuration sections to prevent lower-level
configuration files from overriding the configuration settings specified in those sections. On installation, all
IIS 7 configuration sections are locked by default, which means that only the machine administrator can
edit these configuration sections. This allows the machine administrator to unlock sections on a case-by-
case basis to delegate the administration of the selected sections to the site or application administrators.

Notice that the <section> element exposes an attribute named allowDefinition, which can be used
to specify the hierarchy level whose configuration files can use the registered section. For example, the
<section> element in the previous listing sets the allowDefinition attribute to the MachineOnly
value to specify that the <applicationHost> section can only be used in the machine-level configuration
file, that is, the applicationHost.config file. In other words, you cannot use the <applicationHost>
section in the site, application, or virtual directory configuration file.

There are two other important facts about the <configSections> section:

❑ As mentioned earlier, this section is optional. If you don’t specify this section, you’re limited to
using the configuration sections registered in the higher-level configuration files.

❑ A lower-level configuration file cannot unregister or re-register a configuration section already
registered in a higher-level configuration file. It can only register new configuration sections.

The new IIS 7 and ASP.NET integrated configuration system comes with a new machine-level configura-
tion file named applicationHost.config. Which configuration settings are specified in this file
depends on how you install and set up IIS 7, as discussed in the previous chapter. As such, the settings
in your applicationHost.config file may be different from the settings I’m using in this chapter.

33

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 33

Understanding some parts of this file requires a good understanding of these three important architec-
tural components of IIS 7: Protocol listeners, the World Wide Web Publishing Service (WWW Service),
and the Windows Activation Service (WAS). As such, I’ll begin this section with the coverage of these
three components.

Protocol Listeners
Different applications may require their clients to use different protocols to communicate with them.
Here are a few examples:

❑ The underlying protocol in Web applications is HTTP. These applications process HTTP
requests and send HTTP responses back to the requesting browsers.

❑ The Windows Communications Foundation (WCF) applications support a variety of protocols
including HTTP, NET.TCP, NET.PIPE, and NET.MSMQ.

A protocol listener is a component that is responsible for listening for incoming requests made through a
specific type of protocol and passing them onto IIS 7 for processing. Each protocol has its own protocol
listeners. IIS 7 comes with four protocol listeners: HTTP.SYS, NET.TCP, NET.PIPE, and NET.MSMQ.
Introducing new protocols will require plugging new protocol listeners into IIS 7.

Notice that IIS 7 still uses HTTP.SYS for HTTP requests but with a new security enhancement, that is,
support for SSL. HTTP.SYS in IIS 7 supports the same features that it does in IIS 6.0:

❑ HTTP.SYS is implemented as a kernel-mode device deriver.

❑ HTTP.SYS directly delivers the incoming HTTP requests to the worker process responsible for pro-
cessing the requests without any interprocess communication overhead. In versions of IIS prior to
IIS 6.0, the HTTP request was first passed into a user-mode process named inetinfo.exe, which
in turn passed the request to the worker process. This involved interprocess communication
between IIS and the worker process.

❑ Each application pool has its own kernel-level request queue. When there’s no worker process
available for processing an HTTP request, HTTP.SYS queues the request in this kernel-level
request queue. This allows the worker process to pick up the request directly from the queue,
which again does not involve interprocess communication.

❑ HTTP.SYS caches the output response in a kernel-level cache to service subsequent requests,
bypassing the application pool and worker process. This dramatically improves IIS performance.

Windows Process Activation Service
One of the main responsibilities of the Windows Process Activation Service (WAS) component is to read
the configuration settings specified in the applicationHost.config file. Some of these settings are
used to configure the protocol listeners. As discussed earlier, each protocol listener is specifically
designed to handle a specific type of protocol. For example, HTTP.SYS is specifically designed to handle
HTTP requests.

34

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 34

If WAS were to directly interact with the underlying protocol listener, it would be tied to the protocol
that the listener is designed for, and would not be able to work with other protocols. Enter protocol lis-
tener adapters.

A protocol listener adapter isolates WAS from the associated protocol listener. Each protocol listener
comes with its own adapter. For example, there is an adapter that knows how to adapt the HTTP.SYS lis-
tener to WAS. As a matter of fact, Windows Communications Foundation (WCF) comes with adapters
for a variety of protocol listeners including HTTP.SYS, NET.TCP, NET.PIPE, and NET.MSMQ. As you’ll
see later in this book, thanks to these adapters, a WCF service hosted in IIS 7 can process requests made
through a variety of communication protocols.

WAS passes the listener configuration settings that it reads from the applicationHost.config file to
the associated protocol listener adapter. The adapter in turn uses these configuration settings to config-
ure and set up its associated protocol listener for listening for the requests coming through a specific
communication channel.

Besides listener configuration, WAS has two more important responsibilities. First, it must use the con-
figuration settings from the applicationHost.config file to configure and set up application pools
for processing requests. I discuss these configuration settings later in this chapter. Second, it must use
the configuration settings from the applicationHost.config file to monitor, start, shut down, and
manage the applications pools and their associated worker processes.

When a request arrives, the associated protocol listener picks it up. The protocol listener adapter then
informs the WAS that a request for a specified application pool has arrived. The WAS checks whether a
worker process has already been assigned to the application pool. If not, it spawns a new worker process
and assigns the task of processing requests for the application pool to this worker process, which in turn
picks up the request from its associated queue and processes it.

World Wide Web Publishing Service
The WWW Service has gone through lot of changes in the transition from IIS 6.0 to IIS 7. The main moti-
vation for these changes was to add support for protocol listeners other than HTTP.SYS. These changes
allow you to run Windows Communications Foundation (WCF) applications on IIS 7 to process requests
made through variety of protocols such as HTTP, NET.TCP, NET.PIPE, and NET.MSMQ. These changes
also leave the door open for supporting new communication protocols. Now, let’s take a look at changes
in the WWW Service.

The WWW Service in IIS 6.0 is responsible for all the following tasks:

❑ Configuring and setting up the HTTP.SYS HTTP protocol listener

❑ Monitoring performance and providing performance counters

❑ Configuring and setting up application pools and their associated worker processes

❑ Starting, monitoring, killing, and managing worker processes

Closer examination of the last two tasks and responsibilities reveals that these two tasks are not specific
to the HTTP protocol. In other words, the same application pool or worker process may receive requests

35

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 35

based on any type of protocol. This means that the last two tasks must be performed regardless of what
communication protocol is used.

IIS 7 has moved the last two tasks or responsibilities from the WWW Service to a new IIS 7 service known
as WAS, which was discussed in the previous section. In other words, the WWW Service in IIS 7 is only
responsible for configuring and setting up the HTTP.SYS protocol listener and providing performance
counters. As such, the WWW Service in IIS 7 is in effect the listener adapter for the HTTP.SYS listener.

Moving the responsibility of those two tasks from the HTTP-specific WWW Service to the protocol-
agnostic WAS component allows you to deploy Windows Communications Foundation (WCF) applica-
tions on an IIS 7 Web server where these applications can process requests made through variety of
communication protocols.

The Structure of the
applicationHost.config F ile

As discussed in the previous sections, the WAS reads the configuration settings specified in
the applicationHost.config file and uses them to configure, set up, and manage application
pools and their associated worker processes. I discuss the structure of this file in this section.
applicationHost.config is located in the following directory on your machine:

%SystemRoot%\system32\inetsrv

You need administration privileges to view or edit the applicationHost.config file.

Like any other configuration file, applicationHost.config is an XML file with a document element
named <configuration>. The <configuration> document element contains the following child
elements:

❑ <configSections>: This section registers configuration sections used in the
applicationHost.config file. The previous chapter discussed this section in detail.

❑ <system.applicationHost>: This section group contains configuration sections used by
WAS. As such, this section group can be used only in the applicationHost.config configura-
tion file, that is, at the machine level.

❑ <system.webServer>: This section group contains IIS 7-specific configuration sections and can
be used in lower-level configuration files if permitted.

❑ Zero or more <location> tags. The previous chapter discussed <location> tags in detail.

<system.applicationHost>
The <system.applicationHost> section group allows you to manage IIS 7 application pools and Web
sites. As such it contains the following important child elements:

❑ <applicationPools>

❑ <sites>

36

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 36

<applicationPools>
One of the important features of IIS 6.0 is application pools. An application pool is a set of applications
that share one or more w3wp.exe worker processes. When the first request for an application pool
arrives, IIS 6.0 spawns a new instance of the w3wp.exe worker process to process the requests for the
specified application pool. A given worker process can process requests for one and only one application
pool. In other words, application pools do not share the same copy of the worker process, which means
that application pools are isolated by process boundaries. One of the main advantages of this process
isolation is that if one application misbehaves in an application pool and brings down the worker
process dedicated to that application pool, it will not bring down applications in other application pools
because they’re not running in the same worker process. This process isolation is one of the secrets
behind the stability and reliability of IIS 6.0.

IIS 7 still uses application pools but it has also resolved the source of a big problem in IIS 6.0. One of the
fundamental characteristics of the Common Language Runtime (CLR) is that you cannot load two ver-
sions of the CLR into the same operating system process, such as a w3wp worker process. As mentioned
earlier, when the first request for an application pool arrives, IIS 6.0 spawns a new worker process to
process requests for the application pool. This worker process loads the aspnet_isapi.dll ISAPI exten-
sion module and dispatches the request to it if the request is made for ASP.NET content. Each version
of the ASP.NET Framework comes with its own version of aspnet_isapi.dll. aspnet_isapi.dll
loads the version of the CLR that the ASP.NET Framework supports. For example, the aspnet_isapi
ISAPI extension module that comes with the ASP.NET 1.1 Framework loads the CLR 1.1 into the worker
process, whereas the aspnet_isapi extension module that comes with the ASP.NET Framework loads
the CLR 2.0 into the worker process.

What this amounts to is that the first application in an application pool that receives the first ASP.NET
request of the application pool gets to load the version of the CLR that the application needs. For exam-
ple, if the first request of the application pool is for an ASP.NET 1.1 Web application, the CLR 1.1 gets
loaded into the worker process, which means that all applications in the application pool now have to
use the CLR 1.1 because the same worker process cannot contain two different versions of the CLR.

This is not a problem if you make sure that all the applications that you add to a given application pool
use the same version of the CLR. This was a big source of confusion and errors in IIS 6.0. IIS 7 has fixed
this problem by forcing you to set the CLR version at the application pool level. This means that if you
attempt to add an application that needs the CLR 1.1 to an application pool that is configured to use the
CLR 2.0, IIS 7 will not let you do that. Therefore if you’re moving from IIS 6.0 to IIS 7, this is one of
changes that you should expect.

Listing 2-5 presents an excerpt from the applicationHost.config file, showing the
<applicationPools> section.

Listing 2-5: The <applicationPools> Section

<system.applicationHost>
<applicationPools>

<add name="DefaultAppPool" managedPipelineMode="Integrated">
<processModel identityType="LocalSystem" />

</add>

37

Chapter 2: Using the Integrated Configuration System

(Continued)

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 37

Listing 2-5: (continued)

<add name="AppPool_Medium" managedPipelineMode="ISAPI">
<processModel identityType="SpecificUser" userName="IWAM_SK-A82E44308384"
password="[enc:RsaProtectedConfigurationProvider:

jAAAAAECAAADZgAAAKQAAN2te8rHH1B5rQYFcJZ+2kihB2XmbqC/
HSNkIfDpw5HVIMk8afZO8K47U78sgo4aBq1qWKwL27CUVhIsR+
ZdfdTv5Lup1gFkimoah3PY6XLxx823BrKVtJziwpzoqdYz0nJSedVqV
qcwiLkzdBexVrlbgI07Z3lNZvJKi+73vH1uula/ew8Ui6o+5Mbn0TLH7
VMCCl9gVrrvNhX2zkROOKkUO1Rvn5fxtw==:enc]" />

</add>

<add name="AppPool_Low" managedPipelineMode="ISAPI">
<processModel identityType="LocalSystem" />

</add>

<add name="Classic .NET AppPool" managedPipelineMode="ISAPI" />

<applicationPoolDefaults>
<processModel identityType="NetworkService" />

</applicationPoolDefaults>

</applicationPools>
</system.applicationHost>

As this excerpt shows, <applicationPools> consists of one or more <add> elements and a single
<applicationPoolDefaults> element. Each <add> element adds a new application pool. The <add>
element features a bunch of attributes and child elements. I discuss some of these attributes in this sec-
tion and leave the discussion of some other attributes and the child elements to the following sections.
One of these attributes is an attribute named name that specifies the name of the application pool. As
you’ll see later, this name will appear in the list of application pools displayed in the IIS 7 Manager
dialog. Another attribute is a Boolean attribute named autoStart. If this attribute is set to true, the
application pool is automatically started when it’s created, or when IIS starts. Another attribute is the
managedRuntimeVersion. I mentioned previously that you must specify the CLR version at application
pool level. Therefore it shouldn’t come as a surprise that the <add> element that adds the application pool
exposes the managedRuntimeVersion attribute. The default is v2.0.

The managedPipelineMode Attribute
As discussed in the previous chapter, IIS 6.0 suffers from a fundamental architectural problem, that is,
each ASP.NET request is handled by two different request processing pipelines: IIS and ASP.NET. IIS 7
addresses this problem by integrating these two pipelines into a single unified request processing
pipeline. Such a fundamental pipeline change could cause problems for some ASP.NET applications that
are moving from IIS 6.0 to IIS 7 because they may depend on some features of IIS 6.0 that require two
separate IIS and ASP.NET pipelines.

To address the compatibility issues of these legacy ASP.NET applications, you can configure IIS 7 to run
in ISAPI mode. In this mode, IIS 7 hands the request over to the aspnet_isapi extension module,
where a separate ASP.NET pipeline is used to process the request. In other words, IIS 7 can run in two
modes: ISAPI and integrated. When IIS 7 is running in ISAPI mode it operates pretty much like IIS 6.0.

38

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 38

It is highly recommended that you make the required changes in your legacy ASP.NET applications to
make them run in IIS 7 integrated mode. You should use the ISAPI mode as the last resort.

Just like the CLR version discussed earlier, you have to set the pipeline mode at the application pool
level. In other words, all applications running in the same application pool use the same pipeline mode.
This allows you to add a new application pool to IIS 7, set its mode to ISAPI, and add your legacy
ASP.NET applications to this application pool. Thanks to the process isolation of application pools, you
can have multiple application pools running in different pipeline modes on the same Web server. When
you make the required code changes in one of your legacy ASP.NET applications to make it work with
the new integrated mode, you can simply move the application from the current application pool to the
application pool that is running in integrated mode.

Now back to the managedPipelineMode attribute of the <add> element that adds a new application
pool to IIS 7. As you may have already guessed, you can use this attribute to specify the pipeline mode
in which you want the application pool to run. The possible values of this attribute are ISAPI and
Integrated. The default is Integrated.

The queueLength Attribute
Every application pool has a dedicated request queue where the protocol listener queues the incoming
requests. This queue plays several important roles. For example, it increases the reliability of the applica-
tions in the application pool. Suppose the worker process serving an application pool suddenly dies.
Between the time the old process dies and the time when WAS spawns a new worker process, the queue
keeps queuing up the incoming requests, which means that the end users may experience some delay,
but their requests will not be rejected and will be eventually processed.

The queueLength attribute of the <add> element allows you to specify the maximum number of
requests that can be queued in the queue before IIS 7 starts rejecting requests. The default is 1,000.

The <processModel> Child Element
The <processModel> element is the child element of the <add> element that adds the new application
pool. The main responsibility of the <processModel> element is to configure the worker processes respon-
sible for processing the requests for the application pool. One of these configuration settings involves speci-
fying the identity of the worker processes. What is a process identity, anyway? Why does it matter?

Every user-mode process must run under a specific Windows account. This account constitutes the iden-
tity of the process. Windows uses this account to determine which resources the process can access. For
example, the first time an ASP.NET page is accessed, the worker process needs to perform the following
tasks:

❑ Read the associated .aspx and .aspx.cs files, which means that the worker process needs
read access to these files.

❑ Generate the source code for the class that represents the ASP.NET page and save this source
code into a file in a directory under the ASP.NET Temporary Files folder, which means that the
worker process needs write access to this folder.

❑ Compile this source code into an assembly and save this assembly in a file in a directory under
the ASP.NET Temporary Files folder. Again this requires the worker process to have write access
to this folder.

39

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 39

Therefore, the worker process needs read, write, and read/write access to certain files and folders on the
file system, which means that the Windows account under which the worker process runs must have
these required permissions. The <processModel> element exposes an enumeration attribute named
identityType with the possible values of LocalSystem, LocalService, NetworkService, and
SpecificUser. The default is NetworkService, which means that by default the worker process runs
under the built-in Network Service account. If this attribute is set to LocalSystem or LocalService,
the worker process will run under the built-in Local System or Local Service account. Keep in mind
that the Local System has a higher privileges than the Network Service and Local Service, which means
that it introduces a serious security risk.

If you don’t want to run the worker process under any of these accounts, you can set the following
attributes to have the worker process run under a custom account:

❑ The userName attribute of the <processModel> must be set to the custom account name.

❑ The password attribute of the <processModel> must be set to the password of the Windows
account.

❑ The identityType attribute must be set to SpecificUser to indicate that none of the built-in
Windows accounts is being used.

Keep in mind that the custom account must provide the worker process with the minimum privileges
that it needs to do its job.

The following table describes some other important attributes of the <processModel> element:

Attribute Description

idleTimeout Specifies the period of inactivity (in hh:mm:ss format) after which the
worker process is automatically shut down. The default is 00:20:00.

maxProcesses Specifies the maximum number of worker processes responsible for pro-
cessing the requests for the application pool. The default is 1. A Web garden
is an application pool whose maxProcesses attribute is set to a value
greater than 1.

shutdownTimeLimit WAS periodically recycles worker processes. When the time comes to recy-
cle a worker process, WAS waits for the amount of time (in hh:mm:ss for-
mat) specified by the shutdownTimeLimit attribute before it terminates the
worker process. This gives the process time to wrap up the requests it’s cur-
rently processing. The default is 00:01:30.

startupTimeLimit Specifies the amount of time (in hh:mm:ss format) that WAS waits for the
worker process to start up. If the process doesn’t start up within this time
frame, WAS terminates the process. The default is 00:01:30.

pingingEnabled The Boolean value that specifies whether WAS should periodically ping the
worker process to monitor its health.

40

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 40

The <recycling> Child Element
The <add> element contains a child element named <recycling>, which can be used to configure
process recycling for the application pool. This child element features three attributes:

❑ disallowOverlappingRotation: As discussed earlier, a worker process can be shut down for a
number of reasons. When this happens, a new worker process is created to replace the old one. If
the disallowOverlappingRotation Boolean attribute is set to false, the new worker process
is created while the old worker process is being shut down. If the worker process loads applica-
tion code that does not allow simultaneous execution of multiple worker process instances, you
must set this attribute to true to ensure that the new worker process is not created until the old
worker process completely shuts down. By default, this attribute value is set to “false.”

❑ disallowRotationOnConfigChange: This Boolean attribute specifies whether WAS should
rotate the worker processes in the application pool when the configuration changes. By default,
this attribute value is set to “false.”

❑ logEventOnRecycle: This attribute tells IIS to log an event when the application pool is recy-
cled. The value of this attribute is a bitwise-or’ed combination of the following enumeration val-
ues: Time, Requests, Schedule, Memory, IsapiUnhealthy, OnDemand, ConfigChange, and
PrivateMemory. Each value indicates the reason why the application pool was recycled:

❑ Time: The application pool was recycled because it was time to recycle it.

❑ Requests: The application pool was recycled because it has already processed the max-
imum allowable number of requests.

❑ Schedule: The application pool was recycled because it was scheduled to be recycled.

❑ Memory: The application pool was recycled because it was consuming more memory
than the maximum allowable memory (in megabytes).

❑ IsapiUnhealthy: The application pool was recycled because the ISAPI extension mod-
ule was misbehaving. This applies when IIS 7 is running in ISAPI mode.

❑ OnDemand: The application pool was recycled because the administrator demanded it.

❑ ConfigChange: The application pool was recycled because the configuration changed.

❑ PrivateMemory: The application pool was recycled because its private memory con-
sumptions exceeded the maximum allowable value.

Attribute Description

pingInterval Specifies the frequency (in hh:mm:ss format) at which WAS pings the
worker process. The default is 00:00:30.

pingResponseTime Specifies how long (in hh:mm:ss format) WAS should wait for a response to
a ping request. If the worker process does not respond within this time
frame, WAS terminates the process and starts a new worker process. The
default is 00:01:30.

41

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 41

The <recycling> element has a child element named <periodicRestart> that can be used to set the
values that IIS uses to determine whether there’s a good reason to recycle an application pool as just dis-
cussed. This child element has four attributes:

❑ memory: Specifies the maximum allowable memory consumption (in megabytes). As discussed,
if the application pool consumes more memory than the value specified in this attribute, WAS
will recycle the application pool.

❑ privateMemory: Specifies the maximum allowable private memory consumption (in
megabytes).

❑ requests: Specifies the maximum number of requests the application pool can process.

❑ time: Specifies how often WAS should recycle the application pool.

The <periodicRestart> element contains a single child element named <schedule> that can be used
to schedule the recycling of the application pool. This child element can contain one or more <add> ele-
ments. Each <add> element features an attribute that specifies a scheduled recycling time. This allows
you to specify the exact times when the application pool should be recycled.

The <cpu> Child Element
The <add> element contains a child element named <cpu> that can be used to specify the CPU settings
and actions for the application pool. This child element features the following five attributes:

❑ limit: Specifies the maximum consumption of CPU percentage (in 1/1000ths of a percentage)
of the worker processes in the application pool within the time specified by the resetInterval
attribute. If the CPU consumption exceeds this value, the WAS will recycle the application pool.

❑ action: Specifies the action that IIS must take when the CPU consumption exceeds the value
specified by the limit attribute. The possible values are NoAction and KillW3wp. The
NoAction value prevents IIS from taking any action other than logging a warning message. The
KillW3wp value instructs IIS to recycle the application pool and its worker processes.

❑ resetInterval: Refer to the limit attribute for the description of this attribute.

❑ smpAffinitized: Turns the process affinity feature on or off.

❑ smpProcessorAffinityMask: A hexadecimal bitmask that determines which processors are
eligible for running worker processes for this application pool. This attribute is applicable in
Web garden scenarios. A Web garden is an application pool that has more than one associated
worker process and runs on a multiprocessor machine.

<applicationPoolDefaults>
As discussed earlier, the <applicationPools> element contains one or more <add> child elements
where each <add> element adds a new application pool to IIS 7. The attributes and the child elements of
the <add> element specify the configuration settings for the new application pool. If the attributes and
child elements of a given <add> element are not specified, the application pool will inherit the configu-
ration settings specified in the <applicationPoolDefaults> element.

42

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 42

<sites>
Before diving into the details of the <sites> section, you need to understand the difference between
these three concepts: site, application, and virtual directory. A site is a collection of one or more applica-
tions. Every site has a unique name and a unique id:

<sites>
<site name="Default Web Site" id="1">
. . .
</site>
. . .

</sites>

Every site has at least one application known as the root application, identified by the “/” virtual path:

<sites>
<site name="Default Web Site" id="1">
<application path="/">
. . .

</application>
. . .

</site>
<site name="MySite2" id="2">
<application path="/">
. . .

</application>
. . .

</site>
. . .

</sites>

A site can have more than one application. Each application is uniquely identified by its virtual path. No
two applications in the same site can have the same virtual path. Every application belongs to one and
only one application pool:

<sites>
<site name="Default Web Site" id="1">
<application path="/" applicationPool="DefaultAppPool">
. . .

</application>
. . .

</site>
. . .

</sites>

Applications belonging to the same site may have a parent/child relationship based on their virtual
paths. For example, in the following listing, the application with virtual path “/” (the root application) is
the parent of the application with the virtual path /MyApp1, which in turn is the parent of the applica-
tion with the virtual path /MyApp1/MyApp2:

<sites>
<site name="Default Web Site" id="1">
<application path="/" applicationPool="DefaultAppPool">

43

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 43

. . .
</application>
<application path="/MyApp1" applicationPool="MyPool1">
. . .

</application>
<application path="/MyApp1/MyApp2" applicationPool="MyPool2">
. . .

</application>
. . .

</site>
. . .

</sites>

In a practical sense, this parent/child relationship means that the child applications inherit configuration
settings from their parent applications.

Every application must have at least one virtual directory with the “/” virtual path:

<sites>
<site name="Default Web Site" id="1">
<application path="/" applicationPool="DefaultAppPool">
<virtualDirectory path="/" physicalPath="c:\inetpub\wwwroot\MyDir1” />
. . .

</application>
<application path="/MyApp1" applicationPool="MyPool1">
<virtualDirectory path="/" physicalPath="D:\MyDir1” />
. . .

</application>
. . .

</site>
. . .

</sites>

Notice that every virtual directory has an optional physicalPath attribute that specifies the file system
path that the virtual path maps to. Two different virtual directories of the same application can be
mapped to the same physical path:

<sites>
<site name="Default Web Site" id="1">
<application path="/" applicationPool="DefaultAppPool">
<virtualDirectory path="/" physicalPath="D:\MyDir1” />
<virtualDirectory path="/MyVirDir1" physicalPath="D:\MyDir1” />
. . .

</application>
. . .

</site>
. . .

</sites>

The virtual path of a virtual directory is relative to its containing application. The <virtualDirectory>
element exposes two attributes named userName and password that you can use to limit access to the
virtual directory to the specified credentials. Only users with the specified username and password will
be allowed to access the directory.

44

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 44

As these discussions show, you have to specify a bunch of settings when you add a new site, application,
or virtual directory. What if you add a site, application, or virtual directory, but you don’t specify some
of these settings? This is where the <siteDefaults>, <applicationDefaults>, and
<virtualDirectoryDefaults> elements come into play, which respectively specify the default set-
tings for sites, applications, and virtual directories.

<system.webServer>
The <system.webServer> section group contains all configuration sections that specify IIS Web server
configuration settings. Contrary to the <system.applicationHost> section group and its sections, the
<system.webServer> section group and its sections can be used in all lower-level configuration files if
they’re not locked in the higher-level configuration files. Note that for security reasons, upon installation
these sections are locked by default; that is, only the machine administrator can change the IIS Web
server configurations settings. However, the machine administrator may choose to unlock certain sec-
tions to allow the site and application administrators and developers to custom configure the Web server
for their own sites and applications.

This section group contains these important sections: <defaultDocument>, <directoryBrowse>,
<globalModules>, <handlers>, and <security>.

<defaultDocument>
The <defaultDocument> section specifies a list of files to be served if the request URL does not contain
the name of the requested resource. This section features an attribute named enabled that specifies
whether the default document functionality is enabled, and a single child element named <files>,
which contains one or more <add> child elements. Each <add> element in this case specifies a document
to be served by default. Here is an excerpt from applicationHost.config:

<configuration>
<system.webServer>
<defaultDocument enabled="true">
<files>
<add value="Default.htm" />
<add value="Default.asp" />
<add value="index.htm" />
<add value="index.html" />
<add value="iisstart.htm" />
<add value="default.aspx" />

</files>
</defaultDocument>

</system.webServer>
</configuration>

As you’d expect, all lower-level configuration files inherit these settings. If you want to remove one of
these setting in a site, application, or virtual directory, add a web.config file to the site, application, or
virtual directory and use the <remove> element to remove the specified document:

<configuration>
<system.webServer>
<defaultDocument enabled="true">
<files>

45

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 45

<remove value="Default.htm" />
</files>

</defaultDocument>
</system.webServer>

</configuration>

If you want to remove all the default documents specified in the higher-level configuration files, use the
<clear> element. Then use the <add> element to add a new default document.

<directoryBrowse>
The <directoryBrowse> section specifies whether the end user can see the contents of the current
directory. The <directoryBrowse> section has two attributes named enabled and showFlags. The
enabled Boolean attribute specifies whether the directory listing functionality is enabled. The
showFlags attribute is a bitwise-or’ed combination of the following enumeration values: None, Date,
Time, Size, Extension, and LongDate. By default, the directory listing functionality is disabled:

<directoryBrowse enabled="false" />

<globalModules>
As discussed in the previous chapter, IIS 7 has replaced the IIS 6.0 ISAPI extensibility API with two new
sets of extensibility APIs: native and managed. The native API is an object-oriented C++ API that allows
you to use native C++ code to implement custom feature modules that can be plugged into IIS 7 to
extend the functionality of the core Web server. The managed API is an object-oriented API that allows
you to use a .NET-compliant language such as C# or VB.NET to implement custom feature modules.

One of the main differences between native and managed modules is that you have to install your cus-
tom native module on IIS 7 before it can be used, whereas managed modules don’t need installation. The
installation basically adds the native module to the <globalModules> section. This section contains one
or more <add> child elements, each of which installs a particular native module. Listing 2-6 is an excerpt
from applicationHost.config, showing the <globalModules> section.

Listing 2-6: The Installed Native Modules

<configuration>
<system.webServer>
<globalModules>
<add name="TracingModule"
image="C:\Windows\system32\inetsrv\iisetw.dll" />
<add name="HttpCacheModule"
image="C:\Windows\system32\inetsrv\cachhttp.dll" />
<add name="StaticCompressionModule"
image="C:\Windows\system32\inetsrv\compstat.dll" />
<add name="DefaultDocumentModule"
image="C:\Windows\system32\inetsrv\defdoc.dll" />
<add name="DirectoryListingModule"
image="C:\Windows\system32\inetsrv\dirlist.dll" />
<add name="HttpRedirectionModule"
image="C:\Windows\system32\inetsrv\redirect.dll" />
<add name="StaticFileModule"
image="C:\Windows\system32\inetsrv\static.dll" />

46

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 46

Listing 2-6: (continued)

<add name="AnonymousAuthenticationModule"
image="C:\Windows\system32\inetsrv\authanon.dll" />
<add name="UrlAuthorizationModule"
image="C:\Windows\system32\inetsrv\urlauthz.dll" />
<add name="BasicAuthenticationModule"
image="C:\Windows\system32\inetsrv\authbas.dll" />
<add name="WindowsAuthenticationModule"
image="C:\Windows\system32\inetsrv\authsspi.dll" />
<add name="DigestAuthenticationModule"
image="C:\Windows\system32\inetsrv\authmd5.dll" />
<add name="IsapiModule" image="C:\Windows\system32\inetsrv\isapi.dll" />
<add name="IsapiFilterModule"
image="C:\Windows\system32\inetsrv\filter.dll" />
<add name="ManagedEngine"
image="C:\Windows\Microsoft.NET\Framework\v2.0.50727\webengine.dll"
preCondition="integratedMode,runtimeVersionv2.0,bitness32" />
<add name="DynamicCompressionModule"
image="C:\Windows\system32\inetsrv\compdyn.dll" />

</globalModules>
</system.webServer>

</configuration>

Notice that the <add> element has two important attributes named name and image, which respectively
specify the module name and the physical path to the DLL that contains the module. Listing 2-6 clearly
shows how modular the IIS 7 architecture is. Every feature is encapsulated in a module, allowing you to
decide which feature or modules to install. For example, if you don’t need support for Digest authenti-
cation, don’t install the DigestAuthenticationModule.

Notice that Listing 2-6 installs a module named ManagedEngine:

<configuration>
<system.webServer>

<globalModules>
. . .
<add name="ManagedEngine"
image="C:\Windows\Microsoft.NET\Framework\v2.0.50727\webengine.dll"
preCondition="integratedMode,runtimeVersionv2.0,bitness32" />
. . .

</globalModules>
</system.webServer>

</configuration>

The ManagedEngine module is the magic behind the IIS 7 and ASP.NET integrated pipeline. Every oper-
ating system process that needs to execute managed code requires a layer of code that uses the CLR
hosting API to load the CLR into the process and allow the unmanaged and managed code to communi-
cate. In IIS 6.0, the aspnet_isapi.dll ISAPI extension module used this layer of code to host the CLR
in the w3wp.exe worker process. In IIS 7, the webengine.dll uses this layer of code to integrate man-
aged modules into the IIS 7 request processing pipeline.

47

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 47

Also notice that Listing 2-6 installs two modules named IsapiModule and IsapiFilterModule:

<configuration>
<system.webServer>

<globalModules>
. . .
<add name="IsapiModule" image="C:\Windows\system32\inetsrv\isapi.dll" />
<add name="IsapiFilterModule"
image="C:\Windows\system32\inetsrv\filter.dll" />

. . .
</globalModules>

</system.webServer>
</configuration>

These two modules are the magic behind the IIS 7 ISAPI mode. As discussed earlier, some legacy appli-
cations that are moving from IIS 6.0 to IIS 7 may have compatibility issues with the new IIS 7 integrated
mode. These applications can configure IIS 7 to run in ISAPI mode, where IIS 7 acts pretty much like IIS
6.0, that is, it passes the request to the appropriate extension module for processing. The IsapiModule
and IsapiFilterModule native modules allow IIS 7 to interact with ISAPI extension and filter modules
such as aspnet_isapi.dll and aspnet_filter.dll. As you can see, the modular architecture of IIS 7
allows you to plug these two modules into the core Web server to make it work like IIS 6.0.

<handlers>
A handler is a component that is responsible for handling or processing requests for resources with par-
ticular file extensions. In earlier versions of IIS, upon installation, ASP.NET automatically registered the
aspnet_isapi.dll ISAPI extension module with the IIS metabase as the handler for requests for
resources with the ASP.NET-specific file extensions such as .aspx, .asmx, and .ashx. When a request
arrives, the IIS handler mapping component examines the file extension of the requested resource and
passes the request on to the aspnet_isapi.dll ISAPI extension module handler if the file extension is
one of the ASP.NET-specific file extensions.

As discussed in the previous chapter, IIS 7 has replaced the metabase with a brand new configuration
system, which is very similar to the .NET configuration system. Handler registration is now done in the
<handlers> section of the configuration file. This rule applies to both native and managed handlers. As
you’ll see later, IIS 7 allows you to write handlers in a .NET-compliant language such as C#, where you
can take full advantage of the rich .NET Framework environment and classes. Regardless of whether
you write your handler in native or managed code, you must register it in the new <handlers> section.
In other words, the <handlers> section replaces the <httpHandlers> section of the ASP.NET configu-
ration system. As a matter of fact, when you’re moving your existing ASP.NET applications from IIS 6.0
to IIS 7, you must move the contents of the <httpHandlers> section of your configuration files into
the <handlers> section. If you do not, the IIS 7 integrated pipeline will not pick up your registered
handlers.

Listing 2-7 presents an excerpt from applicationHost.config, showing the <handlers> section.

Listing 2-7: The <handlers> Section

<configuration>
<location path="" overrideMode="Allow">
<system.webServer>

48

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 48

Listing 2-7: (continued)

<handlers>
<add name="ASPClassic" path="*.asp" verb="GET,HEAD,POST"
modules="IsapiModule" resourceType="File"
scriptProcessor="C:\Windows\system32\inetsrv\asp.dll" />

<add name="PageHandlerFactory-ISAPI-2.0" path="*.aspx" verb="*"
modules="IsapiModule"
preCondition="ISAPIMode,runtimeVersionv2.0,bitness32"
scriptProcessor="C:\Windows\Microsoft.NET\Framework\

v2.0.50727\aspnet_isapi.dll" />
<add name="PageHandlerFactory-ISAPI-1.1" path="*.aspx" verb="*"
modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.Net\Framework\

v1.1.4322\aspnet_isapi.dll"
preCondition="ISAPIMode,runtimeVersionv1.1,bitness32" />
<add name="PageHandlerFactory-Integrated" path="*.aspx" verb="*"
type="System.Web.UI.PageHandlerFactory" preCondition="integratedMode" />

<add name="WebServiceHandlerFactory-ISAPI-2.0" path="*.asmx" verb="*"
modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.NET\Framework\

v2.0.50727\aspnet_isapi.dll"
preCondition="ISAPIMode,runtimeVersionv2.0,bitness32" />
<add name="WebServiceHandlerFactory-ISAPI-1.1" path="*.asmx" verb="*"
modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.Net\Framework\

v1.1.4322\aspnet_isapi.dll"
preCondition="ISAPIMode,runtimeVersionv1.1,bitness32" />
<add name="WebServiceHandlerFactory-Integrated" path="*.asmx" verb="*"
type="System.Web.Services.Protocols.WebServiceHandlerFactory,

System.Web.Services, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"

preCondition="integratedMode" />

<add name="svc-ISAPI-2.0" path="*.svc" verb="*" modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.NET\Framework\

v2.0.50727\aspnet_isapi.dll"
preCondition="ISAPIMode,runtimeVersionv2.0,bitness32" />
<add name="svc-Integrated" path="*.svc" verb="*"
type="System.ServiceModel.Activation.HttpHandler, System.ServiceModel,

Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
preCondition="integratedMode" />

</handlers>
</system.webServer>

</location>
</configuration>

Notice that applicationHost.config file uses a <location> tag with the path value of “” to specify
that all the handlers in this section are applicable to all applications running on the machine. Also notice
that the overrideMode attribute of the <location> tag is set to Allow to allow the lower-level configu-
ration files to remove or replace the handlers defined in applicationHost.config or add their own

49

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 49

handlers. For example, to register a custom handler for your application, you can add a web.config file
to the root directory of your application and add the following section to it:

<configuration>
<system.webServer>
<handlers>
<add name="MyHandlerName" path="*.MyFileExtension" verb="*"
type="MyNamespace.MyHandler" preCondition="integratedMode" />

</handlers>
</system.webServer>

</configuration>

Note that the MyHandler handler is added to the <handlers> subsection of the <system.webServer>
as opposed to the <httpHandlers> subsection of the <system.web>. As I mentioned, the <handlers>
section in IIS 7 replaces the <httpHandlers> section.

The <handlers> section contains one or more <add> child elements that are each used to register a par-
ticular handler. The <add> element exposes the following attributes:

❑ name: Set this attribute to the friendly name of your handler. You can use any string value as the
friendly name as long as it’s unique. The friendly name is normally used to reference the handler.

❑ path: Set this attribute to the comma-separated list of file extensions that your handler supports.

❑ verb: Set this attribute to the comma-separated list of HTTP verbs that your handler supports.
The value of * indicates that the handler supports all HTTP verbs.

❑ type: Set this attribute to a string that contains a comma-separated list of up to five substrings.
Only the first substring is required, and must contain the fully qualified name of your handler
including its complete namespace containment hierarchy. The remaining substrings must spec-
ify the assembly that contains your handler. The type attribute is only applicable to managed
handlers, that is, handlers written in managed code such as C# or Visual Basic.

❑ scriptProcessor: Set this attribute to the physical path to your handler’s dynamic link library
(DLL). This attribute is only applicable to native handlers. In other words, you have to use the
scriptProcessor attribute instead of the type attribute if you’re registering a native handler.

❑ preCondition: Set this attribute to IntegratedMode to indicate that your handler should be
used only when IIS 7 is running in the integrated mode, or to ISAPIMode to indicate that your
handler should be used only when IIS 7 is running in the ISAPI mode.

Next, I review the handlers registered in Listing 2-7 to help you get a better feel for the handlers and
their relationship to the mode in which IIS 7 is running.

Classic ASP
The following listing shows the portion of Listing 2-7 that registers the asp.dll ISAPI extension module
as the handler for processing requests for resources with the file extension .asp, that is, classic ASP
pages. Because asp.dll is a native handler, the scriptProcessor attribute is used to specify the phys-
ical path to the asp.dll file.

<configuration>
<location path="" overrideMode="Allow">

50

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 50

<system.webServer>
<handlers>
<add name="ASPClassic" path="*.asp" verb="GET,HEAD,POST"
modules="IsapiModule" resourceType="File"
scriptProcessor="C:\Windows\system32\inetsrv\asp.dll" />
. . .

</handlers>
</system.webServer>

</location>
</configuration>

ASP.NET Pages
As the following excerpt from Listing 2-7 shows, the applicationHost.config file registers three han-
dlers for processing requests for resources with the file extension .aspx, that is, ASP.NET pages.

<configuration>
<location path="" overrideMode="Allow">

<system.webServer>
<handlers>

. . .
<add name="PageHandlerFactory-ISAPI-2.0" path="*.aspx" verb="*"
modules="IsapiModule"
preCondition="ISAPIMode,runtimeVersionv2.0,bitness32"
scriptProcessor="C:\Windows\Microsoft.NET\Framework\

v2.0.50727\aspnet_isapi.dll" />

<add name="PageHandlerFactory-ISAPI-1.1" path="*.aspx" verb="*"
modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.Net\Framework\

v1.1.4322\aspnet_isapi.dll"
preCondition="ISAPIMode,runtimeVersionv1.1,bitness32" />

<add name="PageHandlerFactory-Integrated" path="*.aspx" verb="*"
type="System.Web.UI.PageHandlerFactory" preCondition="integratedMode" />
. . .

</handlers>
</system.webServer>

</location>
</configuration>

The preCondition attribute of the <add> element that registers the first handler is set to ISAPIMode to
inform IIS 7 that this handler must be called only when the corresponding application pool is running in
ISAPI mode. The second handler is the ASP.NET 1.1 version of the first handler. This handler is called
when the corresponding application pool is configured to use ASP.NET 1.1. Because both of these han-
dlers are native handlers, the scriptProcessor attributes of their associated <add> elements are set to
the physical path to the associated aspnet_isapi.dll file.

The third handler, on the other hand, is a managed handler. Notice that this handler is nothing but the
PageHandlerFactory class. The preCondition attribute is set to IntegratedMode to tell IIS 7 that this
handler should be invoked only when the corresponding application pool is running in integrated mode.

51

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 51

Windows Communications Foundation (WCF)
Here comes the interesting part. As the following excerpt from Listing 2-7 shows, the applicationHost
.config file registers two handlers for processing requests for resources with the file extension .svc.
These resources are known as Windows Communications Foundation (WCF) services. Thanks to the
extensibility of the IIS 7 architecture, you can plug these handlers into the core Web server to enable your
Web server to support WCF applications.

Notice that the first handler is the same native handler that handles the ASP.NET pages when IIS 7 is
running in ISAPI mode. In other words, in ISAPI mode, IIS 7 treats both ASP.NET and WCF applications
the same. The second handler, on the other hand, is a managed handler named HttpHandler.

<configuration>
<location path="" overrideMode="Allow">

<system.webServer>
<handlers>

. . .
<add name="svc-ISAPI-2.0" path="*.svc" verb="*" modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.NET\Framework\

v2.0.50727\aspnet_isapi.dll"
preCondition="ISAPIMode,runtimeVersionv2.0,bitness32" />

<add name="svc-Integrated" path="*.svc" verb="*"
type="System.ServiceModel.Activation.HttpHandler, System.ServiceModel,

Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
preCondition="integratedMode" />

</handlers>
</system.webServer>

</location>
</configuration>

<modules>
The <modules> section is where both native and managed modules are registered. Whereas managed
modules do not require installation, native modules have to be installed before they can be registered
and added to the <modules> section. As discussed earlier, to install a native module, you have to add
the module to the <globalModules> section.

The <modules> section contains one or more <add> child elements, each of which registers a particular
native or managed module. The <add> element exposes the following three string attributes:

❑ name: This attribute specifies the friendly name of the module. If the module being registered is
a native module, the value of the name attribute must match the value of the name attribute of
the <add> element that adds the module to the <globalModules> section. If you’re registering
a managed custom module, you can choose any friendly name for the module as long as it’s
unique.

❑ type: The value of this attribute is a string that consists of a comma-separated list of up to five
substrings. Only the first substring is required, and it specifies the fully qualified name of the
module class including its complete namespace containment hierarchy. The remaining optional
substrings specify the assembly that contains the module. The type attribute is only applicable
to managed modules.

❑ preCondition: This attribute specifies whether the module being registered should be called
when the corresponding application pool is running in integrated mode or ISAPI mode.

52

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 52

In the IIS 7 and ASP.NET unified configuration system, the <modules> subsection of the
<system.webServer> section replaces the <httpModules> subsection of the <system.web> section.
When you’re moving your existing ASP.NET applications from IIS 6.0 to IIS 7 you must move the con-
tents of the <httpModules> section to the <modules> section.

Listing 2-8 presents an excerpt from the applicationHost.config file that shows the contents of the
<modules> section.

Listing 2-8: The <modules> Section of the applicationHost.config File

<configuration>
<location path="" overrideMode="Allow">
<system.webServer>
<modules>
<add name="HttpCacheModule" />
<add name="StaticCompressionModule" />
<add name="DefaultDocumentModule" />
<add name="DirectoryListingModule" />
<add name="HttpRedirectionModule" />
<add name="StaticFileModule" />
<add name="AnonymousAuthenticationModule" />
<add name="UrlAuthorizationModule" />
<add name="IsapiFilterModule" />
<add name="BasicAuthenticationModule" />
<add name="WindowsAuthenticationModule" />
<add name="DigestAuthenticationModule" />
<add name="IsapiModule" />
. . .

<add name="ServiceModel"
type="System.ServiceModel.Activation.HttpModule, System.ServiceModel,

Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
preCondition="managedHandler" />
<add name="OutputCache" type="System.Web.Caching.OutputCacheModule"
preCondition="managedHandler" />
<add name="Session" type="System.Web.SessionState.SessionStateModule"
preCondition="managedHandler" />
<add name="WindowsAuthentication"
type="System.Web.Security.WindowsAuthenticationModule"
preCondition="managedHandler" />
<add name="FormsAuthentication"
type="System.Web.Security.FormsAuthenticationModule"
preCondition="managedHandler" />
<add name="DefaultAuthentication"
type="System.Web.Security.DefaultAuthenticationModule"
preCondition="managedHandler" />
<add name="RoleManager" type="System.Web.Security.RoleManagerModule"
preCondition="managedHandler" />
<add name="UrlAuthorization"
type="System.Web.Security.UrlAuthorizationModule"
preCondition="managedHandler" />
<add name="FileAuthorization"

53

Chapter 2: Using the Integrated Configuration System

(Continued)

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 53

Listing 2-8: (continued)

type="System.Web.Security.FileAuthorizationModule"
preCondition="managedHandler" />
<add name="AnonymousIdentification"
type="System.Web.Security.AnonymousIdentificationModule"
preCondition="managedHandler" />
<add name="Profile" type="System.Web.Profile.ProfileModule"
preCondition="managedHandler" />
<add name="UrlMappingsModule" type="System.Web.UrlMappingsModule"
preCondition="managedHandler" />
<add name="global.asax" type="System.Web.HttpApplication"
preCondition="managedHandler" />

</modules>
</system.webServer>

</location>
</configuration>

As Listing 2-8 shows, the <modules> section of the applicationHost.config file registers two types
of modules: native and managed. The <add> element that registers a native module needs to specify
only the value of the name attribute, that is, the friendly name of the module. If you compare Listings 2-8
and 2-7, you’ll notice that the value of the name attribute of each <add> element that registers a native
module matches the value of the name attribute of the associated <add> element that installs the module.
You have to follow the same rule when you’re registering your own custom native modules.

Notice that the preCondition attribute of the <add> elements that register managed modules in
Listing 2-8 is set to a value of managedHandler. This means that by default all registered managed mod-
ules will be applied only to those requests whose handlers are managed handlers, that is, requests for
ASP.NET content.

Lower-level configuration files automatically inherit the modules added to the <modules> section of the
applicationHost.config file. This means that these modules will be called for requests to any site,
application, or virtual directory on the machine. If you don’t want requests for a particular site, applica-
tion, or virtual directory to be processed by one or more of these modules, you can add a web.config
file to that site, application, or virtual directory and remove the specified modules from the <modules>
section of your configuration file (alternatively you can use a <location> element in a higher-level con-
figuration file to do this). Here is an example:

<configuration>
<system.webServer>
<modules>
<remove name="DefaultDocumentModule" />
<remove name="WindowsAuthentication" />

</modules>
</system.webServer>

</configuration>

If a site, application, or virtual directory needs to replace a particular module registered in a higher-level
configuration file with one of its own, it can add a new web.config file, remove the existing module,

54

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 54

and add the new module (alternatively you can do the same through a <location> element in a higher-
level configuration file):

<configuration>
<system.webServer>
<modules>
<remove name="BasicAuthenticationModule" />
<add name="MyBasicAuthenticationModule" />

</modules>
</system.webServer>

</configuration>

<security>
The <security> section is used to specify the Web server security configuration settings. This section
contains these important child elements: <access>, <authentication>, and <authorization>.

<access>
The <access> element exposes these attributes:

❑ sslFlags: Use this attribute to configure the SSL. For example, the following listing configures
128-bit SSL security:

<configuration>
<system.webServer>
<security>
<access sslFlags="ssl128" />

</security>
</system.webSever>

</configuration>

As this listing shows, IIS 7 has made SSL configuration a piece of cake. This is because most of
the SSL configuration settings that IIS 6.0 stored in its metabase are now moved into the
HTTP.SYS kernel-level device driver.

❑ flags: Use this attribute to specify the file access permissions for the current directory. The pos-
sible values are Read, Script, Source, and Write.

<authentication>
Recall that the <globalModules> section of the applicationHost.config file shown in Listing 2-6
installs the following native authentication modules:

<configuration>
<system.webServer>

<globalModules>
. . .
<add name="AnonymousAuthenticationModule"
image="C:\Windows\system32\inetsrv\authanon.dll" />
<add name="BasicAuthenticationModule"
image="C:\Windows\system32\inetsrv\authbas.dll" />
<add name="WindowsAuthenticationModule"

55

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 55

image="C:\Windows\system32\inetsrv\authsspi.dll" />
<add name="DigestAuthenticationModule"
image="C:\Windows\system32\inetsrv\authmd5.dll" />

. . .
</globalModules>

</system.webServer>
</configuration>

Also recall that the <modules> section of the applicationHost.config file registers these native
authentication modules:

<configuration>
<location path="" overrideMode="Allow">

<system.webServer>
<modules>
<add name="AnonymousAuthenticationModule" />
<add name="BasicAuthenticationModule" />
<add name="WindowsAuthenticationModule" />
<add name="DigestAuthenticationModule" />
. . .

</modules>
</system.webServer>

</location>
</configuration>

In other words, the applicationHost.config file installs and registers more than one native authenti-
cation module. Which of these authentication schemes should IIS 7 use? This is where the <authenti-
cation> subsection of the <security> section comes into play.

The <authentication> section is where you specify which native authentication module IIS 7 should
use to authenticate requests. As the following discussion shows, this section contains one child element
for each native authentication module, which exposes a Boolean attribute named enabled that can be
set to enable or disable the associated native authentication module:

❑ <anonymousAuthentication>: By default, the enabled attribute of this child element is set to
true, which means that by default the AnonymousAuthenticationModule is enabled for all
applications running on the server. This child element features two attributes named userName
and password that together specify the identity or Windows account that IIS will use when an
anonymous user accesses an application. The default is a built-in account named IUSR, which
has minimum rights and privileges. IUSR replaces the IUSR_MachineName account used in the
earlier versions of IIS. The following setting tells IIS to use the built-in IUSR account:

<anonymousAuthentication enabled=”true” userName=”IUSR” defaultLogonDomain=”” />

The IIS 7 anonymous authentication module supports a feature that allows you to tell IIS 7 to
use the application pool or process identity. All you have to do is to set the userName and pass-
word attributes to empty strings and enable anonymous authentication as follows:

<anonymousAuthentication enabled=”true” userName=”” defaultLogonDomain=”” />

Note that the process identity or account by default is an account named Network Service.
However, you can change this identity in the <processModel> section of the application pool
as discussed earlier.

56

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 56

❑ <basicAuthentication>: By default the enabled attribute of this child element is set to false,
which means that by default the BasicAuthenticationModule native authentication module
is not invoked for any of the sites and applications running on the server.

❑ <digestAuthentication>: By default the enabled attribute of this child element is set to
false, which means that by default the DigestAuthenticationModule native authentication
module is not invoked for any of the sites and applications running on the server.

❑ <windowsAuthentication enabled>: By default the enabled attribute of this child element is
set to true, which means that by default the WindowsAuthenticationModule native authenti-
cation module is enabled for all the sites and applications running on the server.

If you want to enable, say, the BasicAuthenticationModule native authentication module for a partic-
ular site or application, add a web.config file to the site or application and add the following listing to
this file:

<configuration>
<system.webServer>
<security>
<authentication>
<anonymousAuthentication enabled=”false”/>
<windowsAuthentication enabled=”false”/>
<basicAuthentication enabled=”true” />

</authentication>
</security>

</system.webServer>
</configuration>

You have to disable other native authentication modules first. Because only the
AnonymousAuthenticationModule and WindowsAuthenticationModule are enabled by default, this
code listing disables only these two modules.

So far, I’ve covered only native authentication modules. How about managed authentication modules?
As Listing 2-8 shows, the applicationHost.config file registers the managed modules highlighted in
the following code listing:

<configuration>
<location path="" overrideMode="Allow">

<system.webServer>
<modules>
<add name="WindowsAuthentication"
type="System.Web.Security.WindowsAuthenticationModule"
preCondition="managedHandler" />

<add name="FormsAuthentication"
type="System.Web.Security.FormsAuthenticationModule"
preCondition="managedHandler" />

<add name="DefaultAuthentication"
type="System.Web.Security.DefaultAuthenticationModule"
preCondition="managedHandler" />

</modules>
</system.webServer>

</location>
</configuration>

57

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 57

The applicationHost.config file registers the WindowsAuthentication, FormsAuthentication,
and DefaultAuthentication managed authentication modules. Notice that the preCondition attrib-
utes of all the managed authentication modules are set to managedHandler, which means that these
modules are invoked only for ASP.NET requests.

If you want one or more of these managed authentication modules, say, FormsAuthentication to be
invoked for non-ASP.NET requests, as well as ASP.NET requests to a particular site or application, add a
web.config file to the site or application and add the following to this file:

<configuration>
<system.webServer>
<modules>
<remove name="FormsAuthentication" />
<add name="FormsAuthentication"
type="System.Web.Security.FormsAuthenticationModule" />

</modules>
</system.webServer>

</configuration>

Notice that the <modules> section first removes the FormsAuthentication module and then adds it
back without the preCondition attribute. When this attribute is not specified for a managed module
such as FormsAuthentication, IIS 7 invokes the module for both non-ASP.NET and ASP.NET requests.

<authorization>
As the highlighted portion of the following excerpt from Listing 2-6 shows, the applicationHost
.config file installs a native module named UrlAuthorizationModule, which IIS 7 uses to authorize
requests:

<configuration>
<system.webServer>

<globalModules>
. . .

<add name="UrlAuthorizationModule"
image="C:\Windows\system32\inetsrv\urlauthz.dll" />

. . .
</globalModules>

</system.webServer>
</configuration>

As the highlighted portion of the following excerpt from Listing 2-8 shows, the
applicationHost.config file registers two URL authorization modules, that is, the
UrlAuthorizationModule native authorization module and the UrlAuthorization managed author-
ization module:

<configuration>
<location path="" overrideMode="Allow">

<system.webServer>
<modules>

. . .
<add name="UrlAuthorizationModule" />
. . .

58

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 58

<add name="UrlAuthorization"
type="System.Web.Security.UrlAuthorizationModule"
preCondition="managedHandler" />
. . .

</modules>
</system.webServer>

</location>
</configuration>

Notice that the preCondition attribute of the <add> element that registers the UrlAuthorization
managed module is set to a value of managedHandler, which means that IIS 7 will invoke this managed
module only for requests for resources that are handled by managed handlers. If you want to enable a
particular site or application to protect all resources with the UrlAuthorization managed module, add
a web.config file to the site or application (if it doesn’t already include this file), and add the following
code listing to this file:

<configuration>
<system.webServer>
<modules>
<remove name="UrlAuthorization" />
<add name="UrlAuthorization"
type="System.Web.Security.UrlAuthorizationModule" />

</modules>
</system.webServer>

</configuration>

As the listing shows, you need to first remove the UrlAuthorization module and then add it again but
this time without setting the preCondition attribute.

A URL authorization — be it managed or native — uses authorization rules specified in the configura-
tion file to determine whether the current user is authorized to access the requested resource. The
authorization rules for the UrlAuthorization managed module must be specified in the <authoriza-
tion> subsection of the <system.web> section of the configuration file. For example, the following con-
figuration file allows access to Shahram and denies access to anyone else:

<configuration>
<system.web>
<authorization>
<allow users="Shahram"/>
<deny users="*"/>

</authorization>
</system.web>

</configuration>

The authorization rules for the UrlAuthorizationModule native module, on the other hand, must be
specified in the <authorization> subsection of the <security> section of the <system.webServer>
section group:

<configuration>
<system.webServer>
<security>
<authorization>

59

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 59

<add accessType=”allow” users="Shahram"/>
<add accessType=”deny” users="*"/>

</authorization>
</security>

</system.webServer>
</configuration>

Summary
This chapter first discussed the new IIS 7 and ASP.NET integrated configuration system, where you
learned about the hierarchical structure of the configuration files that make up this integrated system,
the hierarchical relationships among the files themselves, and the notion of the declarative versus imper-
ative schema extension. The chapter then walked you through important sections of the new IIS 7 con-
figuration file, named applicationHost.config, and showed you how to override the configuration
settings specified in different sections of this file in a particular site, application, or virtual directory. The
next chapter will show you two different ways to interface with the new IIS7 and ASP.NET integrated
configuration system.

60

Chapter 2: Using the Integrated Configuration System

52539c02.qxd:WroxPro 9/17/07 6:51 PM Page 60

Managing the Integrated
Configuration System from

IIS Manager and the
Command Line

The previous two chapters provided in-depth coverage of the IIS7 and ASP.NET integrated
configuration system. As discussed, you can use this system to manage both the Web server and
ASP.NET sites and applications. This chapter shows you how to interact with this integrated sys-
tem and how to extend its schema to add support for your own custom configuration sections.

Server Management
When it comes to interacting with the new configuration system, you have the following three
options:

❑ Open and edit a configuration file such as applicationHost.config in your favorite
text editor. This approach requires you to have a solid understanding of the XML struc-
ture of the applicationHost.config file as discussed in the previous chapter. This is a
great option if you feel comfortable with manipulating XML elements and attributes.

❑ IIS7 exposes the XML contents of its configuration files via two convenient intermediary
components that perform the required XML element/attribute manipulations under the
hood on your behalf. This allows you to configure the server and ASP.NET with these

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 61

convenient intermediary components instead of direct manipulation of the XML elements and
attributes. IIS7 comes with two intermediary components:

❑ Internet Information Services (IIS) Manager: Provides a rich, user-friendly GUI to man-
age the server and ASP.NET.

❑ appcmd.exe: Provides a convenient command-line tool to manage the server and
ASP.NET.

❑ IIS7 exposes a managed API that you can use from your C# or Visual Basic code to programmat-
ically manipulate the XML elements and attributes that make up the IIS7 configuration system. I
cover this API in detail in the next chapter.

Internet Information Services (IIS)
Manager

In this section I walk you through different features of the IIS Manager. There are two ways to launch the
IIS Manager: GUI-based and command line. If you feel more comfortable with a GUI-based approach,
follow these steps to launch the IIS7 Manager:

1. Launch the Control Panel.

2. Click System and Maintenance.

3. Click Administrative Tools.

4. Click the Internet Information Services (IIS) Manager.

If you feel more comfortable with command-line tools, use the following command line to launch the IIS
Manager:

%windir%\system32\inetsrv\inetmgr.exe

You need administration privileges to launch the IIS Manager. If you don’t log in with the built-in
Administrator account, when you try to launch the IIS Manager Windows will launch a dialog. The con-
tent of this dialog depends on whether your account has administration privileges. If it does, the dialog
will simply ask you to confirm the requested action. If it doesn’t, the dialog will ask for the administra-
tive credentials. This is a new Windows security feature. Figure 3-1 shows the IIS Manager.

As Figure 3-1 shows, the IIS Manager consists of three panes. The first pane, which is known as the
Connections pane, contains a node that represents the Web server. This node has these two child nodes:

❑ Application Pools

❑ Sites. The label of this node is “Sites” on Windows Server 2008 and “Web Sites” on Windows
Vista.

62

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 62

Figure 3-1

The second pane, which is known as the workspace pane, consists of these two tabs:

❑ Features View: If you select a node in the Connections pane, the Features View tab will allow
you to edit the features associated with the selected node.

❑ Content View: If you select a node in the Connections pane, the Content View tab will display
all the child nodes of the selected node.

The third pane, which is known as the Actions pane, contains a bunch of links where each link performs
a particular task on the node selected in the first or second pane.

Application Pools
Now click the Application Pools node in the Connections pane to display the available application pools
as shown in Figure 3-2.

Notice that the Actions pane contains a link named Add Application Pool. Click this link to launch the
dialog shown in Figure 3-3. This dialog allows you to add a new application pool with a specified name.
It also allows you to specify the .NET version that will be loaded into the application pool. As discussed
in the previous chapter, all ASP.NET applications in the same application pool must use the same .NET
version because two different .NET versions cannot be loaded into the same worker process.

The Managed pipeline mode drop-down list on this dialog contains two options, Integrated and Classic,
as shown in Figure 3-3. This specifies whether the IIS should run in Integrated or Classic mode for this
application pool. All applications in the same application pool use the same IIS mode.

63

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 63

Figure 3-2

Figure 3-3

After making your selection, click OK to commit the changes. Now open the applicationHost.config
file. You should see the boldfaced section shown in Listing 3-1.

Listing 3-1: The applicationHost.config File

<system.applicationHost>
<applicationPools>
. . .
<add name=”MyApplicationPool” />
. . .

</applicationPools>
</system.applicationHost>

Now click the newly created MyApplicationPool node in the middle pane. You should see new links
on the Actions pane, which allow you to edit the properties of the application pool as shown in
Figure 3-4.

64

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 64

Figure 3-4

Click the Advanced Settings link to launch the Advanced Settings dialog shown in Figure 3-5 Notice that
all settings of the newly created application pool have default values. However, as Listing 3-1 shows, none
of these values show up in the applicationHost.config file. Where are these values stored? As you’ll
see later, the new IIS7 configuration system maintains the schema of the applicationHost.config file in
two files named ASPNET_schema.xml and IIS_schema.xml. These schema files also specify and store the
default values for configuration sections, including the <applicationPools> section. Storing the default
configuration settings in one location as opposed to adding them to every single <add> element that repre-
sents an application pool keeps the configuration files small and more readable.

Figure 3-5 65

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 65

Now go to the General section of the Advanced Settings dialog, change the value of Start Automatically
to false (see Figure 3-5), and click OK. Now if you open the applicationHost.config file, you should
see the boldfaced portion shown in the following code listing:

<system.applicationHost>
<applicationPools>
. . .
<add name=”MyApplicationPool” autoStart=”false” />
. . .

</applicationPools>
</system.applicationHost>

In other words, the applicationHost.config file records only the values that are different from the
default.

Notice that the properties shown in Figure 3-5 map to the XML elements and attributes of the
<applicationPools> section discussed in the previous chapter. When you click the OK button, the
callback for this button performs the necessary XML manipulations under the hood to store the changes
in the applicationHost.config XML file.

Web Sites
Now click the Sites node in the Connections pane of the IIS Manager. You should see a link titled Add
Web Site in the Actions pane as shown in Figure 3-6. Click the link to launch the dialog shown in
Figure 3-7.

Figure 3-6

66

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 66

Figure 3-7

This dialog allows you to add a new Web site. Recall that a Web site is a collection of Web applications.
Notice that the properties shown in this dialog map to the XML elements and attributes of the <site>
element discussed in the previous chapter. Next, take these steps:

1. Enter a name in the Web site name text field for the new Web site, for example, MySite.

2. Use the Select button to choose the desired application pool.

3. Choose a physical path.

4. Specify a binding including a binding type, an IP address, and a port number.

5. Click the OK button to commit the changes.

Now open the applicationHost.config file again. You should see the boldfaced portion shown in
Listing 3-2.

Listing 3-2: The applicationHost.config File

<configuration>
<system.applicationHost>
<sites>
<site name=”MySite” id=”1727416169”>
<application path=”/”>
<virtualDirectory path=”/” physicalPath=”D:\” />

</application>
<bindings>
<binding protocol=”http” bindingInformation=”192.168.254.1:80:” />

</bindings>
</site>

</sites>
</system.applicationHost>

</configuration>

67

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 67

As Listing 3-2 shows, the dialog shown in Figure 3-7 sets the XML elements and attributes of the <site>
element that represents the new site. Notice that the dialog automatically created an application with a
virtual directory. As discussed in the previous chapter, every site must have at least one application with
the virtual path “/” known as the root application that has at least one virtual directory with the virtual
path “/” known as the root virtual directory. This dialog automatically takes care of that requirement
behind the scenes.

Hierarchical Configuration
As discussed in the previous two chapters, the new IIS7 and ASP.NET integrated configuration system
consists of a hierarchy of configuration files where lower-level configuration files inherit the configura-
tion settings from higher-level configuration files. The lower-level configuration files can override only
those inherited configuration settings that are not locked in the higher-level configuration files.

In this section, I show you how the IIS Manager takes the hierarchical nature of the IIS7 and ASP.NET
integrated configuration system into account. Let’s begin with the ASP.NET configuration settings.

Launch the IIS Manager again, select the node that represents the local Web server in the Connections
pane, and switch to the Features View tab in the workspace pane. The result should look like Figure 3-8.

Figure 3-8

Now double-click the Session State icon in the workspace pane. You should see what is shown in
Figure 3-9.

68

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 68

Figure 3-9

Note that the workspace now displays the GUI that allows you to change the session state configuration
settings. Go to the Session State Mode Settings section, change the mode to Not enabled, and click the
Apply link in the Tasks pane to commit the changes. Now open the root web.config file located in the
following directory on your machine:

%SystemRoot%\Microsoft.NET\Framework\versionNumber\CONFIG\

You should see the boldfaced portion shown in the following listing:

<configuration>
<system.web>
<sessionState mode=”off” />

</system.web>
</configuration>

As this example shows, you can use the IIS Manager to specify the ASP.NET configuration settings as
you do for the IIS settings. The tool is smart enough to know that the machine-level ASP.NET configura-
tion settings should be saved into the machine-level web.config file (known as the root web.config
file) instead of applicationHost.config.

The previous example changed the session state configuration settings at the machine level. Now let’s
change the session state configuration settings at the site level. Go back to the Connections pane, open
the node that represents the local Web server, open the Sites node, and select the Default Web Site node.
You should see the result shown in Figure 3-10.

69

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 69

Figure 3-10

Now double-click the Session State icon. The result should look like Figure 3-11. Change the Session
State Mode settings to Not enabled and click the Apply link on the task panel to commit the changes.
Now open the web.config file in the following directory on your machine:

%SystemDrive%\inetpub\wwwroot

You should see the boldfaced portion of the following code listing:

<configuration>
<system.web>
<sessionState mode=”off” />

</system.web>
</configuration>

As this example shows, the IIS Manager stores the site-level ASP.NET configuration settings to the site-
level configuration file. If you repeat the same steps for application-level ASP.NET configuration set-
tings, you’ll see that the IIS Manager stores these configuration settings into the ASP.NET
application-level configuration file.

So far I’ve shown you that the IIS Manager handles the hierarchical nature of the ASP.NET configuration
settings. Next, I show you that the IIS Manager also takes the hierarchical nature of the IIS7 configura-
tion settings into account.

Launch the IIS Manager, click the node that represents the local Web server in the Connections pane,
switch to the Features View tab in the workspace, and select the Area option from the Group by combo
box to group the items in the workspace by area. You should see the result shown in Figure 3-12.

70

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 70

Figure 3-11

Figure 3-12

71

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 71

Now double-click the Default Document. The result should look like Figure 3-13.

Figure 3-13

Notice that the workspace now contains a textbox that displays the list of default documents. Add a new
default document named Welcome.htm to the list and click the Apply button in the task panel to com-
mit the changes.

If you open the applicationHost.config file, you should see the boldfaced portion shown in
Listing 3-3. Notice that the <files> element now contains a new <add> element whose value attribute
is set to “Welcome.htm”.

Listing 3-3: The applicationHost.config File

<configuration>
<system.webServer>
<defaultDocument enabled=”true”>
<files>
<clear />
<add value=”Welcome.htm” />
<add value=”Default.asp” />
<add value=”index.htm” />
<add value=”index.html” />
<add value=”iisstart.htm” />
<add value=”default.aspx” />

</files>

72

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 72

</defaultDocument>
</system.webServer>

</configuration>

Now select the Default Web Site node from the Connections pane of the IIS Manager and double-click
the Default Document icon to go to the page that displays the list of default documents. Note that the list
contains the Welcome.html default document that you added before. This makes sense because the
Default Web Site inherits all the default document settings from the machine-level applicationHost
.config file. Now go ahead and remove the Welcome.html file from the list, add a new default docu-
ment named Start.html, and click the Apply button to commit the changes. If you open the web.con-
fig file located in the Default Web Site’s root directory, you should see the result shown in Listing 3-4.

Listing 3-4: The Root web.config File

<configuration>
<system.webServer>
<defaultDocument>
<files>
<clear />
<add value=”Start.htm” />
<add value=”Default.asp” />
<add value=”index.htm” />
<add value=”index.html” />
<add value=”iisstart.htm” />
<add value=”default.aspx” />

</files>
</defaultDocument>

</system.webServer>
</configuration>

Delegation
As Listing 3-4 shows, a site- or application-level web.config file now can contain both ASP.NET and IIS
configuration sections. This is one of the great new features of IIS7, which provides the following two
benefits among many others:

❑ It allows you to configure IIS7 to meet your application-specific requirements.

❑ Because these IIS7 custom configuration settings are all stored in the web.config file of your
application, which is located in the same directory with the rest of your application, you can
xcopy this configuration file together with the rest of your application to the test machine, and
from there to the production machine. This will allow your testers and clients to start testing
and using your applications right away, without going through the tedious task of reconfigur-
ing their Web servers to match the configuration you had on your Web server when you were
developing the application.

You may be wondering whether it is a good idea to allow site and application administrators or devel-
opers to mess with the Web server settings, from a security perspective. The IIS7 and ASP.NET inte-
grated configuration system has taken this security issue into account. Because of the hierarchical nature
of the configuration files, changes made to a configuration file at a certain level of the hierarchy apply

73

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 73

only to that level and the levels below it. For example, if you make some configuration changes in the
web.config located in the root directory of a site, it will only affect the applications and virtual directo-
ries in that site. Or if you make changes in the web.config located in the root directory of an applica-
tion, it will only affect the virtual directories in that application.

In addition, most IIS configuration sections are locked by default at installation, which means that by
default only the machine administrator can change these locked IIS configuration sections. However, the
machine administrator can remove the lock from selected IIS configuration sections to allow selected
sites, applications, or virtual directories to change these configuration sections. This is known as delega-
tion. Let’s take a look at an example.

Recall from the previous example (see Listing 3-4) that the Default Web Site site administrator was
allowed to reconfigure the IIS7 default documents for all the applications and virtual directories of the
Default Web Site. This was possible because by default there is no lock on the IIS7 default documents
feature. To see this, take the following steps:

1. Launch the IIS Manager.

2. Click the node that represents the local Web server in the Connections pane.

3. Switch to the Features View tab in the workspace.

4. Select the Area option from the Group by combo box of the workspace.

The result should look like Figure 3-14.

Figure 3-14

74

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 74

Now double-click the Feature Delegation icon in the Management section of the workspace to go to
the Feature Delegation page shown in Figure 3-15. As the name implies, the Feature Delegation page
allows the machine administrator to delegate the administration of the selected IIS features to site and
application administrators. Select the Delegation option from the Group by combo box and go to the
Read/Write section of this page as shown in Figure 3-15. As the title implies, this section contains IIS7
features that can be read and written from the lower-level configuration files. Note that this section con-
tains the Default Document feature.

Figure 3-15

Select the Default Document from the Feature Delegation page as shown in Figure 3-15. Notice that the
task pane contains a section titled Set Feature Delegation. This section contains six links named:

❑ Read/Write

❑ Read Only

❑ Not Delegated (on Windows Server 2008) or Remove Delegation (on Windows Vista)

❑ Reset to Inherited

❑ Reset All Delegation

❑ Custom Web Site Delegation (this link exists only on Windows Server 2008)

Note that the Read/Write link is grayed out, which means that the lower-level configuration files have
the permission to change the IIS7 Default Document feature. Now click the Read Only link and open the
applicationHost.config file. You should see the boldfaced portion shown in Listing 3-5.

75

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 75

Listing 3-5: The applicationHost.config File

<configuration>
. . .
<location path=”” overrideMode=”Deny”>
<system.webServer>
<defaultDocument enabled=”true”>
<files>
<clear />
<add value=”Welcome.htm” />
<add value=”Default.asp” />
<add value=”index.htm” />
<add value=”index.html” />
<add value=”iisstart.htm” />
<add value=”default.aspx” />

</files>
</defaultDocument>

</system.webServer>
</location>
. . .

</configuration>

As Listing 3-5 shows, the IIS Manager has added a new <location> tag whose overrideMode attribute
is set to Deny to signal that the machine administrator does not want any lower-level configuration file
to change the IIS7 default document feature. This means that every site, application, and virtual direc-
tory running on the machine inherits these authorization rules and has to live by them.

Now try this:

1. Select the Default Web Site node from the Connections pane.

2. Switch to the Features View tab in the workspace.

3. Select the Area option from the Group by combo box.

4. Double-click the Default Document option from the IIS section of the workspace.

You should get the popup dialog shown in Figure 3-16 telling you that the Default Web Site site cannot
change the IIS default documents.

Command-Line Tool
The previous section showed you how to use the IIS Manager to indirectly manipulate the XML ele-
ments and attributes that make up the IIS7 unified configuration system. The IIS Manager is a very good
choice if you feel more comfortable with GUI-based approaches. However, this convenience comes with
a price. As you’ll see shortly, there are things that you can do from the command line that you can’t do
with a graphical tool.

76

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 76

Figure 3-16

IIS7 comes with a brand new command-line tool named appcmd.exe (APPCMD) that allows you to indi-
rectly manipulate these XML elements and attributes from the command line. You can find the
appcmd.exe tool in the following directory on your machine:

%windir%\system32\inetsrv\

This command-line tool allows you to perform tasks such as the following, which are not possible in a
graphical administration tool:

❑ Automating server management tasks

❑ Forming complex APPCMD commands by combining simpler APPCMD commands where the out-
put of one APPCMD command is used as input to another APPCMD command

❑ Exporting the output of an APPCMD command to another program

The APPCMD tool represents each main XML element of the IIS7 configuration system with an object
whose properties map to the attributes and child elements of the XML element that the object represents.
To help you understand this notion of object, let’s revisit the XML elements and attributes used in the
applicationHost.config file as shown in Listing 3-6. Recall that this file contains the IIS7-specific
configuration sections. Because we’re only interested in the XML elements and attributes themselves,
I’ve left out the attribute values in Listing 3-6.

77

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 77

Listing 3-6: The applicationHost.config File

<configuration>
<applicationHost>

<applicationPools>
<add name=”” queueLength=”” autoStart=”” managedRuntimeVersion=””
managedPipelineMode=””>

<processModel identityType=”” userName=”” password=”” idleTimeout=””
maxProcesses=”” shutdownTimeLimit=”” startupTimeLimit=””
pingingEnabled=”” pingInterval=”” pingResponseTime=”” />

<recycling disallowOverlappingRotation=””
disallowRotationOnConfigChange=”” logEventOnRecycle=””>
<periodicRestart memory=”” privateMemory=”” requests=”” time=”” >
<schedule>
<add value=”” />

</schedule>
</periodicRestart>

</recycling>

<cpu limit=”” action=”” resetInterval=”” smpAffinitized=””
smpProcessorAffinityMask=”” />

</add>
</applicationPools>

<sites>
<site name=”” id=”” serverAutoStart=””>
<bindings>
<binding protocol=”” bindingInformation=”” />

</bindings>

<application path=”” applicationPool=”” enabledProtocols=””>
<virtualDirectory path=”” physicalPath=”” userName=”” password=”” />

</application>
</site>

</sites>

</applicationHost>
. . .

</configuration>

Notice that the <applicationPools> element consists of one or more <add> elements, each of which
represents an application pool. The APPCMD tool has an object name APPPOOL, which represents an appli-
cation pool. This means that the APPPOOL object maps to the <add> element.

As Listing 3-6 shows, the <add> element consists of these XML attributes: name, queueLength,
autoStart, managedRuntimeVersion, and managedPipelineMode. The APPPOOL object exposes
five properties with the same names as these attributes. The <add> element also contains child
elements such as <processModel>, <recycling>, and <cpu>. The APPPOOL object exposes
properties with the same name as these child elements, and each property exposes subproperties

78

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 78

with the same names as the attributes of these child elements. For example, you can use the expression
processModel.identityType to refer to the identityType attribute of the <processModel> child
element.

As shown in Listing 3-6, the <sites> element consists of one or more <site> child elements, each of
which represents a Web site. The APPCMD tool has an object named SITE that maps to the <site> child
element. Also notice that the <site> child element contains one or more <application> child elements
that each represent a Web application. The APPCMD tool comes with an object named APP that represents
the <application> element. This object exposes properties with the same name as the attributes of this
element.

As Listing 3-6 shows, the <application> element also contains one or more <virtualDirectory> ele-
ments. The APPCMD tool’s VDIR object represents the <virtualDirectory> element and exposes prop-
erties with the same names as the attributes of this element.

In addition to these objects, the APPCMD tool comes with objects that represent entities such as request
(REQUEST object), worker process (WP object), and server module (MODULE object).

So far I’ve covered what I like to call the object model of the APPCMD tool. This tool allows you to
perform certain operations on each object. Most objects support these four operations or commands:
LIST, ADD, DELETE, and SET. These commands or operations are very similar to the four basic SELECT,
INSERT, DELETE, and UPDATE database operations, respectively. As far as these operations go, you can
think of an instance of the APPCMD object as a data record and each property of the object instance as a
database field. Just as every data record has a database field (primary key) that uniquely identifies that
record among other records, every APPCMD object instance has a property that uniquely identifies the
instance among other instances as described in the following table:

The general syntax of APPCMD is as follows:

APPCMD.EXE <COMMAND> <OBJECT> <ID> [/parameter:value]*

where:

❑ The <COMMAND> option specifies the command or operation to perform on the specified APPCMD
object. Examples of such commands are LIST, ADD, DELETE, and SET.

❑ The <OBJECT> option specifies the APPCMD object on which the command is performed.
Examples of such objects are APPPOOL, SITE, APP, and VDIR.

Object Identifying Property

APPPOOL name: This property specifies the name of the application pool. Each application pool
must have a unique name.

SITE name and id: Each site must have a unique name and id.

APP path: This property specifies the virtual path of the Web application.

VDIR path: This property specifies the virtual path of the virtual directory relative to the
Web application that contains the directory.

79

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 79

❑ The <ID> option specifies the identifier of the object instance on which the command is per-
formed. Examples of such identifiers are the application pool name and the Web application vir-
tual path.

❑ The [/parameter:value]* option specifies a list of /parameter:value options where each
option specifies the name and value of a given property of the object on which the command is
performed.

LIST
Just as the SELECT database operation selects or lists data records that meet the set of criteria specified in
the WHERE clause, the LIST command lists object instances that meet a specified set of criteria. Here is an
example:

APPCMD LIST APPPOOL

If you run this command you’ll get something like Figure 3-17, which lists all the application pools run-
ning on the Web server.

Figure 3-17

Notice that the information about each application pool is listed on a single line, which consists of three
major parts. The first part is the object on which the command was performed, that is, APPPOOL. The sec-
ond part is the identifier of the object instance, that is, the application pool name, for example,
DefaultAppPool. The third part is a comma-separated list of items. Each item in the list consists of two
parts separated by a colon (:), which respectively specifies the name and value of some of the properties
of the object instance.

If you just want to see the information about a particular application pool, you need to specify its identi-
fier as follows (see Figure 3-18):

APPCMD LIST APPPOOL “DefaultAppPool”

This is very similar to a SELECT database operation where you specify the primary key of the record in
the WHERE clause.

Figure 3-18

80

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 80

ADD
Just as the INSERT database operation inserts or adds a new data record, the ADD command adds a new
object instance. When you’re adding a new data record, you have to specify the values of non-nullable
data fields. The same rule applies to the ADD command. When you’re adding a new object instance, you
must specify the value of the required object properties. If you don’t know what the required properties
are, use the following help command:

APPCMD ADD <OBJECT> /?

The <OBJECT> option could be any of the APPCMD objects such as APPPOOL, SITE, and so on. Here is an
example:

APPCMD ADD SITE /?

After you find out what the required properties of the object are, you can use an ADD command similar
to the following to add a new instance of the object:

APPCMD ADD SITE /name:Site1 /id:4

This command adds a site named Site1 with an id property value of 4.

DELETE
Just as the DELETE database operation deletes a data record with a specified primary key, the DELETE
command deletes an object instance with the specified identifier. For example, the following command
deletes the application pool with the specified name:

APPCMD DELETE APPPOOL “MyApplicationPool”

SET
Just as the UPDATE database operation updates a data record with a specified primary key, the SET com-
mand updates an object instance with the specified identifier. The following command changes the
name of the specified site:

APPCMD SET SITE “Site1” /name:”Site2”

Summary
This chapter discussed three different ways to interact with the new IIS7 and ASP.NET integrated config-
uration system. The next chapter shows you how to access this configuration system from within your
C# or Visual Basic code.

81

Chapter 3: Integrated Configuration from IIS Manager and Command Line

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 81

52539c03.qxd:WroxPro 9/17/07 6:51 PM Page 82

Managing the Integrated
Configuration System with

Managed Code

The previous chapters walked you through the XML structure of the IIS7 and ASP.NET integrated
configuration system. You learned a great deal about the XML elements and attributes that make
up this system. You also learned how to use the IIS7 Manager and APPCMD command-line tool to
indirectly manipulate these XML elements and attributes.

There are times when you want to manipulate these XML elements and attributes from your C# or
Visual Basic code. Obviously, GUI-based and command-line–based approaches such as the IIS7
Manager and the APPCMD tool won’t help you with this.

The managed classes of the new Microsoft.Web.Administration namespace together form an
API that allows you to treat the XML elements and attributes of the IIS7 and ASP.NET integrated
configuration system as managed objects, which means you can use object-oriented managed code
to manipulate them.

Class Diagrams
To help you understand the managed classes in the Microsoft.Web.Administration name-
space, let’s revisit the XML elements and attributes used in the <applicationHost> section
group of the applicationHost.config file as shown in Listing 4-1. Recall that this file contains
the IIS7-specific configuration sections. Because we’re only interested in the XML elements and
attributes themselves, I’ve left out the attribute values from Listing 4-1.

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 83

Listing 4-1: The applicationHost.config File

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""
managedPipelineMode="">

<processModel identityType="" userName="" password="" idleTimeout=""
maxProcesses="" shutdownTimeLimit="" startupTimeLimit=""
pingingEnabled="" pingInterval="" pingResponseTime="" />

<recycling disallowOverlappingRotation=""
disallowRotationOnConfigChange="" logEventOnRecycle="">
<periodicRestart memory="" privateMemory="" requests="" time="" >
<schedule>
<add value="" />

</schedule>
</periodicRestart>

</recycling>

<cpu limit="" action="" resetInterval="" smpAffinitized=""
smpProcessorAffinityMask="" />

</add>
. . .

</applicationPools>

<sites>
<site name="" id="" serverAutoStart="">
<bindings>
<binding protocol="" bindingInformation="" />

</bindings>

<application path="" applicationPool="" enabledProtocols="">
<virtualDirectory path="" physicalPath="" userName="" password="" />

</application>
</site>
. . .

</sites>

</applicationHost>
. . .

</configuration>

The Microsoft.Web.Administration namespace represents each main XML element in the
applicationHost.config file with a managed class whose properties map to the XML attributes and
the XML child elements of the XML element as discussed in the following sections. Before diving into
these mappings, take a look at the class diagram that represents the relationship between the classes of the
Microsoft.Web.Administration namespace as shown in Figures 4-1 and 4-2. The IIS7 and ASP.NET
integrated imperative management API’s types fall into two main categories. The first category contains
those types that represent the XML constructs making up the IIS7 and ASP.NET integrated configuration
system. These are the types that you can use from within your C# or Visual Basic code to access and
manipulate the XML constructs of the underlying configuration file programmatically. I discuss these

84

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 84

types in great detail in this chapter. The second category contains those types that provide detailed
up-to-date runtime data that you can use for IIS7 troubleshooting. These types include Request,
RequestCollection, ApplicationDomain, ApplicationDomainCollection, WorkerProcess, and
WorkerProcessCollection. I cover these types in great detail in Chapter 12.

Figure 4-1

Figure 4-2

ServerManager

Configuration

ConfigurationAttribute

WebConfigurationMap

WebConfigurationManager

Request

ApplicationDomain

WorkerProcess

RequestCollection

ApplicationDomainCollection

WorkerProcessCollection

ConfigurationElement Application
ApplicationDefaults

ApplicationPool
ApplicationPoolCpu

ApplicationPoolDefaults
ApplicationPoolFailure

ApplicationPoolPeriodicRestart
ApplicationPoolProcessModel

ApplicationPoolRecycling
Binding

ConfigurationSection
Schedule

Site
Site Defaults

 SiteLimits
SiteLogFile

SiteTraceFailedRequestsLogging
VirtualDirectory

VirtualDirectoryDefaults
ConfigurationElementCollectionBase

ApplicationCollection
ApplicationPoolCollection

BindingCollection
ConfigurationElementCollection

ScheduleCollection
SiteCollection

VirtualDirectoryCollection

85

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 85

In the following sections I discuss some of the methods and properties of the managed classes of the IIS7
and ASP.NET imperative management API.

ConfigurationElement
The ConfigurationElement class represents an XML element, which makes it the base class for all
the classes that represent the XML elements of the configuration files, such as the applicationHost
.config file as shown in Figure 4-1. Listing 4-2 presents some of the members of the
ConfigurationElement class.

Listing 4-2: The ConfigurationElement Class

public class ConfigurationElement
{
// Methods
public object GetAttributeValue(string attributeName);
public void SetAttributeValue(string attributeName, object value);
public ConfigurationElementCollection GetCollection(string collectionName);

// Properties
public object this[string attributeName] { get; set; }
. . .

}

The following table describes these members:

Notice that the ConfigurationElement class also exposes an indexer that returns the value of the XML
attribute with the specified name. Every configuration section may contain one or more child collection ele-
ments. For example, the <site> element contains a child collection element named <bindings> as shown
in Listing 4-1. The GetCollection method returns the ConfigurationElementCollection object that
represents a given child collection element. I discuss collection elements in more detail later in this chapter.

ConfigurationElementCollectionBase<T>
As Listing 4-3 shows, the ConfigurationElementCollectionBase<T> class is a generic collection
class that contains instances of the ConfigurationElement class. As such it is the base class for all
classes that represent the XML elements in the configuration file that act as containers for other XML
elements.

Member Description

GetAttributeValue Gets the value of the XML attribute with the specified name.

SetAttributeValue Sets the XML attribute with the specified name to the specified value.

GetCollection Gets the ConfigurationElementCollection collection that represents
a child collection element.

86

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 86

Listing 4-3: The ConfigurationElementCollectionBase Class

public abstract class ConfigurationElementCollectionBase<T> :
ConfigurationElement, ICollection, IEnumerable<T>, IEnumerable
where T : ConfigurationElement

{
// Methods
public T Add(T element);
public T AddAt(int index, T element);
public void Clear();
public T CreateElement(string elementTagName);
public IEnumerator<T> GetEnumerator();
public int IndexOf(T element);
public void Remove(T element);
public void RemoveAt(int index);

// Properties
public bool AllowsAdd { get; }
public bool AllowsClear { get; }
public bool AllowsRemove { get; }
public int Count { get; }
public T this[int index] { get; }

}

Notice that the definition of the ConfigurationElementCollectionBase<T> class contains the fol-
lowing to ensure that only objects of type ConfigurationElement are added to the collection:

where T : ConfigurationElement

The following table describes the methods of the ConfigurationElementCollectionBase<T> class:

Method Description

Add Adds the specified ConfigurationElement object to the collection.

AddAt Inserts the specified ConfigurationElement object into the collection at the
specified location.

Clear Clears the collection.

CreateElement Creates a ConfigurationElement object with the specified tag name.

GetEnumerator Returns an IEnumerator<T> object that allows you to iterate through the
ConfigurationElement objects in the collection. This also allows you to use
this collection in a foreach loop.

IndexOf Returns the index of the specified ConfigurationElement object.

Remove Removes the specified ConfigurationElement object from the collection.

RemoveAt Removes the ConfigurationElement object with the specified index from the
collection.

87

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 87

The following table describes the properties of the ConfigurationElementCollectionBase<T> class:

ApplicationPool
Let’s revisit the portion of Listing 4-1 highlighted in Listing 4-4. As this code shows, the
<applicationPools> element contains one or more <add> child elements, each of which adds a par-
ticular application pool and specifies its configuration settings.

Listing 4-4: The Portion of the applicationPools Section of the
applicationHost.config File

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""
managedPipelineMode="">
. . .

</add>
. . .

</applicationPools>
. . .

</applicationHost>
. . .

</configuration>

The IIS7 and ASP.NET integrated imperative management API represents each <add> child element
with an instance of a managed class named ApplicationPool. The boldfaced portion of Listing 4-5
shows the properties of the ApplicationPool class that map to the attributes of the <add> child
element highlighted in Listing 4-4. Notice that the ApplicationPool class derives from the
ConfigurationElement base class, which means that it inherits all the properties and methods
shown in Listing 4-2.

Property Description

AllowsAdd Gets the Boolean value that specifies whether new ConfigurationElement
objects can be added to the collection.

AllowsClear Gets the Boolean value that specifies whether the collection can be cleared.

AllowsRemove Gets the Boolean value that specifies whether ConfigurationElement objects
can be removed from the collection.

Count Gets the total number of ConfigurationElement objects in the collection.

Item An indexer that gets the ConfigurationElement object at the specified location
in the collection.

88

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 88

Listing 4-5: The Important Methods and Properties of the ApplicationPool Class

public sealed class ApplicationPool : ConfigurationElement
{
// Methods
public ObjectState Recycle();
public ObjectState Start();
public ObjectState Stop();

// Properties
public bool AutoStart { get; set; }
public ManagedPipelineMode ManagedPipelineMode { get; set; }
public string ManagedRuntimeVersion { get; set; }
public string Name { get; set; }
public long QueueLength { get; set; }

public ApplicationPoolRecycling Recycling { get; }
public ApplicationPoolCpu Cpu { get; }
public ApplicationPoolProcessModel ProcessModel { get; }

public WorkerProcessCollection WorkerProcesses { get; }
}

The ApplicationPool class also features the three methods described in the following table:

As Listing 4-1 shows, the <add> element that defines an application pool contains three important child
elements named <processModel>, <recycling>, and <cpu>, which were discussed thoroughly in
Chapter 2. I discuss the programmatic or imperative representation of these child elements in the follow-
ing sections.

ApplicationPoolProcessModel
As the highlighted portion of the following code listing shows (which repeats the associated portion
from Listing 4-1), the <processModel> child element of a given <add> element specifies the process
model for the application pool that the <add> element represents.

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""
managedPipelineMode="">

Method Description

Recycle Recycles the current application pool.

Start Starts the current application pool.

Stop Stops the current application pool.

89

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 89

<processModel identityType="" userName="" password="" idleTimeout=""
maxProcesses="" shutdownTimeLimit="" startupTimeLimit=""
pingingEnabled="" pingInterval="" pingResponseTime="" />
. . .

</add>
. . .

</applicationPools>
. . .

</applicationHost>
. . .

</configuration>

The IIS7 and ASP.NET integrated imperative management API represents the <processModel> element
with an instance of a managed class named ApplicationPoolProcessModel whose properties map to
the XML attributes of the associated <processModel> element as shown in Listing 4-6.

Listing 4-6: The ApplicationPoolProcessModel Class

public sealed class ApplicationPoolProcessModel : ConfigurationElement
{
// Properties
public ProcessModelIdentityType IdentityType { get; set; }
public TimeSpan IdleTimeout { get; set; }
public long MaxProcesses { get; set; }
public string Password { get; set; }
public bool PingingEnabled { get; set; }
public TimeSpan PingInterval { get; set; }
public TimeSpan PingResponseTime { get; set; }
public TimeSpan ShutdownTimeLimit { get; set; }
public TimeSpan StartupTimeLimit { get; set; }
public string UserName { get; set; }

}

Recall from Listing 4-5 that the ApplicationPool class features a property of
type ApplicationPoolProcessModel named ProcessModel, which refers to the
ApplicationPoolProcessModel object that represents the <processModel> child element.

ApplicationPoolRecycling
As the highlighted portion of Listing 4-7 (which repeats the portion of Listing 4-1) shows, the <recy-
cling> child element of the <add> element is used to specify the recycling configuration settings for the
application pool that the <add> element represents.

Listing 4-7: The <recycling> Element

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""

90

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 90

Listing 4-7: (continued)

managedPipelineMode="">

<processModel . . . />

<recycling disallowOverlappingRotation=""
disallowRotationOnConfigChange="" logEventOnRecycle="">
<periodicRestart memory="" privateMemory="" requests="" time="" >
<schedule>
<add value="" />

</schedule>
</periodicRestart>

</recycling>
. . .

</add>
. . .

</applicationPools>
. . .

</applicationHost>
. . .

</configuration>

The IIS7 and ASP.NET integrated imperative management API comes with a managed class named
ApplicationPoolRecycling that represents the <recycling> element. The boldfaced portion of
Listing 4-8 presents the properties of the ApplicationPoolRecycling class that map to the XML
attributes of the <recycling> element.

Listing 4-8: The ApplicationPoolRecycling Class

public sealed class ApplicationPoolRecycling : ConfigurationElement
{
public bool DisallowOverlappingRotation { get; set; }
public bool DisallowRotationOnConfigChange { get; set; }
public RecyclingLogEventOnRecycle LogEventOnRecycle { get; set; }

public ApplicationPoolPeriodicRestart PeriodicRestart { get; }
}

As Listing 4-5 shows, the ApplicationPool class features a property of type ApplicationPoolRecyling
named Recycling, which refers to the ApplicationPoolRecyling object that represents the
<recycling> child element.

ApplicationPoolPeriodicRestart
As the highlighted portion of Listing 4-9 (which repeats Listing 4-7) demonstrates, the <recycling> ele-
ment contains a child element named <periodicRestart> that can be used to specify the conditions
for which the application pool must be recycled.

91

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 91

Listing 4-9: The <recycling> Element

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""
managedPipelineMode="">

<processModel . . . />

<recycling disallowOverlappingRotation=""
disallowRotationOnConfigChange="" logEventOnRecycle="">
<periodicRestart memory="" privateMemory="" requests="" time="" >
<schedule>
<add value="" />

</schedule>
</periodicRestart>

</recycling>
. . .

</add>
. . .

</applicationPools>
. . .

</applicationHost>
. . .

</configuration>

It shouldn’t come as a surprise that the IIS7 and ASP.NET integrated imperative management API comes
with a class named ApplicationPoolPeriodicRestart that provides programmatic access to the
<periodicRestart> element. The boldfaced portion of Listing 4-10 contains the properties of the
ApplicationPoolPeriodicRestart class that map to the XML attributes of the <periodicRestart>
element.

Listing 4-10: The ApplicationPoolPeriodicRestart Class

public sealed class ApplicationPoolPeriodicRestart : ConfigurationElement
{
// Properties
public long Memory { get; set; }
public long PrivateMemory { get; set; }
public long Requests { get; set; }
public TimeSpan Time { get; set; }

public ScheduleCollection Schedule { get; }
}

As Listing 4-8 demonstrates, the ApplicationPoolRecycling class features a property of
type ApplicationPoolPeriodicRestart named PeriodicRestart, which refers to the
ApplicationPoolPeriodicRestart object that represents the <perodicRestart> child element.

92

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 92

ScheduleCollection
The highlighted portion of Listing 4-11 shows that the <periodicRestart> child element of the
<recycling> element is used to schedule the times at which the application pool must be recycled.

Listing 4-11: The <recycling> Element

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""
managedPipelineMode="">

<processModel . . . />

<recycling disallowOverlappingRotation=""
disallowRotationOnConfigChange="" logEventOnRecycle="">
<periodicRestart memory="" privateMemory="" requests="" time="" >
<schedule>
<add value="" />

</schedule>
</periodicRestart>

</recycling>
. . .

</add>
. . .

</applicationPools>
. . .

</applicationHost>
. . .

</configuration>

The ScheduleCollection class of the IIS7 and ASP.NET integrated imperative management API is the
programmatic representation of the <schedule> element. As such it exposes a single method named
Add that adds a new schedule time to the collection (see Listing 4-12).

Listing 4-12: The ScheduleCollection Class

public sealed class ScheduleCollection :
ConfigurationElementCollectionBase<Schedule>

{
public Schedule Add(TimeSpan scheduleTime);

}

ApplicationPoolCpu
Listing 4-13 repeats the <applicationPools> portion of Listing 4-1. As the highlighted portion of this
code listing shows, the <cpu> child element of the <add> element is used to specify CPU configuration
settings for the application pool that the <add> element represents.

93

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 93

Listing 4-13: The <applicationPools> Portion of the applicationHost.config File

<configuration>
<applicationHost>

<applicationPools>
<add name="" queueLength="" autoStart="" managedRuntimeVersion=""
managedPipelineMode="">

<processModel . . . />

<recycling . . . >
. . .

</recycling>

<cpu limit="" action="" resetInterval="" smpAffinitized=""
smpProcessorAffinityMask="" />

</add>
. . .

</applicationPools>
. . .

</applicationHost>
. . .

</configuration>

The ApplicationPoolCpu class of the IIS7 and ASP.NET integrated imperative management API
allows you to access the <cpu> element from within your C# or Visual Basic code. As you’d expect, the
properties of this class map to the XML attributes of the <cpu> element (see Listing 4-14).

Listing 4-14: The ApplicationPoolCpu Class

public sealed class ApplicationPoolCpu : ConfigurationElement
{
// Properties
public ProcessorAction Action { get; set; }
public long Limit { get; set; }
public TimeSpan ResetInterval { get; set; }
public bool SmpAffinitized { get; set; }
public long SmpProcessorAffinityMask { get; set; }

}

As Listing 4-5 shows, the ApplicationPool class contains a property of type ApplicationPoolCpu
named Cpu, which refers to the ApplicationPoolCpu object that represents the <cpu> child element.

ApplicationPoolCollection
The ApplicationPoolCollection class represents the <applicationPools> XML element of the
applicationHost.config file. This class acts as a container for the application pools defined in the
<applicationPools> section. Listing 4-15 presents the members of the ApplicationPoolCollection

94

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 94

class. Notice that this class exposes an indexer that allows you to use the name of an application pool to
return the ApplicationPool.

Listing 4-15 : The ApplicationPoolCollection Class

public sealed class ApplicationPoolCollection :
ConfigurationElementCollectionBase<ApplicationPool>

{
// Methods
public ApplicationPool Add(string name);

// Properties
public ApplicationPool this[string key] { get; }

}

Site
As the highlighted portion of Listing 4-16 shows, the <site> element is used to add a new Web site with
the specified name and id.

Listing 4-16: The <site> Element and Its Attribute

<configuration>
<applicationHost>

. . .
<sites>
<site name="" id="" serverAutoStart="">
. . .

</site>
. . .

</sites>

</applicationHost>
. . .

</configuration>

The Site class of the IIS7 and ASP.NET integrated imperative management API provides you with pro-
grammatic access to the <site> element. As such, it exposes properties that map to the attributes of this
element as illustrated in the boldfaced portion of Listing 4-17.

Listing 4-17: The Site Class

public sealed class Site : ConfigurationElement
{
// Methods
public Configuration GetWebConfiguration();
public ObjectState Start();
public ObjectState Stop();

// Properties

95

Chapter 4: Integrated Configuration from Managed Code

(continued)

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 95

Listing 4-17: (continued)

public long Id { get; set; }
public string Name { get; set; }
public bool ServerAutoStart { get; set; }

public ApplicationCollection Applications { get; }
public BindingCollection Bindings { get; }

}

The following table describes the methods of the Site class:

Notice that the GetWebApplication method loads the contents of the root web.config file of the Web
site into an instance of a class named Configuration. This class exposes an important method named
GetSection that returns the ConfigurationSection object that represents the configuration section
with the specified section path:

public ConfigurationSection GetSection(string sectionPath);

Binding
As the highlighted portion of Listing 4-18 shows, the <bindings> child element of the <site> element
is used to specify the bindings that the Web site supports. Each binding is represented by a <binding>
element that features two attributes named protocol and bindingInformation. The protocol attrib-
ute specifies the transport communication protocol, such as HTTP, that the client should use to commu-
nicate with the Web site. The bindingInformation attribute specifies three colon-separated pieces of
information: the IP address of the Web site, the port number at which the Web site is listening for incom-
ing requests, and optional host header. Here is an example:

<binding protocol=”http” bindingInformation=”*:80:” />

This binding does not specify the host header.

Listing 4-18: The applicationHost.config File

<configuration>
<applicationHost>

. . .
<sites>

Method Description

GetWebApplication Gets the Configuration object that represents the web.config file in
the root directory of the Web site.

Start Starts the Web site.

Stop Stops the Web site.

96

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 96

Listing 4-18: (continued)

<site name="" id="" serverAutoStart="">
<bindings>
<binding protocol="" bindingInformation="" />

</bindings>
. . .

</site>
. . .

</sites>

</applicationHost>
. . .

</configuration>

The Binding class of the IIS7 and ASP.NET integrated imperative management API represents the
<binding> element (see Listing 4-19). This class exposes two properties that map to the XML attributes
of the <binding> element.

Listing 4-19: The Binding Class

public class Binding : ConfigurationElement
{
. . .
public string BindingInformation { get; set; }
public string Protocol { get; set; }

}

BindingCollection
As Listing 4-18 shows, the <site> element exposes a child element named <bindings>. The
BindingCollection class of the IIS7 and ASP.NET integrated imperative management API represents
this child element, which means that its instances act as containers for the Binding objects that represent
<binding> elements. Listing 4-20 presents the BindingCollection class.

Listing 4-20: The BindingCollection Class

public sealed class BindingCollection : ConfigurationElementCollectionBase<Binding>
{
// Methods
public Binding Add(string bindingInformation, string bindingProtocol);
public void Remove(Binding element);
public void RemoveAt(int index);

}

97

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 97

The following table describes the methods of the BindingCollection class:

As Listing 4-17 shows, the Site class exposes a property of type BindingCollection named
Bindings that represents the <bindings> child element. The Bindings collection contains the
Binding objects that represent the <binding> child elements of the <bindings> element:

public sealed class Site : ConfigurationElement
{
. . .
public ApplicationCollection Applications { get; }
public BindingCollection Bindings { get; }

}

Application
As the highlighted portion of Listing 4-21 reveals, the <site> element contains one or more <applica-
tion> child elements, each of which adds a new Web application.

Listing 4-21: The <application> Element

<configuration>
<applicationHost>

. . .
<sites>
<site name="" id="" serverAutoStart="">

<bindings>
<binding protocol="" bindingInformation="" />

</bindings>
<application path="" applicationPool="" enabledProtocols="">
<virtualDirectory path="" physicalPath="" userName="" password="" />

</application>
. . .

</site>
. . .

</sites>

</applicationHost>
. . .

</configuration>

Method Description

Add Creates a Binding object with the specified protocol and binding information and
adds it to the collection.

Remove Removes the specified Binding object from the collection.

RemoveAt Removes the Binding object with the specified index from the collection.

98

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 98

The Application class of the IIS7 and ASP.NET integrated imperative management API allows you to
programmatically access the <application> element. The boldfaced portion of Listing 4-22 presents
the properties of the Application class that map to the path, applicationPool, and
enableProtocols XML attributes of the <application> element.

Listing 4-22: The Application Class

public sealed class Application : ConfigurationElement
{
// Methods
public Configuration GetWebConfiguration();

// Properties
public string ApplicationPoolName { get; set; }
public string EnabledProtocols { get; set; }
public string Path { get; set; }

public VirtualDirectoryCollection VirtualDirectories { get; }
}

Note that the Application class features a method named GetWebConfiguration that loads the root
web.config file of the application into a Configuration object.

ApplicationCollection
As discussed earlier, the <site> element contains one or more child elements named <application>,
which specify the Web applications that the Web site contains (see Listing 4-21). The IIS7 and ASP.NET
integrated imperative management API comes with a class named ApplicationCollection that acts
as a container for the Application objects that represent <applications> elements as presented in
Listing 4-23.

Listing 4-23: The ApplicationCollection Class

public sealed class ApplicationCollection :
ConfigurationElementCollectionBase<Application>

{
// Methods
public Application Add(string path, string physicalPath);

// Properties
public Application this[string path] { get; }

}

The ApplicationCollection class, like any other collection class in the IIS7 and ASP.NET integrated
imperative management API, inherits from the ConfigurationElementCollectionBase generic class.
The Add method of this class creates an Application object with the specified virtual and physical path,
and adds the object to the collection. Note that the ApplicationCollection features an indexer that
returns the Application with the specified virtual path.

99

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 99

As Listing 4-17 shows, the Site class exposes a property of type ApplicationCollection named
Applications. This property references the ApplicationCollection collection containing the
Application objects that represent the <application> child elements of the <site> element that the
Site class represents:

public sealed class Site : ConfigurationElement
{
. . .
public ApplicationCollection Applications { get; }
public BindingCollection Bindings { get; }

}

Vir tualDirectory
As the highlighted portion of Listing 4-24 demonstrates, the <application> element contains one or
more <virtualDirectory> child elements. Each child element specifies the configuration settings for a
particular virtual directory.

Listing 4-24: The <application> Element

<configuration>
<applicationHost>

. . .
<sites>
<site name="" id="" serverAutoStart="">

<bindings>
<binding protocol="" bindingInformation="" />

</bindings>
<application path="" applicationPool="" enabledProtocols="">
<virtualDirectory path="" physicalPath="" userName="" password="" />
. . .

</application>
. . .

</site>
. . .

</sites>

</applicationHost>
. . .

</configuration>

The VirtualDirectory class of the IIS7 and ASP.NET integrated imperative management API provides
programmatic access to the contents of the <virtualDirectory> element. This class exposes properties
that map to the XML attributes of this element (see Listing 4-25).

100

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 100

Listing 4-25: The VirtualDirectory Class

public sealed class VirtualDirectory : ConfigurationElement
{
// Properties
public string Password { get; set; }
public string Path { get; set; }
public string PhysicalPath { get; set; }
public string UserName { get; set; }

}

Vir tualDirectoryCollection
The VirtualDirectoryCollection class, like any other collection class in this API, inherits the
ConfigurationElementCollectionBase class and adds a method named Add and an indexer. The
Add method creates a VirtualDirectory object with the specified virtual and physical paths and adds
the object to the collection. The indexer allows you to use the virtual path as an index into the collection
to access the associated VirtualDirectory object. Listing 4-26 presents the
VirtualDirectoryCollection class.

Listing 4-26: The VirtualDirectoryCollection Class

public sealed class VirtualDirectoryCollection :
ConfigurationElementCollectionBase<VirtualDirectory>

{
// Methods
public VirtualDirectory Add(string path, string physicalPath);

// Properties
public VirtualDirectory this[string path] { get; }

}

Recall from Listing 4-21 that the Application class exposes a collection property of type
VirtualDirectoryCollection named VirtualDirectories that acts as a container for the
VirtualDirectory objects:

public sealed class Application : ConfigurationElement
{

. . .
public VirtualDirectoryCollection VirtualDirectories { get; }

}

ConfigurationSection
The ConfigurationSection class allows you to programmatically access and modify a configuration
section in a configuration file. As you’ll see in Chapter 5, the configuration section is the unit of extension

101

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 101

in the IIS7 and ASP.NET integrated configuration system. Listing 4-27 presents the properties of the
ConfigurationSection base class.

Listing 4-27: The ConfigurationSection Class

public class ConfigurationSection : ConfigurationElement
{
// Properties
public OverrideMode OverrideMode { get; set; }
public string SectionPath { get; }

}

The possible values for the OverrideMode property are Allow, Deny, and Inherit.

ServerManager
The previous sections discussed which types in the IIS7 and ASP.NET integrated imperative manage-
ment API represent which XML elements of the IIS7 and ASP.NET integrated configuration system. As
you saw, the instances of these types provide programmatic access to the contents of their associated
XML elements, which means that you can use them within your C# or Visual Basic code to read from
and write to the configuration system. This presupposes that someone loads the content of each XML
element into the instance of the appropriate type so you can use the instance to programmatically access
the element, but who? Enter the ServerManager class.

As Listing 4-28 shows, the methods and properties of the ServerManager class allow you to access the
objects that provide programmatic access to the contents of the configuration files.

Listing 4-28: The ServerManager Class

public sealed class ServerManager : IDisposable
{
// Methods
public void CommitChanges();
public Configuration GetAdministrationConfiguration();
public Configuration GetApplicationHostConfiguration();
public Configuration GetWebConfiguration(string siteName);
public Configuration GetWebConfiguration(string siteName, string virtualPath);

// Properties
public ApplicationPoolCollection ApplicationPools { get; }
public SiteCollection Sites { get; }
public WorkerProcessCollection WorkerProcesses { get; }

}

The following table describes the methods of the ServerManager class:

102

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 102

ServerManager also exposes the following three collection properties:

❑ ApplicationPools: Gets the ApplicationPoolCollection container that contains the
ApplicationPool objects that represent the application pools running on the Web server.

❑ Sites: Gets the SiteCollection container that contains the Site objects that represent the
Web sites running on the Web server.

❑ WorkerProcesses: Gets the WorkerProcessCollection container that contains the
WorkerProcess objects that represent the worker processes running on the Web server.

Putting It All Together
So far you’ve learned a great deal about the managed classes of the IIS7 and ASP.NET integrated
imperative management API. Now it’s time to put all that knowledge into practice. In this section you
learn how to use these classes to interact with the IIS7 and ASP.NET integrated configuration system
programmatically.

In the following sections, I discuss the following four recipes for interacting with the IIS7 and ASP.NET
integrated configuration system and examples that use these recipes:

❑ Recipe for loading a specified configuration file

❑ Recipe for accessing the specified attribute of a specified configuration section in the adminis-
tration.config, applicationHost.config, site web.config, application web.config, or
virtual directory web.config file

❑ Recipe for adding or removing an element from the specified collection element of a specified
configuration section in the administration.config, applicationHost.config, site
web.config, application web.config, or virtual directory web.config file

❑ Recipe for accessing the configuration sections in the <system.applicationHost> section
group of the applicationHost.config file

Method Description

GetAdministrationConfiguration Loads the administration.config file into a
Configuration object and returns the object.

GetApplicationHostConfiguration Loads the applicationHost.config file into a
Configuration object and returns the object. You can
use this object from within your C# or Visual Basic code
to programmatically access the content of the file.

GetWebConfiguration Loads the configuration file of a specified Web site with
the specified virtual path into a Configuration object.

CommitChanges Commits the changes made in the Configuration
object to the underlying configuration file.

103

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 103

Recipe for Loading a Specified Configuration File
Follow these steps to load a specified configuration file into a Configuration object:

1. Import the Microsoft.Web.Administration.dll assembly from the following directory on
your machine:

%WINDIR%\System32\InetSrv

2. Import the Microsoft.Web.Administration namespace:

using Microsoft.Web.Administration;

3. Instantiate an instance of the ServerManager class:

ServerManager mgr = new ServerManager();

4. Call the appropriate GetXXXConfiguration (where XXX is the placeholder for
Administration, ApplicationHost, or Web) method to load the desired configuration file
into a Configuration object:

❑ Call the GetAdministrationConfiguration method if you need to access the
administration.config file:

Configuration config = mgr.GetAdministrationConfiguration();

❑ Call the GetApplicationHostConfiguration method if you need to access the
applicationHost.config file:

Configuration config = mgr.GetApplicationHostConfiguration();

❑ Call the GetWebConfiguration method if you need to access a site, application, or vir-
tual directory web.config file:

Configuration config = mgr.GetWebConfiguration();

Recipe for Accessing the Specified Attribute of a
Specified Configuration Section

Follow these steps to get and set the attribute values of a specified configuration section in the
administration.config, applicationHost.config, site web.config, application web.config, or
virtual directory web.config file:

1. Use the steps under “Recipe for Loading a Specified Configuration File” to load the configura-
tion file into a Configuration object.

2. Call the GetSection method of the Configuration object to access the
ConfigurationSection object that represents the configuration section with the specified
location path (such as system.web/compilation):

ConfigurationSection section = config.GetSection(“locationPath”)

104

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 104

3. Use the GetAttributeValue method of the ConfigurationSection object to access the value
of a specified attribute:

Object attrVal = section.GetAttributeValue(“AttrName”);

4. Use the SetAttributeValue method of the ConfiguartionSection object to set the value of
a specified attribute:

Section.SetAttributeValue(“AttrName”, attrValue);

5. Call the CommitChanges method on the ServerManager object to commit the changes. Recall
that the ServerManager object loads the configuration file into a Configuration object, which
is an in-memory entity. In other words, all the changes that you make using the IIS7 and
ASP.NET integrated imperative management API are made to the in-memory representation of
the underlying configuration file, not the file itself. Calling the CommitChanges method com-
mits the changes to the file itself.

mgr.CommitChanges();

Here is an example. Launch Visual Studio, add a new console application, add a reference to the
Microsoft.Web.Administration.dll assembly, and add the code shown in Listing 4-29 to the
Program.cs file (when you add a console application, VS automatically adds this file to your project).

Listing 4-29: The Program.cs File

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration config = mgr.GetApplicationHostConfiguration();
ConfigurationSection section =

config.GetSection("system.webServer/defaultDocument");
bool enabled = (bool)section.GetAttributeValue("enabled");
section.SetAttributeValue("enabled", !enabled);
mgr.CommitChanges();

}
}

Run the program and open the applicationHost.config file. The result should look like the following:

<configuration>
<system.webServer>
. . .
<defaultDocument enabled="false">
. . .

</defaultDocument>

105

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 105

Recipe for Adding or Removing an Element from the
Specified Collection Element of a Specified
Configuration Section

Follow these steps to add or remove an element from the specified collection element of a specified con-
figuration section in the administration.config, applicationHost.config, site web.config,
application web.config, or virtual directory web.config file:

1. Use the steps under “Recipe for Loading a Specified Configuration File” to load the configura-
tion file into a Configuration object.

2. Call the GetSection method of the Configuration object to access the
ConfigurationSection object that represents the specified configuration section.

3. Call the GetCollection method on the ConfigurationSection object to access the
ConfigurationElementCollection object that represents the specified collection element:

ConfigurationElementCollection col =
section.GetCollection("CollectionElementName");

4. Call the AllowsAdd or AllowsRemove property of the ConfigurationElementCollection
object to ensure that the object allows adding or removing elements.

5. Follow these steps to add an element to the ConfigurationElementCollection collection:

a. Call the CreateElement method of the ConfigurationElementCollection
object to create a new ConfigurationElement object with the specified name.

b. Call the SetAttributeValue method on the ConfigurationElement object as
many times as necessary to specify the attributes of the element.

c. Use the Add method of the ConfigurationElementCollection object to add
the ConfigurationElement object to the collection.

6. Follow these steps to remove a specified element from the
ConfigurationElementCollection collection:

a. Access the ConfigurationElement object with the specified name.

b. Call the Remove method on the ConfigurationElementCollection object to
remove the ConfigurationElement object from the collection.

7. Call the CommitChanges method on the ServerManager object to commit the changes to the
configuration file that the Configuration object represents.

Here is an example for adding an element to a collection element. Add a new console application in
Visual Studio, add a reference to the Microsof.Web.Administration.dll assembly, and add the code
shown in Listing 4-30 to the Program.cs file.

Listing 4-30: Adding a New Element

using System;
using Microsoft.Web.Administration;

106

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 106

Listing 4-30: (continued)

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration config = mgr.GetApplicationHostConfiguration();
ConfigurationSection section =

config.GetSection("system.webServer/defaultDocument");
ConfigurationElementCollection col = section.GetCollection("files");
if (col.AllowsAdd)
{
ConfigurationElement addElement = col.CreateElement("add");
addElement.SetAttributeValue("value", "Home.aspx");
col.Add(addElement);
mgr.CommitChanges();

}
}

}

Run the program and open the applicationHost.config file. As the boldfaced portion of the follow-
ing code listing shows, the program adds a new <add> element with the value attribute value of
Home.aspx to the <files> collection element of the <defaultDocument> configuration section:

<configuration>
<system.webServer>
<defaultDocument enabled="false">
<files>
. . .
<add value="Home.aspx" />

</files>
</defaultDocument>

</system.webServer>
</configuration>

Now let’s take a look at an example that removes an element from a collection element. Add a new con-
sole application in Visual Studio as usual, add a reference to the Microsoft.Web.Administration.dll
assembly, and add the code presented in Listing 4-31 to the Program.cs file.

Listing 4-31: Removing an Element

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration config = mgr.GetApplicationHostConfiguration();

107

Chapter 4: Integrated Configuration from Managed Code

(continued)

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 107

Listing 4-31: (continued)

ConfigurationSection section =
config.GetSection("system.webServer/defaultDocument");

ConfigurationElementCollection col = section.GetCollection("files");
if (col.AllowsRemove)
{
ConfigurationElement addElement1 = null;
foreach (ConfigurationElement addElement2 in col)
{
if (addElement2.GetAttributeValue("value").Equals("Home.aspx"))
{
addElement1 = addElement2;
break;

}
}

if (addElement1 != null)
{
col.Remove(addElement1);
mgr.CommitChanges();

}
}

}
}

Run the program and open the applicationHost.config file as usual. The <add> element with the
value attribute value of Home.aspx should not be there anymore.

Recipe for Accessing the Configuration Sections in the
<system.applicationHost> Section Group

As discussed earlier, the configuration sections in the <system.applicationHost> section group can
only be used in the applicationHost.config file. In this section I use bunch of examples to show you
how to use the managed classes of the IIS7 and ASP.NET integrated imperative management API to pro-
grammatically manage the configuration sections in <system.applicationHost>.

Adding an Application Pool
In this first example, you add a new application pool named MyAppPool to the Web server. Add a con-
sole application in Visual Studio as usual, add a reference to the
Microsoft.Web.Administration.dll assembly, and add the following code to the Program.cs file:

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)

108

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 108

{
ServerManager mgr = new ServerManager();
ApplicationPool myAppPool = mgr.ApplicationPools.Add("MyAppPool");
myAppPool.AutoStart = true;
myAppPool.Cpu.Action = ProcessorAction.KillW3wp;
myAppPool.ManagedPipelineMode = ManagedPipelineMode.Integrated;
myAppPool.ManagedRuntimeVersion = "V2.0";
myAppPool.ProcessModel.IdentityType = ProcessModelIdentityType.NetworkService;
myAppPool.ProcessModel.IdleTimeout = TimeSpan.FromMinutes(2);
myAppPool.ProcessModel.MaxProcesses = 1;
mgr.CommitChanges();

}
}

Run the program and open the applicationHost.config file. It should include the <add> element
shown in boldface in the following code listing:

<configuration>
<system.applicationHost>
<applicationPools>
<add name="DefaultAppPool" />
<add name="Classic .NET AppPool" managedPipelineMode="Classic" />
<add name="MyAppPool" autoStart="true" managedRuntimeVersion="V2.0"
managedPipelineMode="Integrated">
<processModel identityType="NetworkService" idleTimeout="00:02:00"
maxProcesses="1" />
<cpu action="KillW3wp" />

</add>
. . .

</applicationPools>
</system.applicationHost>

</configuration>

Adding a Web Site
The next example adds a new Web site named MyWebSite to the Web server:

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
mgr.Sites.Add("MyWebSite","http","198.1.1.0:80:",

@"d:\MyWebSiteRootWebAppRootVirDir");
mgr.CommitChanges();

}
}

109

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 109

You should see the boldfaced <site> element shown in the following listing in the
applicationHost.config file:

<configuration>
<system.applicationHost>
<sites>
<site name="MyWebSite" id="2">
<application path="/">
<virtualDirectory path="/"
physicalPath="d:\MyWebSiteRootWebAppRootVirDir" />

</application>
<bindings>
<binding protocol="http" bindingInformation="198.1.1.0:80:" />

</bindings>
</site>

</sites>
</system.applicationHost>

</configuration>

Notice that the Add method of the Sites property of the ServerManager object adds a new Web site
that contains a root Web application with the virtual path of “/”, which in turn contains a root virtual
directory with a virtual path of “/” and a physical path of d:\MyWebSiteRootWebAppRootVirDir. The
Add method also adds a binding for the Web site. This binding specifies that clients must use HTTP as
the transport protocol to access the MyWebSite Web site. It also specifies that clients must access this
Web site at the IP address of 198.1.1.0 and port number of 80.

Adding a Binding
The next example shows how to add a new binding to the MyWebSite Web site:

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Site myWebSite = mgr.Sites["MyWebSite"];
myWebSite.Bindings.Add("192.168.254.1:80:", "http");
mgr.CommitChanges();

}
}

You should see the boldfaced portion of the following listing in the applicationHost.config file:

<configuration>
<system.applicationHost>
<sites>
<site name="MyWebSite" id="2">
<application path="/">
<virtualDirectory path="/"

110

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 110

physicalPath="d:\MyWebSiteRootWebAppRootVirDir" />
</application>
<bindings>
<binding protocol="http" bindingInformation="198.1.1.0:80:" />
<binding protocol="http" bindingInformation="192.168.254.1:80:" />

</bindings>
</site>

</sites>
</system.applicationHost>

</configuration>

The same Web site can be accessed via different transport protocols, IP addresses, and port numbers.
This is a very important feature of the IIS7 architecture. As you’ll see later in this book, this allows you to
host the Windows Communications Foundation services in IIS7 allowing clients to communicate with
the same service via different transport protocols such as HTTP, NET.TCP, NET.PIPE, and .NET.MSMQ.

Adding a Web Application
The next example shows you how to add a new Web application to the MyWebSite Web site:

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Site myWebSite = mgr.Sites["MyWebSite"];
Application myApp = myWebSite.Applications.Add("/MyWebApp",

@"d:\MyWebSiteDir\MyWebAppRootVirDir");
myApp.ApplicationPoolName = "MyAppPool";
mgr.CommitChanges();

}
}

You should see the boldfaced portion shown in the following code listing in the
applicationHost.config file:

<configuration>
<system.applicationHost>
<sites>
<site name="MyWebSite" id="2">
<application path="/">
<virtualDirectory path="/" physicalPath="d:\MyWebSiteDir" />

</application>
<application path="/MyWebApp" applicationPool="MyAppPool">
<virtualDirectory path="/"
physicalPath="d:\MyWebSiteDir\MyWebAppRootVirDir" />

</application>
<bindings>
<binding protocol="http" bindingInformation="198.1.1.0:80:" />

111

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 111

</bindings>
</site>

</sites>
</system.applicationHost>

</configuration>

The Add method added a new Web application with virtual path of /MyWebApp that belongs to the
MyAppPool application pool. Note that the Add method has automatically added a root virtual directory
to the newly created application.

Adding a Virtual Directory
Now add a new virtual directory to the MyWebApp Web application:

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Site myWebSite = mgr.Sites["MyWebSite"];
Application myWebApp = myWebSite.Applications["/MyWebApp"];
myWebApp.VirtualDirectories.Add("/MyVirDir",

@”d:\MyWebSiteDir\MyWebAppRootVirDir”);
mgr.CommitChanges();

}
}

After running this program, the applicationHost.config file should look like the following:

<configuration>
<system.applicationHost>
<sites>
<site name="MyWebSite" id="2">
<application path="/">
<virtualDirectory path="/" physicalPath="d:\MyWebSiteDir" />

</application>
<application path="/MyWebApp" applicationPool="MyAppPool">
<virtualDirectory path="/"
physicalPath="d:\MyWebSiteDir\MyWebAppRootVirDir" />
<virtualDirectory path="/MyVirDir"
physicalPath="d:\MyWebSiteDir\MyWebAppRootVirDir" />

</application>
<bindings>
<binding protocol="http" bindingInformation="198.1.1.0:80:" />

</bindings>
</site>

</sites>
</system.applicationHost>

</configuration>

112

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 112

This example also reveals a very interesting fact about virtual directories: You can have two or more dif-
ferent virtual directories pointing to the same physical path.

Summary
In this chapter you learned a great deal about the IIS7 and ASP.NET integrated imperative management
API and how to use it to access and/or modify the contents of the configuration files. The next chapter
shows you how to extend the schema of the IIS7 and ASP.NET integrated configuration system to add
support for your own custom configuration sections.

113

Chapter 4: Integrated Configuration from Managed Code

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 113

52539c04.qxd:WroxPro 9/17/07 6:51 PM Page 114

Extending the Integrated
Configuration System and

Imperative Management API

The previous chapters provided in-depth coverage of the following four important components of
the IIS7 and ASP.NET integrated infrastructure:

❑ IIS7 and ASP.NET integrated configuration system

❑ IIS7 and ASP.NET integrated graphical management system (IIS7 Manager)

❑ IIS7 and ASP.NET integrated imperative management system

❑ IIS7 and ASP.NET integrated request processing pipeline

As discussed, the modular architecture of the IIS7 and ASP.NET integrated request processing
pipeline allows you to plug your own custom feature modules into the integrated pipeline to add
support for new custom processing capabilities. Adding a new custom feature module also
requires you to:

❑ Extend the IIS7 and ASP.NET integrated configuration system to add support for a new
configuration section to allow the clients of your custom feature module to configure the
module from configuration files

❑ Extend the IIS7 and ASP.NET integrated graphical management system (IIS7 Manager) to
add support for new graphical components to allow the clients of your custom feature
module to configure the module from the IIS7 Manager

❑ Extend the IIS7 and ASP.NET integrated imperative management system to add support
for new managed classes that allow the clients of your custom feature module to config-
ure the module from their C# or Visual Basic code in a strongly-typed fashion.

52539c05.qxd 9/17/07 10:04 PM Page 115

Therefore, extending the IIS7 and ASP.NET integrated infrastructure requires you to have a solid under-
standing of the following four extensibility models:

❑ IIS7 and ASP.NET integrated configuration extensibility model

❑ IIS7 and ASP.NET integrated graphical management extensibility model

❑ IIS7 and ASP.NET integrated imperative management extensibility model

❑ IIS7 and ASP.NET integrated request processing pipeline extensibility model

An extensibility model provides you with the necessary infrastructure and tools to add support for new
extensions.

IIS7 and ASP.NET Integrated Configuration
Extensibility Model

One of the great things about the new IIS7 and ASP.NET integrated configuration system is that all the
configuration information is stored in XML files known as configuration files. The unit of extensibility in
the new unified configuration system is known as a configuration section. A configuration section nor-
mally contains configuration settings for a particular feature module at a particular level of the configu-
ration hierarchy.

For example, the <defaultDocument> configuration section of the applicationHost.config file allows
you to configure the DefaultDocumentModule feature module for all the sites, applications, and virtual
directories running on the Web server. The <defaultDocument> configuration section of the web.config
file of a given Web site, on the other hand, allows you to configure the DefaultDocumentModule feature
module only for the applications and virtual directories running in that Web site.

As discussed in the previous chapters, the extensibility model of the IIS7 and ASP.NET integrated
request processing pipeline allows you to plug your own custom feature modules into the pipeline to
extend its request processing capabilities. These custom feature modules need to be configured just like
the standard feature modules. This means that every time you extend the integrated pipeline to plug in
a new custom feature module, you have to also extend the integrated configuration system to plug in a
new custom configuration section for your custom feature module to allow page developers to configure
your module from configuration files.

Because configuration files are XML documents, extending the integrated configuration system means
extending the XML schema of the system. The IIS7 and ASP.NET integrated infrastructure comes with an
XML markup language that allows you to extend the schema of the integrated configuration system in a
declarative fashion.

This declarative schema extension capability is in contrast to the traditional imperative or programmatic
schema extension capability that ASP.NET developers have come to know. The traditional schema exten-
sibility model requires you to write procedural code to extend the schema. The IIS7 and ASP.NET inte-
grated declarative schema extension model allows you to extend the schema without writing a single
line of procedural code. This is welcoming news for ASP.NET developers, allowing them to extend the
schema with minimal time and effort.

116

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 116

IIS7 and ASP.NET Integrated Declarative Schema
Extension Markup Language

The IIS7 and ASP.NET integrated declarative schema extension markup language, like any other markup
language, consists of XML elements and attributes. These XML elements and attributes allow you to
define the XML elements and attributes that make up a configuration section.

Every configuration section consists of one or more XML elements and their XML attributes. These XML
elements fall in the following categories:

❑ Containing or outermost XML element: This XML element contains the rest of the XML ele-
ments that make up the configuration section. Obviously the name of the containing XML
element varies from one configuration section to another.

❑ Collection XML elements: Each Collection XML element represents a collection of items. For
example, as you’ll see later, the <defaultDocuments> configuration section contains a
Collection XML element named <files> that represents a collection of default documents.

❑ The name of a Collection XML element may vary from one configuration section to another. For
example, as you’ll see later, the Collection XML element of the <defaultDocuments> configu-
ration section is an element named <files>, whereas the Collection XML element of the
<requestFiltering> configuration section is an element named <fileExtensions>.

❑ The same configuration section may have more than one Collection XML element. For example,
as you’ll see later, the <requestFiltering> configuration section contains two Collection
XML elements named <fileExtensions> and <hiddenSegments>.

❑ Every Collection XML element contains the following child elements:

❑ Add child elements: Each Add child element of a Collection XML element adds a new
item to the collection of items that the Collection XML element represents. For example,
the <files> Collection XML element of the <defaultDocuments> configuration sec-
tion contains one or more Add child elements named <add> where each <add> child
element adds a default document to the collection of documents that the <files>
Collection XML element represents.

❑ The name of an Add child element may vary from one type of Collection XML element
to another. For example, as you’ll see later, the Add child element of the <files>
Collection XML element of the <defaultDocuments> configuration section is an ele-
ment named <mimeMap>, whereas the Add child element of the <fileExtensions>
Collection XML element of the <requestFiltering> configuration section is an ele-
ment named <add>.

❑ Remove child elements: Each Remove child element removes an existing item from
the collection of items that the Collection XML element represents. For example, the
<files> Collection XML element of the <defaultDocuments> configuration section
may contain one or more Remove child elements named <remove> where each
<remove> child element removes a default document from the collection of documents
that the <files> Collection XML element represents.

117

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 117

❑ The name of the Remove child element may vary from one type of Collection XML ele-
ment to another. In other words, the Remove child element does not have to be named
<remove>. It can be named <delete> or anything else you wish.

❑ Clear child element: The Clear child element clears the collection of items that the
Collection XML element represents. Again, the name of the Clear child element may
vary from one type of Collection XML element to another. In other words, the Clear
child element does not have to be named <clear>. It can be named anything you wish.

❑ Non-collection XML elements: These are XML elements that do not represent collections of
items. The name of a non-collection XML element may vary from one configuration section to
another.

Let’s look at a few examples from the applicationHost.config file. Listing 5-1 shows the first
example.

Listing 5-1: The <defaultDocument> Configuration Section

<configuration>
<system.webServer>
<defaultDocument enabled=”false”>
<files>
<add value=”Default.htm” />
<add value=”Default.asp” />
<add value=”index.htm” />
<add value=”index.html” />
<add value=”iisstart.htm” />
<add value=”default.aspx” />

</files>
</defaultDocument>

</system.webServer>
</configuration>

Now I’ll identify the previously mentioned three types of XML elements making up the
<defaultDocument> configuration section:

❑ Containing XML element: As Listing 5-1 clearly shows, the <defaultDocument> XML element
contains the rest of the XML elements and attributes that make up this configuration section.

❑ Collection XML element: The <files> XML element represents a collection of files or docu-
ments. Each <add> element adds a new document to this collection of documents.

❑ Non-collection XML elements: The <documentDefault> configuration section does not con-
tain any non-collection XML elements.

As this example shows, a configuration section is not required to contain all three types of XML ele-
ments. As a matter of fact, you can have a configuration section that contains only the Containing XML
element.

The next example is also an excerpt from the applicationHost.config file, as shown in Listing 5-2.

118

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 118

Listing 5-2: The <staticContent> Configuration Section

<configuration>
<system.webServer>
<staticContent isDocFooterFileName=”false” enableDocFooter=”false”>
<mimeMap fileExtension=”.323” mimeType=”text/h323” />
<mimeMap fileExtension=”.aaf” mimeType=”application/octet-stream” />
<mimeMap fileExtension=”.aca” mimeType=”application/octet-stream” />
<mimeMap fileExtension=”.accdb” mimeType=”application/msaccess” />
<mimeMap fileExtension=”.accde” mimeType=”application/msaccess” />
<mimeMap fileExtension=”.accdt” mimeType=”application/msaccess” />
<mimeMap fileExtension=”.afm” mimeType=”application/octet-stream” />
<clientCache cacheControlMode==”NoControl” />

</staticContent>
</system.webServer>

</configuration>

Now I’ll identify the three types of XML elements that make up the <staticContent> configuration
section:

❑ Containing XML element: You guessed it — the <staticContent> element is the containing
XML element in this case.

❑ Collection XML elements: The <staticContent> XML element itself also acts as the
Collection XML element, which represents a collection of MIME mappings. The <mimeMap>
XML element in this case acts as the Add child element because it adds a new MIME mapping
to the collection. As you can see, the Add child element does not have to be named <add>. It can
be named anything you wish as long as it adds an item to the collection that the associated
Collection XML element represents.

❑ Non-collection elements: The <clientCache> XML element is a non-collection XML element
in this case because it does not represent a collection of items.

The IIS7 and ASP.NET integrated declarative schema extension markup language contains the XML ele-
ments and attributes that you need to describe the XML elements and attributes that make up your con-
figuration section, as discussed in the following sections.

<sectionSchema>
Use the <sectionSchema> element to define the containing XML element of your configuration section.
This element exposes an attribute named name that you must set to the fully qualified name of the con-
taining XML element, including its entire section group hierarchy. For example, consider the
<basicAuthentication> configuration section presented in the following listing:

<configuration>
<system.webServer>
<security>
<authentication>
<basicAuthentication ... />

</authentication>
</security>

</system.webServer>
</configuration>

119

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 119

Here is how this configuration section is defined:

<sectionSchema name=”system.webServer/security/authentication/basicAuthentication”>
...

</sectionSchema>

As you can see, the name attribute of the <sectionSchema> element has been set to a value that con-
tains the entire section group hierarchy that the <basicAuthentication> configuration section
belongs to.

<attribute>
You use the <attribute> element to define the XML attributes of the elements that make up your con-
figuration section. The <attribute> element exposes the following XML attributes:

❑ name: Specifies the name of the XML attribute being defined.

❑ type: Specifies the data type of the XML attribute being defined.

❑ defaultValue: Specifies the default value of the XML attribute being defined.

Have another look at the <basicAuthentication> configuration section:

<configuration>
<system.webServer>
<security>
<authentication>
<basicAuthentication enabled=”false” logonMethod=”ClearText” />

</authentication>
</security>

</system.webServer>
</configuration>

Here is how the enabled and logonMethod attributes of the <basicAuthentication> configuration
section are defined:

<sectionSchema name=”system.webServer/security/authentication/basicAuthentication”>
<attribute name=”enabled” type=”bool” defaultValue=”false” />

<attribute name=”logonMethod” type=”enum” defaultValue=”ClearText”>
<enum name=”Interactive” value=”0” />
<enum name=”Batch” value=”1” />
<enum name=”Network” value=”2” />
<enum name=”ClearText” value=”3” />

</attribute>
</sectionSchema>

Note that if the attribute being defined is an enumeration, the <attribute> element contains one
<enum> child element for each enumeration value. The <enum> element exposes two attributes: name,
which contains the name of the enumeration, and value, which contains the integer number that the
enumeration references.

120

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 120

<element>
Use the <element> element without the <collection> element to define a non-collection XML element
of a configuration section. I discuss the <collection> element shortly. The <element> element exposes
an attribute named name that must be set to the name of the XML element being defined. For example,
consider the following <staticContent> configuration section:

<configuration>
<system.webServer>
<staticContent isDocFooterFileName=”false” enableDocFooter=”false”>
<mimeMap fileExtension=”.323” mimeType=”text/h323” />
<mimeMap fileExtension=”.aaf” mimeType=”application/octet-stream” />
<clientCache cacheControlMode=”NoControl” />

</staticContent>
</system.webServer>

</configuration>

The <clientCache> non-collection XML element (shown in bold in the previous code) is defined as
follows:

<sectionSchema name=”staticContent”>
<element name=”clientCache”>
<attribute name=”cacheControlMode” type=”enum” defaultValue=”NoControl”>
<enum name=”NoControl” value=”0” />
<enum name=”DisableCache” value=”1” />
<enum name=”UseMaxAge” value=”2” />
<enum name=”UseExpires” value=”3” />

</attribute>
</element>

</sectionSchema>

<collection>
Use the <element> and <collection> elements together to define a Collection element of a configura-
tion section. The <collection> element exposes the following XML attributes:

❑ addElement: Specifies the name of the Add child element of the <collection> element. Recall
that the Add child element adds a new item to the collection of items.

❑ removeElement: Specifies the name of the Remove child element of the <collection> ele-
ment. Recall that the Remove child element removes an item from the collection of items.

❑ clearElement: Specifies the name of the Clear child element of the <collection> element.
Recall that the Clear child element clears the collection of items.

The <collection> element also contains one or more <attribute> elements, each of which defines a
particular attribute of the Add child element.

For example, consider the <requestFiltering> configuration section:

<configuration>
<system.webServer>
<security>

121

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 121

<requestFiltering>
<fileExtensions allowUnlisted=”true”>
<add fileExtension=”.asax” allowed=”false” />
<add fileExtension=”.ascx” allowed=”false” />
<add fileExtension=”.master” allowed=”false” />
<add fileExtension=”.skin” allowed=”false” />
<add fileExtension=”.browser” allowed=”false” />
<add fileExtension=”.sitemap” allowed=”false” />
...

</fileExtensions>
<hiddenSegments>
<add segment=”web.config” />
<add segment=”bin” />
<add segment=”App_code” />
<add segment=”App_GlobalResources” />
<add segment=”App_LocalResources” />
...

</hiddenSegments>
</requestFiltering>

</security>
</system.webServer>

</configuration>

Note that the <requestFiltering> configuration section contains two Collection elements named
<fileExtensions> and <hiddenSegments>. The following code listing shows the definition of
the <fileExtensions> Collection element:

<sectionSchema name=”system.webServer/security/requestFiltering”>
<element name=”fileExtensions”>
<attribute name=”allowUnlisted” type=”bool” defaultValue=”true” />
<collection addElement=”add” clearElement=”clear” removeElement=”remove” >

<attribute name=”fileExtension” type=”string” required=”true”
isUniqueKey=”true” validationType=”nonEmptyString” />

<attribute name=”allowed” type=”bool” required=”true” defaultValue=”true” />
</collection>

</element>
</sectionSchema>

Follow these steps to define a Collection element of your configuration section:

1. Use the <element> element and set its name attribute to the name of the Collection element
being defined:

<element name=”fileExtensions”>

2. Use the <attribute> element to define the attributes of the Collection element itself:

<attribute name=”allowUnlisted” type=”bool” defaultValue=”true” />

122

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 122

3. Use the <collection> element and set its addElement, clearElement, and removeElement
attributes to the names of the Add, Remove, and Clear child elements:

<collection addElement=”add” clearElement=”clear” removeElement=”remove” >

4. Use the <attribute> element inside the <collection> element to define the attributes of the
Add child elements:

<collection addElement=”add” clearElement=”clear” removeElement=”remove” >
<attribute name=”fileExtension” type=”string” required=”true”
isUniqueKey=”true” validationType=”nonEmptyString” />

<attribute name=”allowed” type=”bool” required=”true” defaultValue=”true” />
</collection>

As the boldfaced portion of this code snippet shows, at least one of the <attribute> elements must
have an isUniqueKey attribute assigned with a value of true, to indicate that the attribute serves as a
key for retrieving items from the corresponding collection. For example, the preceding code snippet has
set the isUniqueKey attribute of the <attribute> element that defines the fileExtension attribute to
true. This specifies the fileExtension attribute of the file extension item that the <add> element adds
to the collection of the file extensions as the identifier of the file extension item. Having an identifier
attribute allows the clients of your custom configuration section to use the Remove child element to
remove an item with the specified identifier from the collection.

This seems to suggest something like the following, which looks like a silly thing to do. Why would you
want to use the <add> element to add a new file extension and then use the <remove> element to
remove it as shown in the boldfaced portions?

<configuration>
<system.webServer>
<security>
<requestFiltering>
<fileExtensions allowUnlisted=”true”>
<add fileExtension=”.asax” allowed=”false” />
<add fileExtension=”.ascx” allowed=”false” />
<add fileExtension=”.master” allowed=”false” />
<remove fileExtension=”.asax” />
. . .

</fileExtensions>
. . .

</requestFiltering>
</security>

</system.webServer>
</configuration>

You’re right. It doesn’t make any sense to use both <add> and <remove> in the same configuration file.
However, it makes lot of sense to use <add> in one configuration file to add a file extension to the collec-
tion of file extensions, and use <remove> in a lower-level configuration file to remove the file extension
from the collection for that particular level and its sublevels. In other words, removing an item removes
the item from the collection only for a particular hierarchy level (and its sublevels), and has no effect
on the higher levels.

123

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 123

Now take a look at the schema for the <staticContent> configuration section presented in Listing 5-2:

<sectionSchema name=”system.webServer/staticContent”>
<collection addElement=”mimeMap” clearElement=”clear” removeElement=”remove”>
<attribute name=”fileExtension” type=”string” required=”true”
isUniqueKey=”true” validationType=”nonEmptyString” />
<attribute name=”mimeType” type=”string” required=”true”
validationType=”nonEmptyString” />

</collection>
. . .

</sectionSchema>

As mentioned before, in this case the <staticContent> element itself is the Collection element. That is
why the <collection> element in this code listing is not contained in an <element> element. Another
interesting point is that the addElement attribute of the <collection> element is set to mimeMap. This
means that the child element of your Collection element does not have to be an <add> element. It could
be any element that performs the add operation, such as the <mimeMap> element, which adds a new
MIME mapping to the <staticContent> collection.

Adding a Custom Configuration Section
The previous sections covered the XML elements and attributes that make up the new IIS7 and ASP.NET
integrated declarative schema extension markup language. In this section you learn how to use this
markup language to define the XML elements and attributes that make up a configuration section.

Follow these steps to extend the IIS7 and ASP.NET integrated configuration system to add support for
your own custom configuration section:

1. Write down the configuration section, including all its XML elements and attributes.

2. Identify the following portions of the configuration section:

❑ The containing XML element, and the names, data types, and default values of its
attributes

❑ The non-collection XML elements, and the names, data types, and default values of
their attributes

❑ The Collection XML elements, and the names, data types, and default values of their
attributes

❑ The child elements of each Collection element that perform the add, remove, and clear
operations, and the names, data types, and default values of their attributes

3. Create a new XML file in the following directory on your machine:

%WINDIR%\system32\inetsrv\config\schema

By convention the name of this XML file consists of two parts separated by the underscore (_)
character. The second part is always the word “schema,” and the first part is whatever name
makes sense in the case of your custom configuration section. The first part is normally in capi-
tal letters. As a matter of fact, if you check out this schema directory, you’ll notice it contains two
XML files named IIS_schema.xml and ASPNET_schema.xml, which contain the schemas for

124

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 124

the IIS and ASP.NET configuration sections. You should not add your own schema to either of
these files. Instead you should add a new XML file to the schema directory.

4. Decide on the section group hierarchy where you want to add your configuration section.

5. Use the IIS7 and ASP.NET integrated declarative schema extension markup language discussed
in the previous sections to implement the schema that defines the XML elements and attributes
that make up your custom configuration section.

6. Register your custom configuration section with the <configSections> section of the
applicationHost.config file.

Next, you use this recipe to extend the IIS7 and ASP.NET integrated configuration system to add sup-
port for a custom configuration section named myConfigSection. The first step requires you to write
down a representative implementation of your configuration section, as shown in Listing 5-3.

Listing 5-3: The <myConfigSection> Configuration Section

<myConfigSection myConfigSectionBoolAttr=”” myConfigSectionEnumAttr=””>
<myNonCollection myNonCollectionTimeSpanAttr=”” />
<myCollection myCollectionIntAttr=””>
<myAdd myCollectionItemBoolAttr=”” myCollectionItemIdentifier=”” />
<myRemove myCollectionItemIdentifier=”” />
<myClear/>

</myCollection>
</myConfigSection>

The second step requires you to identify different portions of the configuration section. The
<myConfigSection> configuration section exposes a Boolean attribute named myConfigSectionBoolAttr
and an enumeration attribute named myConfigSectionEnumAttr with the possible enumeration val-
ues of myConfigSectionEnumVal1, myConfigSectionEnumVal2, and myConfigSectionEnumVal3.

The <myConfigSection> configuration section contains a non-Collection element named
myNonCollection that exposes a TimeSpan attribute named myNonCollectionTimeSpanAttr. This
configuration section also contains a Collection element named <myCollection> that exposes an inte-
ger attribute named myCollectionIntAttr. This Collection element contains one or more <myAdd>
child elements that expose a Boolean attribute named myCollectionItemBoolAttr and a string attrib-
ute named myCollectionItemIdentifier. The Collection element can contain one or more
<myRemove> child elements.

Following the third step of the recipe, add an XML file named MY_schema.xml to the schema directory
on your machine.

Next, you need to decide on the section group hierarchy to which you want to add the
<myConfigSection> configuration section. In this case, add the configuration section to the
<system.webServer> section group.

Next, you need to use the IIS7 and ASP.NET integrated declarative schema extension markup language
to implement the schema for the myConfigSection configuration section and store this schema in the
MY_schema.xml file.

125

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 125

Listing 5-4 presents the content of the MY_schema.xml file.

Listing 5-4: The Content of the MY_schema.xml File

<configSchema>
<sectionSchema name=”system.webServer/myConfigSection”>
<attribute name=”myConfigSectionBoolAttr” type=”bool” defaultValue=”false”/>
<attribute name=”myConfigSectionEnumAttr” type=”enum”
defaultValue=”myConfigSectionEnumVal2”>
<enum name=”myConfigSectionEnumVal1” value=”1”/>
<enum name=”myConfigSectionEnumVal2” value=”2”/>
<enum name=”myConfigSectionEnumVal3” value=”3”/>

</attribute>

<element name=”myNonCollection”>
<attribute name=”myNonCollectionTimeSpanAttr” type=”timeSpan”
defaultValue=”00:01:30”/>

</element>

<element name=”myCollection”>
<attribute name=”myCollectionIntAttr” type=”int” defaultValue=”5”/>
<collection addElement=”myAdd” removeElement=”myRemove”
clearElement=”myClear”>
<attribute name=”myCollectionItemBoolAttr” type=”bool”
defaultValue=”true”/>
<attribute name=”myCollectionItemIdentifier” type=”string”
defaultValue=”myId1” isUniqueKey=”true” />

</collection>
</element>

</sectionSchema>
</configSchema>

Listing 5-4 uses a <sectionSchema> element to define the Containing XML element of the
myConfigSection configuration section. Note that the name attribute of the <sectionSchema> element
is set to the fully qualified name of the configuration section, including its complete group hierarchy,
that is, system.webServer/myConfigSection.

<sectionSchema name=”system.webServer/myConfigSection”>

The <sectionSchema> element contains two <attribute> child elements that define the
myConfigSectionBoolAttr and myConfigSectionEnumAttr attributes of the <myConfigSection>
containing element. Notice that the name, type, and defaultValue attributes of each <attribute> ele-
ment respectively specify the name, type, and default value of the associated attribute.

<attribute name=”myConfigSectionBoolAttr” type=”bool” defaultValue=”false”/>
<attribute name=”myConfigSectionEnumAttr” type=”enum”
defaultValue=”myConfigSectionEnumVal2”>
<enum name=”myConfigSectionEnumVal1” value=”1”/>
<enum name=”myConfigSectionEnumVal2” value=”2”/>
<enum name=”myConfigSectionEnumVal3” value=”3”/>

</attribute>

126

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 126

Also note that the <attribute> element that defines the myConfigSectionEnumAttr attribute of the
<myConfigSection> Containing element contains three <enum> child elements. Each child element
defines the name and value of a particular member of the enumeration type.

The <sectionSchema> element also contains an <element> child element with a name attribute value of
myNonCollection that defines the myNonCollection non-collection element of the <myConfigSection>
configuration section. The <attribute> child element of this <element> element defines the
myNonCollectionTimeSpanAttr attribute of the <myNonCollection> non-collection element.

<element name=”myNonCollection”>
<attribute name=”myNonCollectionTimeSpanAttr” type=”timeSpan”
defaultValue=”00:01:30”/>

</element>

Next, Listing 5-4 uses an <element> element with the name attribute value of myCollection to
define the <myCollection> Collection element of the <myConfigSection> configuration section. As
usual, the <attribute> child element of this <element> element defines the myCollectionIntAttr
attribute of the <myCollection> Collection element:

<element name=”myCollection”>
<attribute name=”myCollectionIntAttr” type=”int” defaultValue=”5”/>
<collection addElement=”myAdd” removeElement=”myRemove”
clearElement=”myClear”>
<attribute name=”myCollectionItemBoolAttr” type=”bool” defaultValue=”true”/>
<attribute name=”myCollectionItemIdentifier” type=”string”

defaultValue=”myId1”/>
</collection>

</element>

This <element> element also contains a <collection> child element because it represents a Collection
element. Notice that the addElement, removeElement, and clearElement attributes of this <collec-
tion> element define the myAdd, myRemove, and myClear child elements of the <myCollection>
Collection element.

<element name=”myCollection”>
<attribute name=”myCollectionIntAttr” type=”int” defaultValue=”5”/>
<collection addElement=”myAdd” removeElement=”myRemove”
clearElement=”myClear”>
<attribute name=”myCollectionItemBoolAttr” type=”bool” defaultValue=”true”/>
<attribute name=”myCollectionItemIdentifier” type=”string”
defaultValue=”myId1” isUniqueKey=”true”/>

</collection>
</element>

The <collection> element features two child <attribute> elements that define the
myCollectionItemBoolAttr and myCollectionItemIdentifier attributes of the <myAdd>
child element of the <myCollection> Collection element. Note that the isUniqueKey attribute of the
<attribute> element that defines the myCollectionItemIdentifier attribute is set to true to spec-
ify this attribute as the key attribute. Recall that the Clear child element, which is the myClear element
in this case, uses the key attribute to remove an item from the collection.

127

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 127

Finally, you need to register the <myConfigSection> configuration section with the <configSections>
of the applicationHost.config file as shown in Listing 5-5.

Listing 5-5: Registering the <myConfigSection> Configuration Section

<configSections>
<sectionGroup name=”system.webServer”>
<section name=”myConfigSection” allowDefinition=”Everywhere”
overrideModeDefault=”Allow” />
. . .

</sectionGroup>
. . .

</configSections>

Because the <myConfigSection> configuration section belongs to the <system.webServer> section
group, Listing 5-5 registers this configuration section in the <sectionGroup> element with the name
attribute value of system.webServer. You must use a <section> element to register your custom con-
figuration section. This element exposes the following three important attributes:

❑ name: You must set this attribute to the name of the containing element of your configuration
section, such as myConfigSection.

❑ allowDefinition: Use this attribute to specify the configuration hierarchy level where your
custom configuration section can be used. The possible values of this attribute are MachineOnly,
MachineToApplication, and Everywhere. Listing 5-5 sets the allowDefinition attribute to
Everywhere to allow the <myConfigSection> configuration section to be used in configuration
files at all configuration hierarchy levels.

❑ overrideModeDefault: Use this attribute to specify whether the lower-level configuration files
can override the configuration settings specified in the applicationHost.config file. The
possible values are Allow and Deny. This attribute is the magic behind the new IIS7 administra-
tion delegation, allowing the machine administrator to decide whether to delegate the adminis-
tration of a specified configuration section to a lower-level configuration file. Listing 5-5 sets the
overrideModeDefault attribute to Allow to allow lower-level configuration files to reset the
configuration settings specified in the <myConfigSection> configuration section of the
applicationHost.config file.

Machine-Level Configuration File
Next, I implement a console application to show you that the steps you took in the previous section have
indeed extended the IIS7 and ASP.NET integrated configuration system to add support for the new
<myConfigSection> configuration section.

Launch Visual Studio and create a new C# console application. Add a reference to the Microsoft.Web
.Administration.dll, located in the %WINDIR%\System32\InetSrv directory on your machine.
Finally, edit the Program.cs file to import the Microsoft.Web.Administration namespace, and
replace the contents of the Program class with the code shown in Listing 5-6.

Listing 5-6: The Content of the Program.cs File

using Microsoft.Web.Administration;
using System;

128

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 128

129

Chapter 5: Extending the Integrated Configuration System

Listing 5-6: (continued)

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();
ConfigurationSection myConfigSection =

appHostConfig.GetSection(“system.webServer/myConfigSection”);
myConfigSection.SetAttributeValue(“myConfigSectionBoolAttr”, true);
myConfigSection.SetAttributeValue(“myConfigSectionEnumAttr”,

“myConfigSectionEnumVal3”);

ConfigurationElement myNonCollection =
myConfigSection.GetChildElement(“myNonCollection”);

myNonCollection.SetAttributeValue(“myNonCollectionTimeSpanAttr”,
TimeSpan.FromMinutes(2));

ConfigurationElementCollection myCollection =
myConfigSection.GetCollection(“myCollection”);

myCollection.SetAttributeValue(“myCollectionIntAttr”, 100);
ConfigurationElement myCollectionItem1 = myCollection.CreateElement(“myAdd”);
myCollectionItem1.SetAttributeValue(“myCollectionItemBoolAttr”, true);
myCollectionItem1.SetAttributeValue(“myCollectionItemIdentifier”, “myId1”);
myCollection.Add(myCollectionItem1);

ConfigurationElement myCollectionItem2 = myCollection.CreateElement(“myAdd”);
myCollectionItem2.SetAttributeValue(“myCollectionItemBoolAttr”, false);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId2”);
myCollection.Add(myCollectionItem2);

mgr.CommitChanges();
}

}

Now run the console application and open the applicationHost.config file. The result should look
like Listing 5-7.

Listing 5-7: The applicationHost.config File

<configuration>
<system.webServer>
. . .
<myConfigSection myConfigSectionBoolAttr=”true”
myConfigSectionEnumAttr=”myConfigSectionEnumVal3”>
<myNonCollection myNonCollectionTimeSpanAttr=”00:02:00” />
<myCollection myCollectionIntAttr=”100”>
<myAdd myCollectionItemBoolAttr=”true”
myCollectionItemIdentifier=”myId1” />
<myAdd myCollectionItemBoolAttr=”false”
myCollectionItemIdentifier=”myId2” />

</myCollection>
</myConfigSection>

</system.webServer>
</configuration>

52539c05.qxd 9/17/07 10:04 PM Page 129

130

Chapter 5: Extending the Integrated Configuration System

As the boldfaced portion of Listing 5-7 shows, the IIS7 and ASP.NET integrated imperative management
API has added a new <myConfigSection> configuration section to the <system.webServer> section
group.

Now I’ll review Listing 5-6 more closely. The main goal of this code listing is to use the IIS7 and
ASP.NET integrated imperative management API to programmatically access and specify the configura-
tion settings of the <myConfigSection> configuration section.

The first order of business is to create a ServerManager object:

ServerManager mgr = new ServerManager();

Next, you need to decide on the configuration hierarchy level you want to work with. In this example,
you want to work with the server-level configuration hierarchy. That is why Listing 5-6 calls the
GetApplicationHostConfiguration method on the ServerManager object to load the contents of
the applicationHost.config server-level configuration file into a Configuration object:

Configuration appHostConfig = mgr.GetApplicationHostConfiguration();

Next, you need to call the GetSection method on the Configuration object to access the
ConfigurationSection object that allows you to programmatically access and manipulate the config-
uration settings of the <myConfigSection> configuration section:

ConfigurationSection myConfigSection =
appHostConfig.GetSection(“system.webServer/myConfigSection”);

Next, Listing 5-6 calls the SetAttributeValue method twice on the ConfigurationSection object to
set the values of the myConfigSectionBoolAttr and myConfigSectionEnumAttr attributes of the
<myConfigSection> element:

myConfigSection.SetAttributeValue(“myConfigSectionBoolAttr”, true);
myConfigSection.SetAttributeValue(“myConfigSectionEnumAttr”,

“myConfigSectionEnumVal3”);

Listing 5-6 then calls the GetChildElement method on the ConfigurationSection object to access the
ConfigurationElement object that provides programmatic access to the <myNonCollection> non-
collection element of the <myConfigSection> configuration section. The listing then uses the
SetAttributeValue method to set the value of the myNonCollectionTimeSpanAttr attribute of the
<myNonCollection> non-collection element:

ConfigurationElement myNonCollection =
myConfigSection.GetChildElement(“myNonCollection”);

myNonCollection.SetAttributeValue(“myNonCollectionTimeSpanAttr”,
TimeSpan.FromMinutes(2));

Next Listing 5-6 uses the GetCollection method of the ConfigurationSection object to return the
ConfigurationElementCollection object that represents the <myCollection> Collection element of
the <myConfigSection> configuration section. It then calls the SetAttributeValue method to set the
value of the myCollectionAttr attribute of the <myCollection> Collection element:

ConfigurationElementCollection myCollection =

52539c05.qxd 9/17/07 10:04 PM Page 130

myConfigSection.GetCollection(“myCollection”);
myCollection.SetAttributeValue(“myCollectionIntAttr”, 100);

Listing 5-6 then calls the CreateElement method on the ConfigurationElementCollection object to
create a new <myAdd> element and uses the SetAttributeValue method twice to set the
myCollectionItemBoolAttr and myCollectionItemIdentifier attributes of this <myAdd> element.
Note that Listing 5-6 uses the Add method of the ConfigurationElementCollection object to add the
ConfigurationElement object to this collection. In other words, the CreateElement method creates
the ConfigurationElement object, but it doesn’t add the object to the collection:

ConfigurationElement myCollectionItem1 =
myCollection.CreateElement(“myAdd”);

myCollectionItem1.SetAttributeValue(“myCollectionItemBoolAttr”, true);
myCollectionItem1.SetAttributeValue(“myCollectionItemIdentifier”, “myId1”);
myCollection.Add(myCollectionItem1);

Listing 5-6 repeats the same steps to add another <myAdd> Add child element to the <myCollection>
Collection element:

ConfigurationElement myCollectionItem2 =
myCollection.CreateElement(“myAdd”);

myCollectionItem2.SetAttributeValue(“myCollectionItemBoolAttr”, false);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId2”);
myCollection.Add(myCollectionItem2);

Finally, Listing 5-6 calls the CommitChanges method on the ServerManager object to commit these
changes to the underlying applicationHost.config file. This step is important because the previous
changes were all made to the in-memory representation of the applicationHost.config file, not the
file itself. In other words, first you make all the changes in memory, and then commit them in one shot.

mgr.CommitChanges();

Site-Level Configuration File
Recall that Listing 5-5 set the allowDefinition attribute of the <section> element that registers the
<myConfigSection> configuration section with the applicationHost.config file to the Everywhere
value to allow lower-level configuration files to include the <myConfigSection> configuration section.
Let’s see this in action. Launch Visual Studio and create a new C# console application. Add a reference to
the Microsoft.Web.Administration.dll, located in the %WINDIR%\System32\InetSrv directory on
your machine. Finally, edit the Program.cs file to import the Microsoft.Web.Administration name-
space, and replace the contents of the Program class with the code shown in Listing 5-8.

Listing 5-8: A Console Application for a Site-Level Configuration

using Microsoft.Web.Administration;
using System;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();

131

Chapter 5: Extending the Integrated Configuration System

(Continued)

52539c05.qxd 9/17/07 10:04 PM Page 131

Listing 5-8: (continued)

Configuration siteConfig = mgr.GetWebConfiguration(“Default Web Site”);
ConfigurationSection myConfigSection =

siteConfig.GetSection(“system.webServer/myConfigSection”);
myConfigSection.SetAttributeValue(“myConfigSectionBoolAttr”, false);
myConfigSection.SetAttributeValue(“myConfigSectionEnumAttr”,

“myConfigSectionEnumVal3”);

ConfigurationElement myNonCollection =
myConfigSection.GetChildElement(“myNonCollection”);

myNonCollection.SetAttributeValue(“myNonCollectionTimeSpanAttr”,
TimeSpan.FromMinutes(4));

ConfigurationElementCollection myCollection =
myConfigSection.GetCollection(“myCollection”);

myCollection.SetAttributeValue(“myCollectionIntAttr”, 200);
ConfigurationElement myCollectionItem1 =

myCollection.CreateElement(“myAdd”);
myCollectionItem1.SetAttributeValue(“myCollectionItemBoolAttr”, true);
myCollectionItem1.SetAttributeValue(“myCollectionItemIdentifier”, “myId3”);
myCollection.Add(myCollectionItem1);

ConfigurationElement myCollectionItem2 =
myCollection.CreateElement(“myAdd”);

myCollectionItem2.SetAttributeValue(“myCollectionItemBoolAttr”, false);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId4”);
myCollection.Add(myCollectionItem2);

mgr.CommitChanges();
}

}

Run the program and open the web.config file of the Default Web Site, which is located in the follow-
ing directory on your machine:

%SystemDrive%\inetpub\wwwroot\web.config

The result should look like Listing 5-9.

Listing 5-9: The Site web.config File

<configuration>
<system.web>
<compilation debug=”true” />

</system.web>
<system.webServer>
<myConfigSection myConfigSectionBoolAttr=”false”
myConfigSectionEnumAttr=”myConfigSectionEnumVal3”>
<myNonCollection myNonCollectionTimeSpanAttr=”00:04:00” />
<myCollection myCollectionIntAttr=”200”>
<myAdd myCollectionItemBoolAttr=”true”
myCollectionItemIdentifier=”myId3” />
<myAdd myCollectionItemBoolAttr=”false”

132

Chapter 5: Extending the Integrated Configuration System

(Continued)

52539c05.qxd 9/17/07 10:04 PM Page 132

133

Chapter 5: Extending the Integrated Configuration System

Listing 5-9: (continued)

myCollectionItemIdentifier=”myId4” />
</myCollection>

</myConfigSection>
</system.webServer>

</configuration>

As the boldfaced portion of Listing 5-9 shows, the IIS7 and ASP.NET integrated imperative manage-
ment API has added a new <myConfigSection> configuration section to the web.config file
of the Default Web Site. Now compare Listings 5-6 and 5-8. As you can see, the main difference
between these two code listings is the second code line. The second lines of these two code listings
respectively call the GetApplicationHostConfiguration and GetWebConfiguration methods of
the ServerManager object. In other words, you use the same exact code to interact with the IIS7-level
applicationHost.config and ASP.NET Web site–level web.config configuration files. This wasn’t
possible in the earlier versions of IIS because IIS and ASP.NET were using two completely different con-
figuration systems with two different schemas, which meant that you had to use different APIs to inter-
act with these two configuration systems. Thanks to the IIS7 and ASP.NET integrated configuration
system, you can use the same API to specify configuration settings in both the IIS and ASP.NET Web
site levels.

Application-Level Configuration File
As the previous section showed, you can use the same code that you used to add the <myConfigSection>
configuration section to the applicationHost.config file to add a new <myConfigSection> element
to the site-level web.config file with only a single line of change, that is, replacing the call to the
GetApplicationHostConfiguration method to the call to the GetWebConfiguration method. The
same argument applies to the application-level web.config file. The only difference between a site-level
and an application-level web.config file is that the call to the GetWebConfiguration method must
pass the virtual path of the application as the second argument to this method.

To see this in action, add a new Web application with the virtual path of /MyWebApp. As discussed in the
previous chapters, there are different ways to do this:

❑ Open the applicationHost.config file in your favorite editor and add the following code:

<configuration>
<system.applicationHost>
<sites>
<site name=”Default Web Site” id=”1”>
<application path=”/MyWebApp”>
<virtualDirectory path=”/”
physicalPath=”%SystemDrive%\inetpub\wwwroot\MyWebAppDir” />

</application>
</site>

</sites>
</system.applicationHost>

</configuration>

❑ You must add a virtual directory with the virtual path of “/” to your new application. Recall
that this virtual directory is known as the root virtual directory of the application.

❑ Use the IIS Manager as discussed in Chapter 3.

52539c05.qxd 9/17/07 10:04 PM Page 133

❑ Use the APPCMD command line tool as discussed in Chapter 3.

❑ Launch Visual Studio, select New Web Site from the File menu to launch the New Web Site dia-
log, select the HTTP option from the location combo box, and add a new Web site. VS automati-
cally creates a Web application.

❑ Use the IIS7 and ASP.NET integrated imperative management API as discussed in Chapter 4.

Now launch Visual Studio, create a new console application as usual, add the code shown in Listing 5-8
to the Program.cs file, and replace the following lines of code:

Configuration siteConfig = mgr.GetWebConfiguration(“Default Web Site”);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId3”);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId4”);

with these lines:

Configuration siteConfig = mgr.GetWebConfiguration(“Default Web Site”,”/MyWebApp”);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId5”);
myCollectionItem2.SetAttributeValue(“myCollectionItemIdentifier”, “myId6”);

Run the console application and open the web.config file of the MyWebApp application. You should see
the same boldfaced portion shown in Listing 5-9.

IIS7 and ASP.NET Integrated Imperative
Management Extensibility Model

Take another look at Listings 5-6 and 5-8. Recall that these two code listings use the IIS7 and ASP.NET
integrated imperative management API to add a new <myConfigSection> configuration section with
the specified configuration settings to the applicationHost.config and site web.config files. The
main problem with these two code listings is that the code does not treat the <myConfigSection> con-
figuration section and its content as strongly-typed objects:

❑ The configuration section is accessed through the general ConfigurationSection type and its
attributes are set through the general SetAttributeValue method:

ConfigurationSection myConfigSection =
siteConfig.GetSection(“system.webServer/myConfigSection”);

myConfigSection.SetAttributeValue(“myConfigSectionBoolAttr”, false);
myConfigSection.SetAttributeValue(“myConfigSectionEnumAttr”,

“myConfigSectionEnumVal3”);

❑ The non-collection content is accessed through the general ConfigurationElement type and
its attribute is set through the general SetAttributeValue method:

ConfigurationElement myNonCollection =
myConfigSection.GetChildElement(“myNonCollection”);

myNonCollection.SetAttributeValue(“myNonCollectionTimeSpanAttr”,
TimeSpan.FromMinutes(4));

134

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 134

❑ The collection is accessed through the general ConfigurationElementCollection type and
its attribute is set through the general SetAttributeValue method:

ConfigurationElementCollection myCollection =
myConfigSection.GetCollection(“myCollection”);

myCollection.SetAttributeValue(“myCollectionIntAttr”, 100);

❑ The collection items are accessed through the general ConfigurationElement type and attrib-
utes are set through the general SetAttributeValue method:

ConfigurationElement myCollectionItem1 = myCollection.CreateElement(“myAdd”);
myCollectionItem1.SetAttributeValue(“myCollectionItemBoolAttr”, true);
myCollectionItem1.SetAttributeValue(“myCollectionItemIdentifier”, “myId1”);

You may be wondering what is so great about exposing the content of your configuration section as
strongly-typed objects and properties. Here are some of the benefits of strongly-typed entities:

❑ Visual Studio provides IntelliSense support for strongly-typed objects and properties, allowing
you to catch problems as you’re typing.

❑ Compilers provide type-checking support for strongly-typed objects and properties, allowing
you to catch problems as you’re compiling.

❑ Strongly-typed entities allow you to program in an object-oriented fashion, where you can take
advantage of the well-known benefits of the object-oriented programming paradigm.

When you extend the IIS7 and ASP.NET integrated configuration system to add support for your own
custom configuration section, you should also extend the IIS7 and ASP.NET integrated imperative man-
agement API to add support for the following classes:

❑ For each collection, design a class whose instances represent the collection items. This class
must inherit the ConfigurationElement base class and expose the attributes of the collection
item as strongly-typed properties.

❑ For each collection, design a class that represents the collection itself. This class must inherit the
ConfigurationElementCollectionBase class and expose:

❑ Strongly-typed properties to represent the attributes of the collection

❑ Strongly-typed collection property that contains the collection items

❑ For each non-collection element, design a class to represent the element. This class must inherit
the ConfigurationElement class and expose the attributes of the non-collection element as
strongly-typed properties.

❑ Design a class that inherits from the ConfigurationSection class to represent the outermost
element of your configuration section. This class must expose one strongly-typed collection
property to represent each collection. The class must also expose the attributes of the outermost
element as strongly-typed properties.

In the following sections I use this recipe to design the required classes for the <myConfigSection>
configuration section.

135

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 135

Representing the Collection Item
In this section, I design a class named MyCollectionItem whose instances represent the collection
items of the collection that the <myCollection> element represents. Listing 5-10 presents the
MyCollectionItem class.

Listing 5-10: The MyCollectionItem Class

using Microsoft.Web.Administration;

namespace MyNamespace
{
class MyCollectionItem: ConfigurationElement
{
public bool MyCollectionItemBoolProperty
{
get { return (bool)base[“myCollectionItemBoolAttr”]; }
set { base[“myCollectionItemBoolAttr”] = value; }

}

public string MyCollectionItemIdentifier
{
get { return (string)base[“myCollectionItemIdentifier”]; }
set { base[“myCollectionItemIdentifier”] = value; }

}
}

}

The MyCollectionItem class inherits from the ConfigurationElement base class and
exposes the myCollectionItemBoolAttr and myCollectionItemIdentifier attributes of
the <myAdd> as strongly-typed properties named MyCollectionItemBoolProperty and
MyCollectionItemIdentifier, respectively.

Representing the Collection Element
Listing 5-11 presents a collection class named MyCollection that represents the <myCollection>
Collection element.

Listing 5-11: The MyCollection Class

using Microsoft.Web.Administration;
using System;

namespace MyNamespace
{
class MyCollection: ConfigurationElementCollectionBase<MyCollectionItem>
{
public MyCollectionItem Add(string myCollectionItemIdentifier,

bool myCollectionItemBoolValue)
{
MyCollectionItem myCollectionItem = base.CreateElement();
myCollectionItem[“myCollectionItemIdentifier”] = myCollectionItemIdentifier;

136

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 136

myCollectionItem[“myCollectionItemBoolAttr”] = myCollectionItemBoolValue;
base.Add(myCollectionItem);
return myCollectionItem;

}

protected override MyCollectionItem CreateNewElement(string elementTagName)
{
return new MyCollectionItem();

}

public new MyCollectionItem this[string myCollectionItemIdentifier]
{
get
{
for (int i=0; i<base.Count; i++)
{
if (string.Equals(base[i].MyCollectionItemIdentifier,

myCollectionItemIdentifier, StringComparison.OrdinalIgnoreCase))
return base[i];

}
return null;

}
}

public int MyCollectionIntProperty
{
get { return (int)base[“myCollectionIntAttr”]; }
set { base[“myCollectionIntAttr”] = value; }

}
}

}

The MyCollection class, like any other collection class, inherits the
ConfigurationElementCollectionBase class and performs the following tasks:

❑ Exposes the myCollectionIntAttr attribute of the <myCollection> element as a strongly-
typed property:

public int MyCollectionIntProperty
{
get { return (int)base[“myCollectionIntAttr”]; }
set { base[“myCollectionIntAttr”] = value; }

}

❑ Exposes an indexer that returns the MyCollectionItem object with the specified collection
item identifier:

public new MyCollectionItem this[string myCollectionItemIdentifier]
{
get
{
for (int i=0; i<base.Count; i++)
{
if (string.Equals(base[i].MyCollectionItemIdentifier,

137

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 137

myCollectionItemIdentifier, StringComparison.OrdinalIgnoreCase))
return base[i];

}
return null;

}
}

❑ Exposes an Add method that creates a MyCollectionItem object with the specified collection
item identifier and adds the object to the collection:

public MyCollectionItem Add(string myCollectionItemIdentifier,
bool myCollectionItemBoolValue)

{
MyCollectionItem myCollectionItem = base.CreateElement();
myCollectionItem[“myCollectionItemIdentifier”] = myCollectionItemIdentifier;
myCollectionItem[“myCollectionItemBoolAttr”] = myCollectionItemBoolValue;
base.Add(myCollectionItem);
return myCollectionItem;

}

❑ Overrides the CreateNewElement method of its base class to instantiate and return a
MyCollectionItem object:

protected override MyCollectionItem CreateNewElement(string elementTagName)
{
return new MyCollectionItem();

}

Representing the Non-collection Element
The MyNonCollection class represents the <myNonCollection> element as shown in Listing 5-12. This
class, like any other class that represents a non-collection element, inherits the ConfigurationElement
base class and exposes the attribute of its associated non-collection element,
myNonCollectionTimeSpanAttr, as a strongly-typed property.

Listing 5-12: The MyNonCollection Class

using Microsoft.Web.Administration;
using System;

namespace MyNamespace
{
class MyNonCollection : ConfigurationElement
{
public TimeSpan MyNonCollectionTimeSpanProperty
{
get { return (TimeSpan)base[“myNonCollectionTimespanAttr”]; }
set { base[“myNonCollectionTimespanAttr”] = value; }

}
}

}

138

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 138

Representing the Outermost Element
The MyConfigSection class represents the outermost element of the configuration section, the
<myConfigSection> element, as presented in Listing 5-13.

Listing 5-13: The MyConfigSection Class

using Microsoft.Web.Administration;

namespace MyNamespace
{
class MyConfigSection: ConfigurationSection
{
public bool MyConfigSectionBoolProperty
{
get { return (bool)base[“myConfigSectionBoolAttr”]; }
set { base[“myConfigSectionBoolAttr”] = value; }

}

public MyConfigSectionEnum MyConfigSectionEnumProperty
{
get { return (MyConfigSectionEnum)base[“myConfigSectionEnumAttr”]; }
set { base[“myConfigSectionEnumAttr”] = value; }

}

public MyNonCollection MyNonCollection
{
get { return (MyNonCollection)base.GetChildElement(“myNonCollection”,

typeof(MyNonCollection)); }
set { base[“myNonCollection”] = value; }

}

private MyCollection myCollection;
public MyCollection MyCollection
{
get
{
if (myCollection == null)
{
myCollection = (MyCollection)base.GetCollection(“myCollection”,

typeof(MyCollection));
}
return myCollection;

}
}

}
}

The MyConfigSection class, like any other configuration section, inherits ConfigurationSection
base class and performs the following tasks:

1. Exposes the attributes of the <myConfigSection> element as strongly-typed properties:

public bool MyConfigSectionBoolProperty

139

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 139

{
get { return (bool)base[“myConfigSectionBoolAttr”]; }
set { base[“myConfigSectionBoolAttr”] = value; }

}

public MyConfigSectionEnum MyConfigSectionEnumProperty
{
get { return (MyConfigSectionEnum)base[“myConfigSectionEnumAttr”]; }
set { base[“myConfigSectionEnumAttr”] = value; }

}

2. Exposes a property of type MyNonCollection named MyNonCollection that references the
MyNonCollection object that represents the <myNonCollection> element of the configuration
section:

public MyNonCollection MyNonCollection
{
get { return (MyNonCollection)base.GetChildElement(“myNonCollection”,

typeof(MyNonCollection)); }
set { base[“myNonCollection”] = value; }

}

3. Exposes a property of type MyCollection named MyCollection that references the
MyCollection object that represents the <myCollection> Collection element of the configura-
tion section:

private MyCollection myCollection;
public MyCollection MyCollection
{
get
{
if (myCollection == null)
{
myCollection = (MyCollection)base.GetCollection(“myCollection”,

typeof(MyCollection));
}
return myCollection;

}
}

Listing 5-14 presents the definition of the MyConfigSectionEnum enumeration type.

Listing 5-14: The MyConfigSectionEnum Type

namespace MyNamespace
{
public enum MyConfigSectionEnum
{
MyConfigSectionEnumVal1,
MyConfigSectionEnumVal2,
MyConfigSectionEnumVal3

}
}

140

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 140

Putting It All Together
The previous sections extended the IIS7 and ASP.NET integrated imperative management API
to add support for new managed classes that represent your configuration section and its constituent
elements and attributes. Now it’s time to put these classes to use. Launch Visual Studio, create a new
console application, add a reference to the Microsoft.Web.Administration.dll assembly, import
the Microsoft.Web.Administration namespace, and add the code shown in Listing 5-15 to the
Program.cs file. Next, add five source files named MyCollectionItem.cs, MyCollection.cs,
MyNonCollection.cs, MyConfigSection.cs, and MyConfigSectionEnum.cs to this console applica-
tion and add the code shown in Listings 5-10 through 5-14 to these source files, respectively.

Listing 5-15: A Console Application That Uses the New Managed Classes

using Microsoft.Web.Administration;
using System;
using MyNamespace;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();
MyConfigSection myConfigSection =

(MyConfigSection)appHostConfig.GetSection(
“system.webServer/myConfigSection”,
typeof(MyConfigSection));

myConfigSection.MyConfigSectionBoolProperty = true;
myConfigSection.MyConfigSectionEnumProperty =

MyConfigSectionEnum.MyConfigSectionEnumVal3;
myConfigSection.MyNonCollection.MyNonCollectionTimeSpanProperty =

TimeSpan.FromMinutes(2);
myConfigSection.MyCollection.MyCollectionIntProperty = 50;
myConfigSection.MyCollection.Add(“myId5”, true);
myConfigSection.MyCollection.Add(“myId6”, false);
mgr.CommitChanges();

}
}

Run the program and open the applicationHost.config file in your favorite editor. The result should
look like the following:

<configuration>
<system.webServer>
<myConfigSection myConfigSectionBoolAttr=”true”
myConfigSectionEnumAttr=”myConfigSectionEnumVal3”>
<myNonCollection myNonCollectionTimeSpanAttr=”00:02:00” />
<myCollection myCollectionIntAttr=”50”>
<myAdd myCollectionItemBoolAttr=”true”
myCollectionItemIdentifier=”myId5” />
<myAdd myCollectionItemBoolAttr=”false”
myCollectionItemIdentifier=”myId6” />

</myCollection>

141

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 141

</myConfigSection>
</system.webServer>

</configuration>

Now let’s dissect Listing 5-14. The listing begins by creating a ServerManager object and calls its
GetApplicationHostConfiguration method to load the applicationHost.config file into a
Configuration object as usual:

ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();

Next, it calls the GetSection method to return the MyConfigSection object that provides program-
matic access to the <myConfigSection> configuration section in strongly-typed manner. Note that the
Type object representing the type of the MyConfigSection class is passed into the GetSection
method. Under the hood, this method uses the .NET reflection and this type information to dynamically
generate an instance of the MyConfigSection class.

MyConfigSection myConfigSection =
(MyConfigSection)appHostConfig.GetSection(

“system.webServer/myConfigSection”,
typeof(MyConfigSection));

Listing 5-14 then sets the values of the MyConfigSectionBoolProperty and
MyConfigSectionEnumProperty properties of the MyConfigSection object. This is in contrast to
Listing 5-8, where the generic SetAttributeValue method of the generic ConfigurationSection
class is used to set these values.

myConfigSection.MyConfigSectionBoolProperty = true;
myConfigSection.MyConfigSectionEnumProperty =

MyConfigSectionEnum.MyConfigSectionEnumVal3;

Next, Listing 5-14 accesses the MyNonCollection property of the MyConfigSection object and sets its
MyNonCollectionTimeSpanProperty property in type-safe fashion:

myConfigSection.MyNonCollection.MyNonCollectionTimeSpanProperty =
TimeSpan.FromMinutes(2);

Finally, it accesses the MyCollection property of the MyConfigSection object, sets its
MyCollectionProperty property, and adds two new MyCollectionItem objects to the collection.
These operations are all performed in a strongly-typed manner:

myConfigSection.MyCollection.MyCollectionIntProperty = 50;
myConfigSection.MyCollection.Add(“myId5”, true);
myConfigSection.MyCollection.Add(“myId6”, false);
mgr.CommitChanges();

142

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 142

Summary
The IIS7 and ASP.NET integrated infrastructure extensibility model consists of four different extensibil-
ity models that complement each other. This chapter covered two of these extensibility models, the IIS7
and ASP.NET integrated configuration system and imperative management extensibility models. The
next chapters discuss the two remaining extensibility models, the IIS7 and ASP.NET integrated graphical
management and request processing pipeline extensibility models.

143

Chapter 5: Extending the Integrated Configuration System

52539c05.qxd 9/17/07 10:04 PM Page 143

52539c05.qxd 9/17/07 10:04 PM Page 144

Understanding the
Integrated Graphical
Management System

Chapter 3 provided in-depth coverage of the new IIS7 Manager and its rich capabilities, such as:

❑ You can use the IIS7 Manager to configure both the IIS7 Web server and ASP.NET Web
applications. This is a departure from the previous versions of IIS, where you needed to
use two separate management tools because the Web server and ASP.NET were using two
completely different configuration systems.

❑ The IIS7 Manager contains the logic that takes the hierarchical nature of the IIS7 and
ASP.NET integrated configuration system into account. Configuration changes made at a
particular level of the configuration hierarchy are automatically saved into either the con-
figuration file in that hierarchy level or a <location> element in a configuration file in a
higher hierarchy level. For example, configuration changes made at site level are stored in
the root web.config file of the site, which means that these changes will only affect the
Web applications in that site.

Chapter 3 discussed these two and many other capabilities of the IIS7 Manager in detail. This and
the next chapter discuss a very important aspect of the IIS7 Manager that wasn’t covered in the
previous chapters, that is, its extensible architecture. The extensibility of the IIS Manager is of
paramount importance to ASP.NET developers and IIS7 administrators alike. If the IIS7 Manager
is to be the management tool of choice for ASP.NET developers, it must allow developers to extend
its graphical capabilities to add graphical support for new configuration sections. In other words,
developers should be able to specify configuration settings of their own custom configuration sec-
tions from the IIS7 Manager tool.

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 145

Extending the IIS7 and ASP.NET integrated graphical management architecture requires you to have a
solid understanding of this architecture and its main components. This is exactly what we’re going to do
in this chapter. This chapter sets the stage for the next chapter, where you’ll use what you’ve learned in
this chapter to extend this integrated architecture to add graphical support for a custom configuration
section.

As you may recall from Chapter 3, interacting with the IIS7 Manager is much like interacting with a Web
application. At a very basic level, a Web application is a collection of Web pages and a navigation system
that allows end users to navigate through these Web pages. As such, the page is the module or unit of
extensibility in a navigation/page-based application such as a Web application. That is, you extend the
application by adding new pages. The IIS7 Manager’s graphical architecture follows this page/naviga-
tion paradigm as discussed in the following sections.

Module Pages
IIS Manager includes a bunch of pages known as module pages. As the name implies, a module page is
the unit of GUI extensibility. As Figure 6-1 shows, the IIS Manager interface consists of three columns.
Module pages are shown one page at a time in the middle column. There are three main types of module
pages as discussed in the following sections.

Figure 6-1

146

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 146

ModuleDialogPage
The first type of module page is known as a module dialog page. The middle column of Figure 6-1
shows an example of a module dialog page. As the name implies, a module dialog page acts like a tradi-
tional dialog box. Notice that the panel in the Actions pane contains the standard dialog box command
buttons, such as Apply and Cancel. This panel is known as the task panel because it normally contains
GUI elements, such as Apply, that perform tasks such as applying the changes. All module dialog pages
inherit from the ModuleDialogPage abstract base class. For example, the module dialog page shown in
Figure 6-1 is an instance of a control named SessionStatePage that inherits this base class.

ModuleListPage
The second type of module page is known as a module list page. Figure 6-2 presents an example of a mod-
ule list page. As you can see, a module list page consists of a list of items and a combo box named Group
by that allows the end user to group the items. All module list pages derive from the ModuleListPage
abstract base class. For example, the module list page shown in Figure 6-2 is an instance of a control
named MimeTypesPage that inherits the ModuleListPage class.

Figure 6-2

ModulePropertiesPage
The third type of module page is known as a module properties page. Figure 6-3 demonstrates an example
of a module properties page. All module properties pages derive from the ModulePropertiesPage
abstract base class. For example, the module properties page demonstrated in Figure 6-3 is an instance of

147

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 147

a control named CompilationPage that inherits the ModulePropertiesPage base class. Note that the
task panel contains the typical dialog box command buttons, such as Apply and Cancel. This is because
the ModulePropertiesPage base class inherits the ModuleDialogPage base class. In other words,
every module properties page is also a module dialog page.

Figure 6-3

Writing a Custom Module Page
As you’ll see in the next chapter, writing a custom module page involves, among several others, the fol-
lowing two important steps:

❑ Decide which type of the three types of module pages is the most appropriate user interface for
displaying and editing the configuration settings of your custom configuration section.

❑ Implement a class that derives from the type that you chose in the previous step.

In other words, a custom module page is a class that inherits the ModuleDialogPage,
ModuleListPage, or ModulePropertiesPage base class. You can also inherit your custom module
page directly from the ModulePage base class. If you decide to go with this option, keep in mind that the
ModulePage base class does not render any user interface and you’re left with implementing most of the
functionality that the ModuleDialogPage, ModuleListPage, and ModulePropertiesPage base classes
already implement. Note that all these three base classes inherit the ModulePage class.

148

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 148

Tasks
As Figures 6-1 through 6-3 show, each module page is normally associated with a task panel that con-
tains bunch of buttons and links, which each correspond to a particular task. For example, the panel in
the Actions pane of Figure 6-1 contains the Apply, Cancel, and Help buttons and the panel in the Actions
pane of Figure 6-2 includes the Add and Help buttons.

The user clicks a button or link in the panel to perform the associated task. For example, the end user
clicks the Apply button in Figure 6-1 to commit the changes to the underlying configuration file. In cases
such as the Apply button, nothing much happens in terms of the user interface except for displaying a
confirmation message. The following three sections discuss three other common scenarios that could
occur when the end user clicks a button in the task panel associated with a given module page.

Page Navigation
The first scenario occurs when the event handler for the button or link uses the navigation service to
navigate to a new page. For example, if the user clicks the View Application Pools link shown in the
Actions pane of Figure 6-4, the IIS7 Manager will navigate to the module page shown in Figure 6-5.

Figure 6-4

The event handler for the View Application Pools link uses the navigation service to navigate from
the page shown in Figure 6-4 to the page shown in Figure 6-5. The navigation service is a class named
NavigationService that implements an interface named INavigationService. As you’ll see later,
this interface exposes methods that you can call from your event handlers to navigate back to the previ-
ous page, forward to the next page, or to any arbitrary page. In other words, the navigation service of
the IIS7 Manager acts like the navigation service of a Web application, allowing end users to navigate
through the module pages that make up the IIS7 Manager’s user interface.

149

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 149

Figure 6-5

Task Forms
This scenario occurs when the event handler for a button or link in the task panel associated with a mod-
ule page pops up a dialog to collect the user’s input in one shot. For example, when the user clicks the
Add button shown in Figure 6-2, the event handler for this button pops up the dialog shown in Figure 6-6
to collect the input needed to add a new MIME type. This kind of dialog is known as a task form. Every
task form inherits the TaskForm abstract base class. For example, the task form shown in Figure 6-6 is an
instance of a control named MimeTypesForm that derives from the TaskForm base class.

Figure 6-6

Wizard Forms
This scenario occurs when the event handler for a link in the task panel associated with a module page
pops up a wizard form that takes the end user through a set of steps to collect the required inputs. For
example, when the end user clicks the Add link shown in Figure 6-7, the event handler for this link pops

150

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 150

up the wizard form shown in Figure 6-8 to walk the user through a set of steps to collect the information
needed to add a new failed request tracing rule. The main difference between a task form (see Figure 6-6)
and a wizard form (see Figure 6-8) is that the task form collects the user inputs in one step, whereas the
wizard form does it in several steps. All wizard forms derive from the WizardForm abstract base class.
For example, the wizard form shown in Figure 6-8 is an instance of a control named
FailureTraceRequestWizardForm that inherits the WizardForm class.

Figure 6-7

Figure 6-8

151

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:55 PM Page 151

The IIS7 Manager Object Model
You need to have a solid understanding of the IIS7 Manager’s object model to extend the model to add
graphical support for your own custom configuration sections. This section reviews some of the impor-
tant classes in the IIS7 Manager’s object model.

Service
A service is an object that meets the following criteria:

❑ Its instantiation is completely hidden from its clients. Clients access the service as a live object.

❑ Its type implements a well-known interface. This interface acts as a contract between the service
and its clients.

❑ There can be only a single instance of the service. No matter where in the application the clients
access the service, it’s always the same object.

❑ It’s uniquely identified by the Type object that represents the interface that the service imple-
ments. This allows the clients of the service to use this Type object as the identifier to access the
service.

Services play a central role in the IIS7 Manager graphical architecture. Most IIS7 Manager features are
exposed as services. The following table presents some of these services and their associated interfaces:

For example, the IIS7 Manager graphical architecture exposes its navigation system as a service that
implements an interface named INavigationService.

IServiceProvider
A service provider is a class that implements the IServiceProvider interface as defined in Listing 6-1.

Listing 6-1: The IServiceProvider Interface

namespace System
{
public interface IServiceProvider

Service Interface

Win32ManagementHost IManagementHost

NavigationService INavigationService

ConnectionManager IConnectionManager

ManagementUIService IManagementUIService

PropertyEditingService IPropertyEditingService

152

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 152

Listing 6-1: (continued)

{
object GetService(Type serviceType);

}
}

The IServiceProvider interface exposes a single method named GetService that returns a service
with a specified service type. The service type is the Type object that represents the interface that the
service implements. For example, in the case of the navigation service, this Type object is
typeof(INavigationService).

The IServiceProvider interface allows the clients of a service to access the service without knowing
its real type. For example, the clients of a navigation service call the GetService method, passing in the
typeof(INavigationService) as its parameter to access the navigation service. The clients have no
idea that the underlying navigation service is of type NavigationService. As far as the clients are con-
cerned, the navigation service is of type INavigationService. Therefore, if the underlying
NavigationService class is replaced with a new class, the client’s code will work just fine as long as
the new class implements the INavigationService interface.

The following table presents some of the classes in the IIS7 Manager graphical object model that imple-
ment the IServiceProvider interface; that is, they act as service providers:

Each of these three service providers exposes the GetService method to allow their clients to access
their services in generic fashion.

IServiceContainer
A service container is a class that implements the IServiceContainer interface. Listing 6-2 presents the
important methods of this interface.

Listing 6-2: The IServiceContainer Interface

public interface IServiceContainer : IServiceProvider
{
void AddService(Type serviceType, ServiceCreatorCallback callback);
void AddService(Type serviceType, object serviceInstance);
void RemoveService(Type serviceType);

}

Service Provider Description

Connection This class represents the connection between the IIS7 Manager
and the back-end Web server.

Module As you’ll see in the next chapter, the subclasses of this class are
used to register module pages with the IIS7 Manager.

WebMgrShellApplication As you’ll see later, this class is responsible for creating the form
that contains the entire user interface of the IIS7 Manager.

153

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 153

Because the IServiceContainer interface extends the IServiceProvider interface, a service con-
tainer is also a service provider. The IServiceContainer interface exposes two important methods:
AddService (with two overloads) and RemoveService. The AddService method adds a service with
the specified service type to an internal container. The RemoveService method, on the other hand,
removes the service with the specified service type from the internal container.

Notice that the AddService method comes in two flavors. The following overload of this method takes
the service instance itself and adds it to the internal container:

void AddService(Type serviceType, object serviceInstance);

The second overload of this method takes a ServiceCreatorCallback delegate instead of the service
instance itself:

void AddService(Type serviceType, ServiceCreatorCallback callback);

The definition of this delegate is as follows:

public delegate object
ServiceCreatorCallback(IServiceContainer container, Type serviceType);

When the client of a service calls the GetService method of the service container (recall that every service
container is also a service provider), the service container invokes the registered ServiceCreatorCallback
delegate and passes it the service type and a reference to the service container. It’s the responsibility of the
delegate to instantiate and to return the service. The service container then adds this newly instantiated serv-
ice to its internal container.

Therefore, the first overload of the AddService method requires you to instantiate the service when
you’re registering it. The second overload, on the other hand, allows you to register the service and post-
pone its instantiation to the time when it’s actually used for the first time.

The following table presents some of the classes that implement the IServiceContainer interface:

ManagementConfigurationPath
The ManagementConfigurationPath class represents a configuration path. Listing 6-3 presents the
declaration of some the methods of this class.

Service Container Description

Connection This class represents the connection between the IIS7 Manager
and the back-end Web server.

ServiceContainer This class stores the services in an internal hash table.

154

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 154

Listing 6-3: The ManagementConfigurationPath Class

public sealed class ManagementConfigurationPath
{
public string GetEffectiveConfigurationPath(ManagementScope scope);
public bool IsEquivalentScope(ManagementScope scope);
public string ApplicationPath { get; }
public string SiteName { get; }

}

Listing 6-4 presents the definition of the ManagementScope enumeration.

Listing 6-4: The ManagementScope Enumeration

public enum ManagementScope
{
Server,
Site,
Application

}

As this enumeration shows, the IIS7 Manager supports three configuration management scopes: server,
site, and application. Each scope determines the configuration hierarchy level affected by the new con-
figuration changes.

Connection
Every connection, be it server, site, or application, is represented by an instance of a class named
Connection, which implements the IServiceContainer and IServiceProvider interfaces as
shown in Listing 6-5. In other words, the Connection object acts as both the service container and
service provider. The Connection class also exposes a method named CreateProxy and a property
named Modules, which are discussed in the next chapter.

Listing 6-5: The Connection Class

public sealed class Connection : IServiceContainer, IServiceProvider, IDisposable
{
public ModuleServiceProxy CreateProxy(Module module, Type proxyType);
void IServiceContainer.AddService(Type serviceType,

ServiceCreatorCallback callback);
void IServiceContainer.AddService(Type serviceType, object serviceInstance);
void IServiceContainer.RemoveService(Type serviceType);
object IServiceProvider.GetService(Type serviceType);

public ManagementConfigurationPath ConfigurationPath { get; }
public IDictionary Modules { get; }
public ManagementScope Scope { get; }
public bool IsLocalConnection { get; }
. . .

}

155

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 155

Note that the Connection class exposes a Boolean property named IsLocalConnection that specifies
whether the back-end Web server is running locally on the same machine where the IIS7 Manager is
running.

Navigation Item
The IIS7 Manager uses the navigation service to navigate through a set of what are known as navigation
items. Each navigation item is an instance of a class named NavigationItem as presented in Listing 6-6.

Listing 6-6: The NavigationItem Class

public sealed class NavigationItem : IDisposable
{
public ManagementConfigurationPath ConfigurationPath { get; }
public Connection Connection { get; }
public object NavigationData { get; }
public IModulePage Page { get; }
public Type PageType { get; }

}

The properties of this class are the following:

❑ ConfigurationPath: The ManagementConfigurationPath object that represents the current
configuration path.

❑ Connection: The Connection object that represents the current connection to the back-end
Web server.

❑ NavigationData: An optional object that contains the navigation item-specific navigation data.

❑ Page: The module page associated with the current navigation item. Recall that the whole pur-
pose of navigation is to navigate to a specified module page.

❑ PageType: The Type object that represents the type of the page being displayed. I discuss this
later.

So what is a navigation item? The NavigationItem represents a module page with the specified page
type, connection, configuration path, and navigation data. In other words, in the IIS7 Manager jargon,
navigation means moving from one navigation item to another.

As Listing 6-6 shows, the navigation item treats the module page as an object of type IModulePage.
This is possible because the ModulePage base class, which is the base class for all module pages, imple-
ments the IModulePage interface. This interface acts as the contract between the module page associ-
ated with the navigation item and the navigation item itself. I discuss the IModulePage interface in
detail later in this chapter.

Navigation Service
As mentioned, the IIS7 Manager uses the navigation service to navigate through navigation items. As
discussed earlier, every IIS7 Manager service implements an interface. The navigation service is no
exception. It implements an interface named INavigationService as defined in Listing 6-7.

156

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 156

Listing 6-7: The INavigationService Interface

public interface INavigationService
{
event NavigationEventHandler NavigationPerformed;

bool Navigate(Connection connection,
ManagementConfigurationPath configurationPath, Type pageType,
object navigationData);

bool NavigateBack(int steps);
bool NavigateForward();

bool CanNavigateBack { get; }
bool CanNavigateForward { get; }
NavigationItem CurrentItem { get; }
ReadOnlyCollection<NavigationItem> History { get; }

}

The INavigationService interface exposes the following three methods:

❑ Navigate: The IIS7 Manager uses this method to navigate to a navigation item with the speci-
fied connection, configuration path, page type, and navigation data.

❑ NavigateBack: The IIS7 Manager uses this method to navigate back to the navigation item
with the specified index. Note that the navigation service stores the previously navigated navi-
gation items in an internal collection. The NavigateBack method uses the specified index to
locate the navigation item in the internal collection and then navigates to that item.

❑ NavigateForward: The IIS7 Manager uses this method to navigate to the next item.

The INavigationService interface also exposes the following four properties:

❑ CanNavigateBack: This Boolean property specifies whether a backward navigation is possible.

❑ CanNavigateForward: This Boolean property specifies whether a forward navigation is
possible.

❑ CurrentItem: This property returns a reference to the current navigation item.

❑ History: This collection property contains references to all the previously navigated items.

The INavigationService interface supports a single event of type NavigationEventHandler named
NavigationPerformed. This event is fired after the completion of navigation. The definition of the
NavigationEventHandler delegate is:

public delegate void NavigationEventHandler(object sender, NavigationEventArgs e);

The NavigationEventArgs class is the event data class associated with this event. Listing 6-8 contains
the definition of this class.

157

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 157

Listing 6-8: The NavigationEventArgs Class

public sealed class NavigationEventArgs : EventArgs
{
public bool IsNew { get; }
public NavigationItem NewItem { get; }
public NavigationItem OldItem { get; }

}

This class features the following properties:

❑ IsNew: This Boolean property specifies whether the destination navigation item is accessed for
the first time.

❑ NewItem: The new navigation item.

❑ OldItem: The old navigation item.

TaskItem
Recall from the previous discussions that the user interface of the IIS7 Manager contains three columns.
The Actions pane includes GUI items such as buttons, links, text, and so on. For example, the Actions
pane in Figure 6-1 includes the Apply, Cancel, and Help links. Each GUI item in the Actions pane is rep-
resented by an instance of a class named TaskItem. For example, the Apply, Cancel, and Help links in
Figure 6-1 are each represented by a TaskItem object.

Listing 6-9 presents the definition of the TaskItem abstract base class.

Listing 6-9: The TaskItem Base Class

public abstract class TaskItem
{
protected TaskItem(string text, string category);
protected TaskItem(string text, string category, string description);

public string Category { get; }
public string Description { get; }
public bool Enabled { get; set; }
public string Text { get; }

}

The TaskItem base class features the following important properties:

❑ Category: This string property specifies the category where the task item will be displayed in
the task panel. If you want to have several task items under the same category you must assign
the same value to this property.

❑ Description: This string property specifies the short description that will be shown to the end
users when they move the mouse over the task item. In other words, it’s used in a tool tip.

158

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 158

❑ Enabled: This Boolean property specifies whether the task item is enabled.

❑ Text: This string property specifies the text that will be shown to the users as part of the
task item. For example, the Text property of the task item that represents the Apply link in
Figure 6-1 returns the string value “Apply”.

The TaskItem class has four subclasses: MessageTaskItem, GroupTaskItem, MethodTaskItem, and
TextTaskItem. Each subclass represents a particular type of GUI item in the task panel as discussed in
the following sections.

TextTaskItem
The TextTaskItem represents a simple text in the task panel. For example, the “Manage Server” text
shown in the task panel in Figure 6-4 is represented by a TextTaskItem object. Listing 6-10 presents the
definition of the TextTaskItem class.

Listing 6-10: The TextTaskItem Class

public sealed class TextTaskItem : TaskItem
{
// Methods
public TextTaskItem(string text, string category): this(text, category, false);
public TextTaskItem(string text, string category, bool isHeading);
public TextTaskItem(string text, string category, bool isHeading, Image image);

// Properties
public object Image { get; }
public bool IsHeading { get; }

}

The TextTaskItem class presents the following properties:

❑ IsHeading: Specifies whether the text should be rendered as a heading. For example, the
“Manage Server” text in Figure 6-4 is rendered as a heading. In other words, the IsHeading
Boolean property of the TextTaskItem object that represents the “Manage Server” text returns
true.

❑ Image: Specifies the Image object that will be rendered in addition to the text. For example, the
following code snippet instructs the task panel to render the specified bitmap:

Image img = new Bitmap(@“D:\MyBitMap.bmp”);
TextTaskItem item = new TextTaskItem(“Related Features”, “MyGroup”, true, img);

MessageTaskItem
Each warning, informational, or error message is represented by a MessageTaskItem object. Let’s
take a look at an example of a message task item. Launch the IIS7 Manager and navigate to the page
shown in Figure 6-9. Change the value of the Batch Compilation parameter and click Apply. The
result should look like Figure 6-10. If you compare the Actions panes in Figures 6-9 and 6-10, you’ll
notice that Figure 6-10 includes a new panel named Alerts that displays this message “The changes
have been successfully saved.” This is an example of an informational message. The other two types of

159

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 159

messages are warning and error messages. Notice the difference in location between the message
task items on one hand and the text, method, and group task items on the other hand. The message task
items are displayed in the Alert panel and the text, method, and group task items are displayed in the
task panel. As Figure 6-10 shows, the Alert panel becomes visible only when there’s a message task item
to display.

Figure 6-9

Figure 6-10

160

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 160

Listing 6-11 presents the definition of the MessageTaskItem class.

Listing 6-11: The MessageTaskItem Class

public sealed class MessageTaskItem : TaskItem
{
public MessageTaskItem(MessageTaskItemType messageType, string text,

string category);
public MessageTaskItem(MessageTaskItemType messageType, string text,

string category, string description);
public MessageTaskItem(MessageTaskItemType messageType, string text,

string category, string description, string methodName,
object userData);

public MessageTaskItemType MessageType { get; }
public string MethodName { get; }
public object UserData { get; }

}

The MessageTaskItem class features the following properties:

❑ MessageType: This MessageTaskItemType enumeration property specifies the type of mes-
sage. As mentioned, there are three types of messages: informational, warning, and error.

❑ MethodName: This optional property allows you to specify a method as an event handler for the
OnClick event of the message task item. This event is fired when the end user clicks the dis-
played message.

❑ UserData: The IIS7 Manager passes this optional property as an argument into the method
specified by the MethodName property when it invokes this method.

Listing 6-12 contains the definition of the MessageTaskItemType enumeration.

Listing 6-12: The MessageTaskItemType Enumeration

public enum MessageTaskItemType
{
Information,
Warning,
Error

}

MethodTaskItem
The MethodTaskItem represents a GUI item such as Apply that performs a predefined task when the
user clicks it. Listing 6-13 presents the definition of the MethodTaskItem class.

Listing 6-13: The MethodTaskItem Class

public sealed class MethodTaskItem : TaskItem
{
public MethodTaskItem(string methodName, string text, string category);
public MethodTaskItem(string methodName, string text, string category,

161

Chapter 6: Understanding the Integrated Graphical Management System

(Continued)

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 161

Listing 6-13: (continued)

string description);
public MethodTaskItem(string methodName, string text, string category,

string description, Image image);
public MethodTaskItem(string methodName, string text, string category,

string description, Image image, object userData);

public bool CausesNavigation { get; set; }
public Image Image { get; }
public string MethodName { get; }
public MethodTaskItemUsages Usage { get; set; }
public object UserData { get; }

}

The MethodTaskItem class contains the following properties:

❑ CausesNavigation: This Boolean property specifies whether clicking the GUI item will cause
navigation from the current module page to another page. For example, the View Application
Pools link shown in Figure 6-4 causes the IIS7 Manager to navigate to the module page that dis-
plays the application pools. The Add link shown in Figure 6-2, on the other hand, doesn’t cause
the IIS7 Manager to navigate. Instead it launches the task form shown in Figure 6-6.

❑ Image: This property represents the image that will be rendered as part of rendering of the item.
For example, in the case of Figure 6-5, the Image property of the task item that represents the
Add Application Pool link represents the icon displayed next to this link.

❑ MethodName: This property contains the name of the method that will be called when the end
user clicks the GUI item associated with the MethodTaskItem.

❑ MethodTaskItemUsages: This enumeration property specifies whether the associated GUI ele-
ment will be part of a context menu, task list, or both. Listing 6-14 presents the definition of the
MethodTaskItemUsages enumeration. Note that this enumeration is marked with the Flags
attribute, which means that you can perform bitwise operations between the ContextMenu and
TaskList values.

❑ UserData: As mentioned, when the user clicks the GUI element associated with the
MethodTaskItem object, the method specified in the MethodName property is automatically
invoked. If the optional UserData property is set, it will be automatically passed into this
method as its argument.

Listing 6-14: The MethodTaskItemUsages Enumeration

[Flags]
public enum MethodTaskItemUsages
{
ContextMenu = 2,
TaskList = 1

}

GroupTaskItem
The GroupTaskItem (shown in Listing 6-15) represents a group of TaskItem objects including
TextTaskItem, MessageTaskItem, MethodTaskItem, and other GroupTaskItem objects. The
GroupTaskItem renders a plus sign next to the name of the group if the group is expanded and a minus
sign if the group is collapsed

162

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 162

Listing 6-15: The GroupTaskItem Class

public sealed class GroupTaskItem : TaskItem
{
// Methods
public GroupTaskItem(string memberName, string text, string category);
public GroupTaskItem(string memberName, string text, string category,

bool isHeading);

// Properties
public bool IsHeading { get; }
public IList Items { get; }
public string MemberName { get; }

}

The GroupTaskItem class presents the following properties:

❑ IsHeading: This Boolean property specifies whether the text should be rendered as a heading.
This affects the look and feel of the text.

❑ Items: This IList collection contains the TaskItem objects in the group. You must use the Add
method of this property to add new task items to the group. For example, the following code
fragment adds text, method, and message task items to the group:

TextTaskItem text = new TextTaskItem(“Related Features”, “Related”, true);
MethodTaskItem method = new MethodTaskItem(“ViewCollectionItems”,

“View collection items”, “MyGroup”);
MessageTaskItem message = new MessageTaskItem(MessageTaskItemType.Warning,

“This is a warning message”, null);

GroupTaskItem group = new GroupTaskItem(“MyMemberName”, “MyText”, “Actions”, true);
group.Items.Add(text);
group.Items.Add(method);
group.Items.Add(message);

❑ MemberName: You’ll see the role of this property in the next chapter in the context of an example.

TaskList
The TaskList class acts as a container for the TaskItem objects that represent the GUI items in the task
panel. Listing 6-16 presents the definition of the TaskList abstract base class.

Listing 6-16: The TaskList Class

public abstract class TaskList
{
public virtual object GetPropertyValue(string propertyName);
public abstract ICollection GetTaskItems();
public virtual object InvokeMethod(string methodName, object userData);
public virtual void SetPropertyValue(string propertyName, object value);

public virtual bool IsDirty { get; }
}

163

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 163

The TaskList class features an abstract method named GetTaskItems that returns an ICollection
object that contains the TaskItem objects. Besides being a container, it also exposes three important util-
ity methods named GetPropertyValue, SetPropertyValue, and InvokeMethod.

The best way to understand what these utility methods do is to look at their internal implementations.
Listing 6-17 presents the internal implementation of the GetPropertyValue method.

Listing 6-17: The GetPropertyValue Method

public virtual object GetPropertyValue(string propertyName)
{
PropertyDescriptor descriptor1 =

TypeDescriptor.GetProperties(this)[propertyName];
return descriptor1.GetValue(this);

}

This method calls the GetProperties method of the TypeDescriptor class to access the
PropertyDescriptorCollection object that contains one PropertyDescriptor object for each prop-
erty that the TaskList (or its subclasses) exposes. It then uses the property name as an index into this
collection to return the PropertyDescriptor object that describes the associated property. Finally, it
calls the GetValue method on this PropertyDescriptor object to access the value of the property.
Therefore the GetPropertyValue method generically retrieves the value of a property of a task list with
a specified name.

The internal implementation of the SetPropertyValue method is shown in Listing 6-18.

Listing 6-18: The SetPropertyValue Method

public virtual void SetPropertyValue(string propertyName, object value)
{
TypeDescriptor.GetProperties(this)[propertyName].SetValue(this, value);

}

This method uses the same generic approach to set the value of the property of the task list with the
specified name.

Finally, Listing 6-19 presents the internal implementation of the InvokeMethod method of the TaskList
class.

Listing 6-19: The InvokeMethod Method

public virtual object InvokeMethod(string methodName, object userData)
{
Type type1 = base.GetType();
MethodInfo info1 = type1.GetMethod(methodName);
if (info1 != null)
{
if (userData == null)
return info1.Invoke(this, null);

return info1.Invoke(this, new object[] { userData });
}

}

164

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 164

The InvokeMethod method first calls the GetType method to access the Type object that represents the
TaskList (or its subclass):

Type type1 = base.GetType();

Then, it calls the GetMethod method of the Type object to return the MethodInfo object that represents
the method with the specified name:

MethodInfo info1 = type1.GetMethod(methodName);

Finally, it calls the Invoke method of the MethodInfo object to generically invoke the method with the
specified name and specified parameter. In other words, the InvokeMethod utility method is used to
invoke a method of a task list with the specified name and parameter.

As Listing 6-16 shows, the TaskList is an abstract class. In the next chapter you learn how to extend
this class to implement your own custom task list subclass.

ModulePageInfo
The ModulePageInfo class acts as a bag of properties that contain information about a particular mod-
ule page. As Listing 6-20 demonstrates, the ModulePageInfo class contains the following information
about its associated module page:

❑ AssociatedModule: Refers to the Module object that registers the associated module page with
the IIS7 Manager. I cover the Module class in the next chapter.

❑ Description: Contains a short description that describes what the module page does.

❑ IsEnabled: Specifies whether the module page is enabled.

❑ LargeImage: Refers to the image shown in the header of the module page. For example, in the
case of Figure 6-7, this property references the icon next to the “Failed Request Tracing Rules”
header text.

❑ LongDescription: Contains the long description about the module page. For example, in the
case of Figure 6-7, this property contains the text shown below the “Failed Request Tracing
Rules” header text.

❑ PageType: Refers to the Type object that represents the type of the module page. For example,
in the case of Figure 6-3, this property returns the value typeof(CompilationPage) because
the module page shown in this figure is an instance of a control named CompilationPage.

❑ SmallImage: References the icon that represents the module page.

❑ Title: Specifies the header text of the module page. For example, in the case of Figure 6-7, this
property contains the text “Failed Request Tracing Rules”.

Listing 6-20: The ModulePageInfo Class

public sealed class ModulePageInfo
{
public ModulePageInfo(Module associatedModule, Type pageType, string title);
public ModulePageInfo(Module associatedModule, Type pageType, string title,

165

Chapter 6: Understanding the Integrated Graphical Management System

(Continued)

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 165

Listing 6-20: (continued)

string description);
public ModulePageInfo(Module associatedModule, Type pageType, string title,

string description, object smallImage, object largeImage);
public ModulePageInfo(Module associatedModule, Type pageType, string title,

string description, object smallImage, object largeImage,
string longDescription);

public Module AssociatedModule { get; }
public string Description { get; }
public bool IsEnabled { get; }
public object LargeImage { get; }
public string LongDescription { get; }
public Type PageType { get; }
public object SmallImage { get; }
public string Title { get; }

}

TaskListCollection
As discussed earlier, every module page is associated with a task panel, where the task items associated
with the module page are displayed. These task items are contained in a task list. As discussed earlier,
every module page directly or indirectly inherits the ModulePage abstract base class, which in turn imple-
ments an interface named IModulePage. This interface exposes a property of type TaskListCollection
named Tasks. As you’ll see in the next chapter, each subclass of the ModulePage class must override the
Tasks property to add its own task list to this collection. In other words, the Tasks property of a module
page contains the task lists of all of its ancestor module pages.

As Listing 6-21 shows, the TaskListCollection class exposes a method named GetTaskListItems
that returns an IEnumerable collection of KeyValuePair objects.

Listing 6-21: The TaskListCollection Class

public sealed class TaskListCollection : CollectionBase
{
internal IEnumerable<KeyValuePair<TaskList, ICollection>> GetTaskListItems();
. . .

}

The KeyValuePair is a new generic type in .NET 2.0. Each KeyValuePair object in this collection rep-
resents a key/value pair. The key is an object of type TaskList and the value is an object of type
ICollection. Therefore, you can use a TaskList object as the key to retrieve the associated
ICollection object from the IEnumerable collection. This ICollection object contains the TaskItem
objects associated with the TaskList object.

In other words, the GetTaskListItems method returns a collection of KeyValuePair objects where
each KeyValuePair object contains the TaskItem objects associated with a particular ancestor module
page. You may find this a little confusing, but don’t worry about it because I cover this in more detail in
the next chapter in the context of an example.

166

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 166

Putting It All Together
The previous sections discussed some of the important classes in the IIS7 Manager architecture. This sec-
tion looks under the hood to help you understand how these seemingly unrelated classes work together.
Such understanding will put you in a much better position to extend the IIS7 Manager interface to add
support for your own module pages.

When the IIS7 Manager is launched, an instance of an internal class named WebMgrShellApplication
is instantiated and a method named Execute is called on this instance. As mentioned before, this class
implements the IServiceProvider interface, which means that this class is a service provider.
Listing 6-22 presents the internal implementation of the Execute method.

Listing 6-22: The Execute Method

public void Execute()
{
_theApplication = this;
_serviceContainer = new ServiceContainer();

_managementHost = new Win32ManagementHost(_serviceContainer,
“WebManagementShell”, “MyTitle”);

_serviceContainer.AddService(typeof(IManagementHost), _managementHost);

_navigationService = new NavigationService(_serviceContainer);
_serviceContainer.AddService(typeof(INavigationService),_navigationService);

_connectionManager = new ConnectionManager(_serviceContainer, true);
_serviceContainer.AddService(typeof(IConnectionManager),_connectionManager);

_mainForm = new ShellMainForm(this, null);
Application.Run(this._mainForm);

}

The Execute method performs four important tasks. First, it instantiates an instance of a class named
ServiceContainer. This class implements the IServiceContainer interface, which means that this
class is a service container. The AddService method of the ServiceContainer class uses the service
type as the key and stores the specified service instance under this key in an internal hash table. The
RemoveService method of the ServiceContainer class removes the service with the specified service
type (the key) from the internal hash table.

One unique thing about the ServiceContainer class is that if you call its GetService method, passing
in the typeof(IServiceContainer), it returns a reference to itself. To see the significance of this,
let’s look at the internal implementation of the GetService method of the WebMgrShellApplication
class. As Listing 6-23 demonstrates, this method simply delegates to the GetService method of
the ServiceContainer. This means that you can call the GetService method of the
WebMgrShellApplication class, passing in the typof(IServiceContainer) to access the underlying
service container so you can add new services to this container. You’ll see an example of this shortly.

167

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 167

Listing 6-23: The GetService Method of the WebMgrShellApplication Class

protected virtual object GetService(Type serviceType)
{
return this._serviceContainer.GetService(serviceType);

}

Now back to the Execute method shown in Listing 6-22. As this code listing shows, the Execute method
creates three new services named ManagementHost, NavigationService, and ConnectionManager. As
mentioned, every service implements a particular interface. These three services respectively implement
the IManagementHost, INavigationService, and IConnectionManager interfaces.

Notice that the AddService method of the ServiceContainer uses the Type object that represents the
interface that the service implements as the key under which the service is stored in the internal hash
table:

_navigationService = new NavigationService(_serviceContainer);
_serviceContainer.AddService(typeof(INavigationService),_navigationService);

Besides creating and registering the previously mentioned services, the Execute method of the
WebMgrShellApplication creates an instance of a form named ShellMainForm and calls the Run
method of the Application object to run this form:

_mainForm = new ShellMainForm(this, null);
Application.Run(this._mainForm);

The ShellMainForm is the form that contains the entire user interface of the IIS7 Manager. The
ShellMainForm class derives from another form named BaseForm. Listing 6-24 presents a portion of
the BaseForm constructor.

Listing 6-24: The BaseForm Constructor

protected BaseForm(IServiceProvider serviceProvider)
{
this._serviceProvider = serviceProvider;

}

The BaseForm implements a method named GetService that simply delegates to the GetService
method of the IServiceProvider object passed into its constructor, as shown in Listing 6-25.

Listing 6-25: The GetService Method of the BaseForm Class

protected internal object GetService(Type serviceType)
{
return this._serviceProvider.GetService(serviceType);

}

Now back to the ShellMainForm class. As mentioned, this class inherits the BaseForm class. Listing 6-26
presents a portion of the internal implementation of the ShellMainForm constructor.

168

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 168

Listing 6-26: The ShellMainForm Class

public ShellMainForm(IServiceProvider serviceProvider,
ShellComponents shellComponents) : base(serviceProvider)

{
_uiService = new ManagementUIService(this, this);
_propertyEditingService = new PropertyEditingService();
_assemblyDownloadService = new AssemblyDownloadService();

IServiceContainer container1 =
(IServiceContainer)base.GetService(typeof(IServiceContainer));

container1.AddService(typeof(IManagementUIService), _uiService);
container1.AddService(typeof(IPropertyEditingService), _propertyEditingService);
container1.AddService(typeof(IAssemblyDownloadService),_assemblyDownloadService);

_managementFrame = new ManagementFrame(serviceProvider, this);
base.SuspendLayout();
_managementFrame.SuspendLayout();
_managementFrame.Dock = DockStyle.Fill;
base.Controls.Add(_managementFrame);
_managementFrame.ResumeLayout(false);
base.ResumeLayout();

}

Note that the ShellMainForm creates the following three new services: ManagementUIService,
PropertyEditingService, and AssemblyDownloadService:

_uiService = new ManagementUIService(this, this);
_propertyEditingService = new PropertyEditingService();
_assemblyDownloadService = new AssemblyDownloadService();

The ShellMainForm calls the GetService method of its base class, passing in the
typeof(IServiceContainer) to return a reference to the ServiceContainer service container
discussed before. This is possible because the GetService method of the ServiceContainer
returns a reference to itself when it is called with the typeof(IServiceContainer) argument,
as discussed earlier.

IServiceContainer container1 =
(IServiceContainer)base.GetService(typeof(IServiceContainer));

The ShellMainForm then calls the AddService method of the service container three times to add the
ManagementUIService, PropertyEditingService, and AssemblyDownloadService services:

container1.AddService(typeof(IManagementUIService), _uiService);
container1.AddService(typeof(IPropertyEditingService), _propertyEditingService);
container1.AddService(typeof(IAssemblyDownloadService),_assemblyDownloadService);

Finally, the ShellMainForm instantiates an instance of a frame named ManagementFrame, and adds the
instance to its Controls collection (see Listing 6-26). In other words, the ShellMainForm has a single
child control, which means that the ManagementFrame contains the entire user interface of the IIS7

169

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 169

Manager. Notice that the ShellMainForm passes the service provider object into the constructor of the
ManagementFrame class, which means that this class can now access all the services that the
ShellMainForm and WebMgrShellApplication have added to the ServiceContainer object.

_managementFrame = new ManagementFrame(serviceProvider, this);
base.Controls.Add(_managementFrame);

The ShellMainForm class implements an interface named IManagementFrameHost, which exposes
bunch of methods and properties. We’re only interested in the UpdateUI method, shown in Listing 6-27.

Listing 6-27: The UpdateUI Method

void IManagementFrameHost.UpdateUI()
{
this._managementFrame.UpdateUI();

}

The UpdateUI method of the ShellMainForm delegates to the UpdateUI method of the
ManagementFrame. As the name implies, this method is called to update the user interface of the IIS7
Manager when something changes. You’ll see the significance of this method later.

Next, I discuss the ManagementFrame class. Listing 6-28 presents a simplified version of the internal
implementation of the ManagementFrame constructor.

Listing 6-28: The ManagementFrame Constructor

public ManagementFrame(IServiceProvider serviceProvider,
IManagementFrameHost owner)

{
_serviceProvider = serviceProvider;
_owner = owner;
INavigationService service2 =

(INavigationService)_serviceProvider.GetService(typeof(INavigationService));
service2.NavigationPerformed +=

new NavigationEventHandler(OnNavigationPerformed);
CreateHeader();
CreateMenuBar();
CreateStatusBar();
CreateMainArea();

}

The ManagementFrame first accesses the navigation service and registers the OnNavigationPerformed
method as an event handler for the NavigationPerformed event of this service. The ManagementFrame
then calls the CreateHeader, CreateMenuBar, CreateStatusBar, and CreateMainArea methods
to create the header, menu bar, status bar, and main area of the IIS7 Manager interface as shown in
Figure 6-11.

170

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 170

Figure 6-11

The main area is a standard .NET System.Windows.Forms.Panel control. As Figure 6-11
demonstrates, this panel (main area) consists of three columns. The left column is an internal
control named HierarchyPanel. As the name implies, this control displays a hierarchy of items.
The middle column is an internal control named PageContainerPanel, which inherits the standard
System.Windows.Forms.ContainerControl control. The page container panel acts as a container for
the module pages. In other words, the IIS7 Manager displays the modules pages in the page container
panel.

private sealed class PageContainerPanel : ContainerControl

The right column is an internal control named VerticalLayoutPanel. As the name implies, the
VerticalLayoutPanel lays out its child controls vertically. The VerticalLayoutPanel control acts a
container for the following two panels. The first panel displays the alerts and the second panel is a con-
trol named TaskPanel that contains the task items. For example, the TaskPanel control shown in
Figure 6-11 contains the Restart, Start, Stop, View Application Pools, View Web Sites, and Help buttons.

Recall from Listing 6-28 that the ManagementFrame registers the OnNavigationPerformed method as
an event handler for the NavigationPerformed event of the navigation service. The navigation service
fires this event after navigating from one navigation item to another.

The navigation service is responsible only for navigation from the current navigation item to the
new one. It is not responsible for actually rendering the module page associated with the new naviga-
tion item and the task items associated with this module page. Recall that each task item represents a
GUI item in the task panel associated with the module page. The navigation service raises the
NavigationPerformed event to allow the OnNavigationPerformed method of the
ManagementFrame to render the associated module page and its task items.

Header

Menu bar

Main area

Status Bar

171

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 171

Listing 6-29 contains the portion of the internal implementation of the OnNavigationPerformed event
handler.

Listing 6-29: The OnNavigationPerformed Event Handler

private void OnNavigationPerformed(object sender, NavigationEventArgs e)
{
NavigationItem item1 = e.NewItem;
this.SetActiveConnection(item1.Connection);
ModulePage modulePage = (ModulePage)item1.Page;
ModulePage page1 = this._activePage;
_activePage = modulePage;

bool isInitialActivation = false;
if (!_pageContainer.Controls.Contains(modulePage))
{
modulePage.Visible = false;
_pageContainer.Controls.Add(modulePage);
modulePage.Dock = DockStyle.Fill;
isInitialActivation = true;

}
modulePage.OnActivated(isInitialActivation);
ModulePageInfo info1 = modulePage.PageInfo;
_pageContainer.Title = info1.Title;
_pageContainer.PageDescription = info1.LongDescription;
modulePage.Visible = true;
modulePage.BringToFront();
TaskListCollection collection1 = new TaskListCollection();
foreach (TaskList list1 in ((IModulePage)_activePage).Tasks)
collection1.Add(list1);

IEnumerable<KeyValuePair<TaskList, ICollection>> enumerable1 =
collection1.GetTaskListItems();

_taskPanel.UpdateTasks(enumerable1);
}

The OnNavigationPerformed method first accesses the new navigation item:

NavigationItem item1 = e.NewItem;

Next, it accesses the ModulePage associated with the new navigation item and sets this module page as
the active module page:

ModulePage modulePage = (ModulePage)item1.Page;
ModulePage page1 = _activePage;
_activePage = modulePage;

Then, it determines whether the ModulePage associated with the new navigation item is being accessed
for the first time. If so, it adds the module page to the Controls collection of the page container panel.

bool isInitialActivation = false;
if (!_pageContainer.Controls.Contains(modulePage))
{

172

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 172

modulePage.Visible = false;
_pageContainer.Controls.Add(modulePage);
modulePage.Dock = DockStyle.Fill;
isInitialActivation = true;

}

Next, it accesses the ModulePageInfo object that contains the complete information about the module
page and uses it to set the title and page description of the page container panel. The middle column of
Figure 6-2 presents an example of this title and page description.

ModulePageInfo info1 = modulePage.PageInfo;
_pageContainer.Title = info1.Title;
_pageContainer.PageDescription = info1.LongDescription;

Then, it resets the visibility of the module page and brings the page to the front. Recall that the old mod-
ule page is sitting in the front. As you can see, navigating from one module page to another does not
remove the old page. It simply moves the new page to the front. In other words, the page container
panel stacks up all the previously displayed modules.

modulePage.Visible = true;
modulePage.BringToFront();

So far, you’ve seen how the OnNavigationPerformed method displays the module page associated
with the new navigation item. Next, you’ll see how this method displays the task items associated with
the module page. Recall that the task items are rendered in the task panel located in the Actions pane
of the IIS7 Manager interface. As Listing 6-29 shows, the OnNavigationPerformed method first instan-
tiates an instance of the TaskListCollection class:

TaskListCollection collection1 = new TaskListCollection();

Next, it iterates through the TaskList objects in the Tasks collection property of the module page and
adds each enumerated TaskList object to the TaskListCollection object:

foreach (TaskList list1 in ((IModulePage)_activePage).Tasks)
collection1.Add(list1);

Then, it calls the GetTaskListItems method of the TaskListCollection object to return an
IEnumerable collection of KeyValuePair. As discussed before, each KeyValuePair contains the task
items associated with a particular ancestor of the module page. In other words, the IEnumerable collec-
tion contains the task items that the module page and its ancestors have added.

IEnumerable<KeyValuePair<TaskList, ICollection>> enumerable1 =
collection1.GetTaskListItems();

Finally, the OnNavigationPerformed method calls the UpdateTasks method of the task panel and
passes the preceding IEnumerable object into it:

_taskPanel.UpdateTasks(enumerable1);

173

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 173

Under the hood, the UpdateTasks method iterates through the task items contained in the IEnumerable
object and takes one of the following actions for each enumerated task item:

❑ If the task item is a TextTaskItem, it renders the specified text.

❑ If the task item is a MethodTaskItem, it renders a button and registers the specified method as
the event handler for the OnClick event of the button.

❑ If the task item is a MessageTaskItem, it renders a warning, informational, or error message in
the Alert panel.

❑ If the task item is a GroupTaskItem, it renders a tree view where each node is a task item. It
also renders a plus sign next the root node if the tree view is collapsed and a minus sign if it’s
extended.

Summary
This chapter covered the main classes of the IIS7 Manager graphical architecture that you need to use to
extend this architecture to add support for your own custom configuration sections. This chapter also
looked under the hood where you saw how these classes work together and what roles they play in the
IIS7 Manager. The next chapter shows you how to use what you’ve learned in this chapter to extend
the IIS7 Manager interface.

174

Chapter 6: Understanding the Integrated Graphical Management System

52539c06.qxd:WroxPro 9/17/07 6:56 PM Page 174

Extending the
Integrated Graphical
Management System

The previous chapter provided in-depth coverage of the main classes of the IIS7 and ASP.NET 3.5
integrated graphical management architecture. This chapter shows you how to use what you’ve
learned in the previous chapter to extend this architecture to add graphical management support
for your own custom configuration sections.

You have to write two sets of managed code to extend the IIS7 and ASP.NET 3.5 integrated graphi-
cal management system: client-side managed code and server-side managed code. By client-side
managed code I mean the managed code that you have to write to extend the user interface of the
IIS7 Manager. By server-side managed code I mean the managed code that you have to write to
enable the back-end Web server to communicate with the IIS7 Manager.

Client-Side Managed Code
The previous chapter presented examples of different types of module pages and task forms
and briefly introduced the base classes from which these module pages and task forms derive.
Figure 7-1 presents the class diagram for all the major classes that you will deal with when you’re
writing the client-side managed code. I discuss these classes in detail in the following sections.

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 175

Figure 7-1

Extending the user interface of the IIS7 Manager involves the following tasks:

❑ Implement the appropriate module pages.

❑ Implement the necessary service proxies to facilitate the interaction between these module
pages and the back-end Web server.

❑ Add support for new task items if necessary.

❑ Implement the task forms associated with these task items.

❑ Implement the necessary modules to register these module pages.

Keep this recipe in mind as you’re reading through this chapter. To make our discussions more concrete,
I’ll use this recipe to extend the IIS7 Manager’s user interface to add graphical management support for
the <myConfigSection> configuration section discussed in Chapter 6. Launch Visual Studio and add a
new Class Library project named MyConfigSection. Next, right-click the MyConfigSection project in
the Solution Explorer and select the Properties option from the popup menu to launch the Properties
dialog. Switch to the Application tab, enter MyNamespace in the “Default namespace” textbox, and save
the changes.

Control

ScrollableControl

ContainerControl

GroupBox

ManagementGroupBox

ManagementTabPage

UserControl

WizardPage

ModulePropertiesPage

ModulePage

Panel

ManagementPanel

ModuleListPage

ModuleDialogPage

TaskForm

WizardForm

Form

BaseForm

DialogForm

BaseTaskForm

TabPage

176

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 176

As mentioned earlier, extending the IIS7 and ASP.NET 3.5 integrated graphical management system
requires two sets of managed code: client-side managed code and server-side managed code. Now
add a directory named GraphicalManagement to the MyConfigSection project and add two subdirec-
tories named Client and Server to the GraphicalManagement directory. As the names suggest, the
Client and Server subdirectories will contain the managed classes that respectively make up the
client-side and server-side managed code.

Recall that you extended the IIS7 and ASP.NET 3.5 integrated imperative management system in
Chapter 5 to add support for the following imperative management classes:

❑ MyCollectionItem (see Listing 5-10)

❑ MyCollection (see Listing 5-11)

❑ MyNonCollection (see Listing 5-12)

❑ MyConfigSection (see Listing 5-13)

❑ MyConfigSectionEnum (see Listing 5-14)

As you’ll see later in this chapter, the graphical management classes will use these imperative manage-
ment classes. Add a new directory named ImperativeManagement to the MyConfigSection project.
Add five source files named MyCollectionItem.cs, MyCollection.cs, MyNonCollection.cs,
MyConfigSection.cs, and MyConfigSectionEnum.cs to the ImperativeManagement directory and
add the code shown in Listings 5-10 through 5-14 to these source files, respectively. You also need to add
a reference to the Microsoft.Web.Administration.dll assembly to the MyConfigSection project.
This assembly is located in the following directory on your machine:

%windir%\System32\inetsvc

Now back to the implementation of the client-side managed code. Recall that the module page is the
unit of graphical extensibility in the IIS7 Manager architecture. The configuration settings of a configura-
tion section, such as <myConfigSection>, are normally exposed through one or more module pages
that provide users with convenient graphical means to specify these settings. That means these module
pages are tailored toward the specifics of their associated configuration sections.

If the IIS7 Manager architecture were to deal directly with the module pages associated with a particular
configuration section, it would be tied to these specific module pages and consequently their associated
configuration sections and would not be able to work with other configuration sections. That is why the
IIS7 Manager extensibility model comes with an abstract base class named ModulePage that isolates
the IIS7 Manager architecture from the specifics of the module pages being displayed. This base class
defines the graphical API that all module pages must implement to allow the IIS7 Manager graphical
architecture to interact with them in a generic fashion. Figure 7-2 shows the portion of the class diagram
shown in Figure 7-1 that contains the class hierarchy of the ModulePage base class.

As this figure shows, the ModulePage base class acts as a scrollable container control for other controls
on a module page. This base class does not provide any user interface and your module page class
should not inherit directly from this base class. Instead you should derive from one of its subclasses. As
Figure 7-2 shows, the ModulePage base class has two subclasses named ModuleDialogPage and
ModuleListPage, and ModuleDialogPage also has a subclass named ModulePropertiesPage.

177

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 177

Figure 7-2

Your module page should inherit from the ModuleDialogPage if you want your module page to
act like a traditional dialog box with typical command buttons such as Apply and Cancel (see Fig -
ure 6-1). Your module page should inherit from the ModulePropertiesPage if you want your module
page to act like a traditional dialog box, but you also want to group the content of your module page to
provide your users with a more user-friendly interface (see Figure 6-3). Your module page should inherit
from the ModuleListPage if you need to present a set of items in a list with one or more columns (see
Figure 6-2).

As an example, I’ll design the appropriate module pages to allow the end users to specify the configura-
tion settings of the <myConfigSection> configuration section directly from the IIS7 Manager. The first
order of business is to decide which type of module pages you want to use. Keep in mind that you can
use as many module pages as necessary to expose the configuration settings of a given configuration
section. It does not have to be a single module page.

As a reminder, let’s revisit the <myConfigSection> configuration section as shown in Listing 7-1.

Listing 7-1: The <myConfigSection> Configuration Section

<configuration>
<system.webServer>
<myConfigSection myConfigSectionBoolAttr="true"
myConfigSectionEnumAttr="myConfigSectionEnumVal3">
<myNonCollection myNonCollectionTimeSpanAttr="00:02:00" />
<myCollection myCollectionIntAttr="50">
<myAdd myCollectionItemBoolAttr="true"
myCollectionItemIdentifier="myId1" />
<myAdd myCollectionItemBoolAttr="false"
myCollectionItemIdentifier="myId2" />

</myCollection>
</myConfigSection>

</system.webServer>
</configuration>

Control

ScrollableControl

ContainerControl

ModulePropertiesPage

ModulePage

ModuleListPage

ModuleDialogPage

178

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 178

In this case I’ll use two module pages. The first module page is a module dialog page named
MyConfigSectionPage, which allows the end user to specify the values of the following attributes:

❑ The myConfigSectionBoolAttr and myConfigSectionEnumAttr attributes of the
<myConfigSection> element

❑ The myNonCollectionTimeSpanAttr attribute of the <myNonCollection> element

❑ The myCollectionIntAttr attribute of the <myCollection> element

The second module page is a module list page named MyCollectionPage, which

❑ Displays the collection items

❑ Allows the user to add a new collection item and specify the values of its associated
myCollectionItemBoolAttr and myCollectionItemIdentifier attributes

❑ Allows the user to delete a collection item

❑ Allows the user to edit the value of the myCollectionItemBoolAttr and
myCollectionItemIdentifier attributes of a collection item

❑ Allows the user to change the identifier of a collection item

Custom Module Pages and Task
Forms in Action

Before diving into the details of the implementation of these two module pages, first let’s see them in
action. As Figure 7-3 shows, the Web server home page includes a new item named MyConfigSection.

Figure 7-3

179

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 179

Figure 7-4

As you’ll see later, this module page inherits from the ModuleDialogPage class. The page consists of
three group boxes as follows:

❑ The first group box allows the user to specify the properties of the configuration section itself,
that is, the attributes on the <myConfigSection> containing element.

❑ The second group box allows the user to specify the non-collection properties, that is, the attrib-
utes on the <myNonCollection> non-collection element.

❑ The third group box allows the user to specify the collection properties, that is, the attributes on
the <myCollection> collection element.

Note that the Actions pane contains the Apply and Cancel buttons that you can find on a typical dialog
box. The user makes the changes in the group boxes and clicks Apply to commit the changes to the
underlying configuration file. Because the MyConfigSectionPage class derives from the
ModuleDialogPage class, it automatically inherits the Apply and Cancel command buttons from the
base class.

The command button labeled “View collection items” allows the user to navigate to a page named
MyCollectionPage as shown in Figure 7-5.

This page inherits from the ModuleListPage base class and displays the list of available collection
items, and the values of their identifier and Boolean properties. Notice that the Actions panel con-
tains a link named “Add collection item.” When the user clicks this link, the task form named

180

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 180

MyCollectionItemTaskForm pops up, as shown in Figure 7-6. This task form allows the user to
specify the properties of the collection item being added.

Figure 7-5

Figure 7-6

As Figure 7-7 shows, when the user selects an item from the list, the Actions panel displays three new
links named “Update collection item,” “Change identifier,” and “Delete collection item.” The user clicks
the “Update collection item” and “Delete collection item” links to respectively update and delete the
selected item and the “Change identifier” link to change the identifier of the selected item.

When the user clicks the “Update collection item” link, the task form shown in Figure 7-8 is displayed.
This task form allows the user to modify the selected item. The user can also launch this task form by
double-clicking the selected item.

181

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 181

Figure 7-7

Figure 7-8

When the user selects an item from the list of displayed items and takes one of the following actions, the
label that displays the identifier of the selected item becomes editable, as shown in Figure 7-9:

❑ The user clicks the selected item.

❑ The user clicks the “Change identifier” link.

Figure 7-9

As you can see from Figure 7-10, the MyCollectionPage module list page includes a Group by combo
box that contains a grouping criterion named Boolean Property. When the users select this grouping cri-
terion from this combo box, they’ll see the result shown in Figure 7-11.

Control

GroupBox

ManagementGroupBox

182

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 182

Figure 7-10

As you can see from Figure 7-11, the displayed items are grouped in two groups titled True and False.
The True group contains collection items with a Boolean property value of true. The False group con-
tains collection items with a Boolean property value of false.

Figure 7-11

183

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 183

Proxies
As the previous discussion shows, you need to implement two module pages named
MyConfigSectionPage and MyCollectionPage and a task form named MyCollectionItemTaskForm.
What about the communications between these module pages and task form and the back-end Web server?

The IIS7 Manager is a desktop application and runs locally on the client machine. The back-end Web
server, on the other hand, may or may not run locally on the client machine. In fact, IIS7 supports both
local and remote administration. In the remote administration scenario, the IIS7 Manager and back-end
Web server run in two different machines and communicate through the HTTPS protocol. This protocol
provides two important benefits. First, it’s firewall-friendly. Second, it’s secure because it uses an SSL
channel to transmit the messages between the IIS7 Manager and the back-end Web server.

Obviously, the MyConfigSectionPage and MyCollectionPage module pages and the
MyCollectionItemTaskForm task form need to communicate with the back-end server. Let’s study the
details of these communications.

There are two communication scenarios involving the MyConfigSectionPage module page and the
back-end server. In the first scenario, when the user double-clicks the MyConfigSection item in
Figure 7-3 and navigates to the MyConfigSectionPage module page shown in Figure 7-4, this module
page must ensure that its user interface reflects the current values of the associated configuration set-
tings in the underlying configuration file as follows:

❑ The CheckBox and ComboBox controls shown in the top group box of Figure 7-4 must reflect the
current values of the myConfigSectionBoolAttr and myConfigSectionEnumAttr attributes
on the <myConfigSection> Containing element.

❑ The TextBox control shown in the middle group box of Figure 7-4 must display the current
values of the myNonCollectionTimeSpanAttr attribute of the <myNonCollection> Non-
collection element.

❑ The TextBox control shown in the bottom group box of Figure 7-4 must display the current
value of the myCollectionIntAttr attribute of the <myCollection> element.

Therefore, the MyConfigSectionPage module page must retrieve the values of the
myConfigSectionBoolAttr, myConfigSectionEnumAttr, myNonCollectionTimeSpanAttr,
and myCollectionIntAttr attributes from the back-end Web server. The server-side code normally
contains a class that exposes methods that the client-side code, such as the MyConfigSectionPage
module page, must invoke to retrieve the current values of the required configuration settings such
as the preceding attributes. As you’ll see later, in our case the server-side class is a class named
MyConfigSectionModuleService that exposes a method named GetSettings that returns the values
of the attributes.

In the second communication scenario, the user makes changes in the MyConfigSectionPage module
page’s user interface as follows:

❑ The end user toggles the CheckBox control, or selects a new item from the ComboBox
control shown in the top group box of Figure 7-4 to change the current values of the
myConfigSectionBoolAttr and myConfigSectionEnumAttr attributes of the
<myConfigSection> containing element.

184

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 184

❑ The user changes the value displayed in the TextBox control shown in the middle group box of
Figure 7-4 to change the current value of the myNonCollectionTimeSpanAttr attribute of the
<myNonCollection> non-collection element.

❑ The user changes the value displayed in the TextBox control shown in the bottom group box
of Figure 7-4 to change the current value of the myCollectionIntAttr attribute of the
<myCollection> element.

After making one or more of these changes, the user clicks the Apply button to commit the changes
to the underlying configuration file, which means that the MyConfigSectionPage module now
needs to invoke the appropriate method of the server-side class to update the current values of the
myConfigSectionBoolAttr, myConfigSectionEnumAttr, myNonCollectionTimeSpanAttr, and
myCollectionIntAttr attributes in the underlying configuration file. As you’ll see later, the server-
side MyConfigSectionModuleService class exposes a method named UpdateSettings that takes
the new values and performs the necessary updates.

Next, I discuss the communication scenarios between the back-end MyConfigSectionModuleService
class and the MyCollectionPage module page. When the end user clicks the “View collection items”
link in the task panel of Figure 7-4 and navigates to the MyCollectionPage module page shown in
Figure 7-5, this module page must invoke the appropriate method of the
MyConfigSectionModuleService server-side class to retrieve the collection items and display them to
the end user. In this case, the server-side MyConfigSectionModuleService class features a method
named GetCollectionItems that returns the collection items.

In the second communication scenario, the user selects an item from the list shown in Figure 7-5 and clicks
the Delete collection item link in the task panel. In this case, the MyCollectionPage module page must
call the appropriate method of the server-side class to delete the associated collection item from the under-
lying configuration file. In our case, the server-side MyConfigSectionModuleService class exposes a
method named DeleteCollectionItem that takes the value of the myCollectionItemIdentifier
attribute as its argument and deletes the associated collection item from the configuration file.

In the third communication scenario, the user selects an item from the list of displayed items shown in
Figure 7-5, either clicks the selected item, or clicks the “Change identifier” link to make the label that
displays the identifier of the selected item editable, and finally changes the identifier of the selected
item. In this case, the MyCollectionPage module list page must call the appropriate method of the
server-side class to change the identifier of the selected item in the underlying configuration file. In
our case, the server-side MyConfigSectionModuleService class exposes a method named
UpdateCollectionItemIdentifier that performs the actual update in the configuration file.

Next, I discuss the communications between the back-end MyConfigSectionModuleService server-side
class and the MyCollectionItemTaskForm task form. The first scenario occurs when the end user clicks the
“Add collection item” link in the task panel in Figure 7-5 and launches the task form shown in Figure 7-6
to add a new collection item. After the user specifies the values of the myCollectionItemBoolAttr
and myCollectionItemIdentifier attributes of the new collection item and clicks OK on the
MyCollectionItemTaskForm task form shown in Figure 7-6, this task form must call the appropriate
method of the server-side class to add a new collection item with the specified attribute values to the under-
lying configuration file. In this case, the server-side MyConfigSectionModuleService class exposes a
method named AddCollectionItem that takes these attribute values and adds the new item.

185

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 185

The second communication scenario involving the MyCollectionItemTaskForm task form
occurs when the end user double-clicks an item from the list shown in Figure 7-7 and launches this
task form (see Figure 7-8) to update the current values of the myCollectionItemIdentifier and
myCollectionItemBoolAttr attributes of the selected collection item. When the user is done with
editing and clicks the OK button, the MyCollectionItemTaskForm task form must call the appropri-
ate method of the MyConfigSectionModuleService server-side class to update the attribute values
of the selected collection item in the configuration file. In this case, the server-side class exposes a
method named UpdateCollectionItem that takes the new attribute values and updates the underly-
ing attributes.

In summary, the MyConfigSectionPage and MyCollectionPage module pages and
MyCollectionItemTaskForm task form need to communicate with the back-end Web server on a
number of occasions as discussed. If the MyConfigSectionPage and MyCollectionPage module
pages and MyCollectionItemTaskForm task form were to include the logic that talks to the back-end
MyConfigSectionModuleService server-side class directly, they would have to worry about issues
such as whether the Web server is running remotely, and if so how to use HTTPS to communicate with
it. Imagine how complex your GUI code would be if it were to include the logic that handles issues like
these two.

ModuleServiceProxy
The MyConfigSectionPage and MyCollectionPage module pages and MyCollectionItemTaskForm
task form are not the only entities that need this communication logic to communicate with the back-end
server. Other entities such as other module pages and task forms also need to use the same logic to com-
municate with the server. This is yet another reason why this communication logic should not be directly
included into the entities that use this logic.

The IIS7 Manager architecture encapsulates the logic that deals with the details of the communications
with the back-end server-side class into a standard client-side base class named ModuleServiceProxy.
The methods and properties of this base class define the API that the MyConfigSectionPage and
MyCollectionPage module pages and MyCollectionItemTaskForm task form can use to communi-
cate indirectly with the back-end class and invoke its methods without getting involved in the dirty little
communication details. All you have to do is to implement a client-side class known as a proxy that
inherits the ModuleServiceProxy base class and exposes methods with the same signatures as the
methods of the back-end server-side class. The implementation of these methods of this client-side proxy
class must use the Invoke method of the ModuleServiceProxy base class to invoke the associated
methods of the server-side class. This proxy class in our case is a class named
MyConfigSectionModuleServiceProxy as shown in Listing 7-2.

Add a new source file named MyConfigSectionModuleServiceProxy.cs to the
GraphicalManagement/Client subdirectory of the MyConfigSection project and add the code
shown in Listing 7-2 to this source file. You also need to add a reference to the Microsoft.Web
.Management.dll assembly to the MyConfigSection project because this assembly contains the
ModuleServiceProxy and PropertyBag types. This assembly is located in the following directory on
your machine:

%windir%\System32\inetsrv

186

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 186

Listing 7-2: The MyConfigSectionModuleServiceProxy Class

using Microsoft.Web.Management.Client;
using Microsoft.Web.Management.Server;

namespace MyNamespace
{
class MyConfigSectionModuleServiceProxy : ModuleServiceProxy
{
public PropertyBag GetCollectionItems()
{
return (PropertyBag)base.Invoke("GetCollectionItems", new object[0]);

}

public void UpdateCollectionItem(PropertyBag itemToUpdate)
{
base.Invoke("UpdateCollectionItem", new object[] { itemToUpdate });

}

public void DeleteCollectionItem(PropertyBag itemToDelete)
{
base.Invoke("DeleteCollectionItem", new object[] { itemToDelete });

}

public void AddCollectionItem(PropertyBag itemToAdd)
{
base.Invoke("AddCollectionItem", new object[] { itemToAdd });

}

public PropertyBag GetSettings()
{
return (PropertyBag)base.Invoke("GetSettings", new object[0]);

}

public void UpdateSettings(PropertyBag updatedSettings)
{
base.Invoke("UpdateSettings", new object[] { updatedSettings });

}

public bool UpdateCollectionItemIdentifier(string oldIdentifier,
string newIdentifier)

{
return (bool)base.Invoke("UpdateCollectionItemIdentifier",

new object[] { oldIdentifier, newIdentifier });
}

}
}

Each method of your custom proxy class must meet the following two important requirements:

❑ It must have the same signature as the corresponding server-side method. Recall that the signa-
ture of a method includes its name, return type, and its parameter types. For example, as you’ll
see later, the server-side MyConfigSectionModuleService class exposes the methods shown
in Listing 7-3. If you compare this code listing with Listing 7-2 you’ll notice that the

187

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 187

MyConfigSectionModuleServiceProxy proxy class exposes methods with the same signa-
tures as the server-side MyConfigSectionModuleService class.

❑ It must call the Invoke method of the ModuleServiceProxy base class and pass the following
two parameters into it:

❑ The name of the corresponding server-side method.

❑ An array of objects where each object contains the value of a particular parameter of the
corresponding server-side method. The order of the objects in this array must be the
same as the order of the parameters of the server-side method.

For example, the UpdateSettings method of the MyConfigSectionModuleServiceProxy proxy class
(see Figure 7-2) calls the Invoke method of the ModuleServiceProxy base class and passes the following
two parameters into it:

❑ The string value “UpdateSettings”, which is the name of the corresponding server-side
method (see Listing 7-3)

❑ An array that contains a single element of type PropertyBag, which is the value of the parame-
ter of the UpdateSettings server-side method (see Listing 7-3)

public void UpdateSettings(PropertyBag updatedSettings)
{
base.Invoke("UpdateSettings", new object[] { updatedSettings });

}

Listing 7-3: The MyConfigSectionModuleService Server-Side Class

using Microsoft.Web.Management.Server;
using System.Collections;
using System;

namespace MyNamespace.GraphicalManagement.Server
{
class MyConfigSectionModuleService : ModuleService
{
[ModuleServiceMethod]
public PropertyBag GetSettings();

[ModuleServiceMethod]
public void UpdateSettings(PropertyBag updatedSettings);

[ModuleServiceMethod]
public PropertyBag GetCollectionItems();

[ModuleServiceMethod]
public void AddCollectionItem(PropertyBag bag);

[ModuleServiceMethod]
public void DeleteCollectionItem(PropertyBag bag);

[ModuleServiceMethod]
public void UpdateCollectionItem(PropertyBag bag);

[ModuleServiceMethod]
public bool UpdateCollectionItemIdentifier(string oldIdentifier,

string newIdentifier);
}

}

188

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 188

As Listings 7-2 and 7-3 show, the client-side MyConfigSectionModuleServiceProxy proxy class and
the server-side MyConfigSectionModuleService class use a PropertyBag object to exchange data.
For example, the AddCollectionItem method of the MyConfigSectionModuleServiceProxy proxy
class sends the values of the myCollectionItemBoolAttr and myCollectionItemIdentifier attrib-
utes of the new collection item through a PropertyBag object.

What’s PropertyBag Anyway?
As you saw in the previous sections, the server-side class and the client-side proxy exchange configura-
tion data. The proxy and its associated server-side class normally encapsulate this data in an instance of
a class named PropertyBag, which is optimized to improve performance.

Listing 7-4 presents the members of the PropertyBag class. Note that the PropertyBag implements the
IDictionary interface, which means that it’s a collection of DictionaryEntry objects.

Listing 7-4: The PropertyBag Class

public sealed class PropertyBag : IDictionary, ICollection, IEnumerable
{
// Methods
public PropertyBag();
public PropertyBag(bool trackState);
public void Add(int key, object value);
public PropertyBag Clone();
public PropertyBag Clone(bool readOnly);
public bool Contains(int key);
public static PropertyBag CreatePropertyBagFromState(string state);
public static PropertyBag CreatePropertyBagFromState(string state,

bool readOnly);
public string GetState();
public T GetValue<T>(int index);
public T GetValue<T>(int index, T defaultValue);
public bool IsModified();
public bool IsModified(int key);
public void Remove(object key);

// Properties
public int Count { get; }
public bool IsTrackingState { get; }
public object this[int index] { get; set; }
public ICollection Keys { get; }
public ICollection ModifiedKeys { get; }

}

To help you understand the significance of the PropertyBag class, let’s take a look at the internal imple-
mentation of some of its members.

Constructors
Listing 7-5 presents the internal implementations of the constructors of this class.

189

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 189

Listing 7-5: Constructors of the PropertyBag Class

public PropertyBag() : this(false) { }

public PropertyBag(bool trackState)
{
this.bag = new HybridDictionary();
if (trackState)
this.modifiedKeys = new HybridDictionary();

}

private IDictionary bag;

Note that the PropertyBag class exposes a default constructor and a constructor with a Boolean param-
eter. The default constructor calls the other constructor, passing in the value of false as its parameter.
Notice that the constructor instantiates an instance of the HybridDictionary class and assigns the
instance to a private IDictionary field named bag.

When you call the Add method of the PropertyBag to add a new DictionaryEntry object into it, the
Add method under the hood adds this object into the bag IDictionary field. When you call the Remove
method of the PropertyBag to remove a DictionaryEntry object, the Remove method under the hood
removes this object from the bag IDictionary field.

The great thing about the HybridDictionary class is its performance. The HybridDictionary collec-
tion stores its items in an internal ListDictionary collection, which is optimized for small numbers of
items. When the number of items exceeds this optimum number, the HybridDictionary moves its
items from this internal ListDictionary to an internal Hashtable. If the number of items exceeds this
optimum number to begin with, the HybridDictionary stores them in the Hashtable to begin with.

Indexer
As Listing 7-5 shows, if the Boolean value of true is passed into the PropertyBag constructor, it creates
two instances of the HybridDictionary class instead of one. The second HybridDictionary instance
is assigned to a private field of type IDictionary named modifiedKeys. To see the significance of this
private field, take a look at the internal implementation of the indexer property of the PropertyBag
class as presented in Listing 7-6.

Listing 7-6: The Indexer Property of the PropertyBag Class

public object this[int index]
{
get
{
if (index < 0)
throw new ArgumentOutOfRangeException("index");

return this.bag[index];
}
set
{
if (index < 0)
throw new ArgumentOutOfRangeException("index");

190

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 190

Listing 7-6: (continued)

if (this.readOnly)
throw new InvalidOperationException("Cannot Modify Readonly Collection");

object oldItem = this.bag[index];
this.bag[index] = value;
if ((this.modifiedKeys != null) && !object.Equals(oldItem, value))
this.modifiedKeys[index] = string.Empty;

}
}

Note that the indexer of the PropertyBag class delegates to the indexer of the bag HybridDictionary
field. Now let’s study the setter of this indexer more closely. The setter checks whether the PropertyBag
is marked as read-only. If so, it throws an exception. Next, it accesses the item with the specified index
and stores it in a local variable named oldItem and replaces the item with the new item:

object oldItem = this.bag[index];
this.bag[index] = value;

Then, it checks whether the modifiedKeys HybridDictionary collection has been instantiated. Recall
from Listing 7-5 that the modifiedKeys collection is instantiated only when the value of true is passed
into the PropertyBag constructor. If the modifiedKeys collection has been instantiated and if the new
item is different from the old item, the setter adds a new entry to the modifiedKeys collection:

if ((this.modifiedKeys != null) && !object.Equals(oldItem, value))
this.modifiedKeys[index] = string.Empty;

Therefore, the presence of an entry in the modifiedKeys collection at a specified index indicates that the
entry in the bag collection at the same index has been replaced.

In other words, the bag collection contains the items and the modifiedKeys collection specifies which items
in the bag collection have been changed. This means that if you pass the value of true to the PropertyBag
constructor when you’re instantiating a PropertyBag object, the object will track its state changes.

ModifiedKeys
As Listing 7-7 shows, the ModifiedKeys property of the PropertyBag class returns the Keys collection
property of the modifiedKeys collection. In other words, it returns an ICollection that contains those
indexes in the bag HybridDictionary whose associated values have changed.

Listing 7-7: The ModifiedKeys Property

public ICollection ModifiedKeys
{
get
{
if (!this.IsTrackingState)
throw new InvalidOperationException(

“The state changes are not being tracked.”);
return this.modifiedKeys.Keys;

}
}

191

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 191

GetState
As Listing 7-4 shows, the PropertyBag class exposes a method named GetState. Listing 7-8 presents
the internal implementation of this method. As the name suggests, the GetState method returns a
string that contains the state or content of the PropertyBag. In other words, the GetState method seri-
alizes the PropertyBag into a string.

Listing 7-8: The GetState Method of the PropertyBag Class

public string GetState()
{
ObjectStateFormatter formatter1 = new ObjectStateFormatter();
return formatter1.Serialize(this);

}

As Listing 7-8 shows, the GetState method instantiates an ObjectStateFormatter and calls its
Serialize method, passing in the reference to the PropertyBag object. The Serialize method serial-
izes this object into a string.

CreatePropertyBagFromState
As Listing 7-4 shows, the PropertyBag class also exposes a method named
CreatePropertyBagFromState. Listing 7-9 shows the internal implementation of this method.

Listing 7-9: The CreatePropertyBagFromState Method of the PropertyBag Class

public static PropertyBag CreatePropertyBagFromState(string state, bool readOnly)
{
ObjectStateFormatter formatter = new ObjectStateFormatter();
PropertyBag bag = (PropertyBag) formatter.Deserialize(state);
if (readOnly)
bag.SetReadOnly();

return bag;
}

The CreatePropertyBagFromState method instantiates an ObjecStateFormatter and calls its
Deserialize method, passing in the string that contains the serialized version of the PropertyBag
object. The Deserialize method deserializes a PropertyBag object from this string. In other words,
the CreatePropertyBagFromState method does the opposite of the GetState method.

You may be wondering what this serialization is for. As discussed earlier, the MyConfigSectionPage
and MyCollectionPage module pages and MyCollectionItemTaskForm task form need to communi-
cate with the back-end Web server on a number of occasions. In other words, the methods of the client-
side MyConfigSectionModuleServiceProxy proxy class (see Listing 7-2) must exchange data with the
methods of the server-side MyConfigSectionModuleService class. This data has to be serialized on
the sender side (which could be the client or server) and deserialized on the receiver side.

Therefore, the performance and interactivity of the IIS7 Manager depends on the performance of this
serialization/deserialization process, especially when the back-end Web server and the IIS7 Manager are
not running on the same machine. One of the great things about the PropertyBag class is that its seriali-
zation/deserialization is optimized as long as it doesn’t contain complex data types. Therefore, when

192

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 192

you’re writing your own custom module pages and task forms you must ensure that you do not store
complex data types in the PropertyBag object that the methods of your proxy class pass to the server.

MyConfigSectionPage
In this section, I present and discuss the implementation of the MyConfigSectionPage module dialog
page. The MyConfigSectionPage module dialog page, like any other module dialog page, derives from
the ModuleDialogPage abstract base class, which in turn derives from the ModulePage abstract base class.

The ModuleDialogPage base class defines the API that every module page must implement in order to
act as a dialog box with typical command buttons such as Apply and Cancel. Listing 7-10 presents
those members of the ModuleDialogPage base class that the MyConfigSectionPage class overrides.

Listing 7-10: The ModuleDialogPage Base Class

public abstract class ModuleDialogPage : ModulePage
{
// Methods
protected abstract bool ApplyChanges();
protected abstract void CancelChanges();
protected virtual void OnRefresh();

// Properties
protected abstract bool CanApplyChanges { get; }
protected override TaskListCollection Tasks { get; }

}

The ModuleDialogPage base class features the following important overridable members:

❑ ApplyChanges: Your custom module dialog page’s implementation of the ApplyChanges
method must contain the code that you want to run when the end user clicks the Apply button.

❑ CancelChanges: Your custom module dialog page’s implementation of the CancelChanges
method must contain the code that you want to run when the end user clicks the Cancel button.

❑ OnRefresh: Your custom module dialog page’s implementation of the OnRefresh method must
contain the code that you want to run when your module dialog page is refreshed.

❑ CanApplyChanges: Your custom module dialog page’s implementation of the
CanApplyChanges property must return a Boolean value specifying whether the changes can
be committed to the underlying configuration file.

❑ Tasks: Your custom module dialog page’s implementation of the Tasks property must take the
following four steps:

❑ Instantiate an instance of the TaskListCollection class.

❑ Populate this instance with the content of the Tasks property of its base class.

❑ Create new TextTaskItem, MessageTaskItem, MethodTaskItem, and
GroupTaskItem task items as necessary.

❑ Add these task items to the TaskListCollection instance and return the instance.

193

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 193

Because the ModuleDialogPage base class inherits from the ModulePage base class, you may need to over-
ride some of the methods and properties of the ModulePage base class as well. Listing 7-11 presents those
members of the ModulePage base class that the MyConfigSectionPage module dialog page overrides:

❑ OnActivated: Your module page’s implementation of the OnActivated method must connect
to the back-end Web server, retrieve the required configuration settings, and populate the mod-
ule page with these settings.

❑ CanRefresh: Override this property to specify whether your module page can refresh.

❑ HasChanges: Override this property to implement the logic that determines whether the end
user has edited the configuration settings displayed in your module page.

❑ ReadOnly: Override this property to specify whether your module page is in read-only mode
where the user cannot edit the configuration settings that your module page displays. As you’ll
see later in this chapter, the value of this property reflects the value of the isLocked Boolean
attribute on the associated configuration section. When this Boolean attribute is set to true in a
configuration file at a specified configuration hierarchy level, none of the lower-level configura-
tion files are allowed to change the associated configuration settings. As you’ll see later in this
chapter, your custom module page must disable its GUI elements if the isLocked Boolean
attribute is set to true.

Listing 7-11: The ModulePage Abstract Base Class

public abstract class ModulePage : ContainerControl, IModulePage, IDisposable
{
protected virtual void OnActivated(bool initialActivation);

protected virtual bool CanRefresh { get; }
protected virtual bool HasChanges { get; }
protected virtual bool ReadOnly { get; }

}

Listing 7-12 presents the declarations of the members of the MyConfigSectionPage module dialog page.
Now add a new source file named MyConfigSectionPage.cs to the GraphicalManagement/Client
directory of the MyConfigSection project and add the code shown in this code listing to this source file.
Note that Listing 7-12 does not contain the implementation of the methods and properties of the
MyConfigSectionPage class. I present and discuss the implementation of these methods and properties
in the following sections. You also need to add references to the System.Drawing.dll and System
.Windows.Forms.dll assemblies to the MyConfigSection project because the MyConfigSectionPage
module dialog page uses some of the classes from these two assemblies.

Listing 7-12: The MyConfigSectionPage Module Dialog Page

using Microsoft.Web.Management.Client.Win32;
using Microsoft.Web.Management.Client;
using Microsoft.Web.Management.Server;
using System.ComponentModel;
using System.Collections;
using System.Windows.Forms;
using System.Drawing;
using System;
using MyNamespace.ImperativeManagement;

194

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 194

Listing 7-12: (continued)

namespace MyNamespace.GraphicalManagement.Client
{
class MyConfigSectionPage: ModuleDialogPage
{
private ManagementGroupBox myConfigSectionPropertiesGroupBox;
private CheckBox myConfigSectionBoolPropertyCheckBox;
private Label myConfigSectionEnumPropertyLabel;
private ComboBox myConfigSectionEnumPropertyComboBox;
private ManagementGroupBox myNonCollectionGroupBox;
private Label myNonCollectionTimeSpanPropertyLabel;
private TextBox myNonCollectionTimeSpanPropertyTextBox;
private ManagementGroupBox myCollectionGroupBox;
private Label myCollectionIntPropertyLabel;
private TextBox myCollectionIntPropertyTextBox;
private bool hasChanges;
private MyConfigSectionModuleServiceProxy serviceProxy;
private PropertyBag bag;
private MyConfigSectionInfo localInfo;
private bool errorGetSettings;
private PropertyBag clone;
private PageTaskList taskList;
private bool readOnly;

public MyConfigSectionPage();
private void InitializeComponent();
private void OnMyConfigSectionBoolAttrCheckBoxCheckedChanged(object sender,

EventArgs e);

private void OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged(
object sender, EventArgs e);

private void OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged(object sender,
EventArgs e);

private void OnmyCollectionIntPropertyTextBoxTextChanged(object sender,
EventArgs e);

private void UpdateUIState();

protected override bool HasChanges { get; }
protected override bool CanApplyChanges { get; }
protected override void OnActivated(bool initialActivation);
private void GetSettings();
private void OnWorkerGetSettings(object sender, DoWorkEventArgs e);
private void OnWorkerGetSettingsCompleted(object sender,

RunWorkerCompletedEventArgs e);
private void InitializeUI();
private void ClearSettings();
private sealed class MyConfigSectionEnumObject { }
private bool ValidateUserInputs();
protected override bool ApplyChanges();

195

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 195

Listing 7-12: (continued)

private void GetValues();
protected override void CancelChanges();
private sealed class PageTaskList : TaskList { }
public void ViewCollectionItems();
protected override TaskListCollection Tasks { get; }
protected override void OnRefresh();
protected override bool CanRefresh { get; }
protected sealed override bool ReadOnly { get; }
private void SetUIReadOnly(bool readOnly);

}
}

Constructor
The following code listing presents the implementation of the MyConfigSectionPage constructor,
which in turn invokes another method named InitializeComponent. Replace the declaration of the
MyConfigSectionPage constructor in the MyConfigSectionPage.cs file with the code shown here:

public MyConfigSectionPage()
{
InitializeComponent();

}

The implementation of the InitializeComponent method is shown in Listing 7-13. Replace the decla-
ration of the InitializeComponent method in the MyConfigSectionPage.cs file with the code
shown in this code listing.

Listing 7-13: The InitializeComponent Method

private void InitializeComponent()
{
myConfigSectionPropertiesGroupBox = new ManagementGroupBox();
myConfigSectionBoolPropertyCheckBox = new CheckBox();
myConfigSectionEnumPropertyLabel = new Label();
myConfigSectionEnumPropertyComboBox = new ComboBox();

myNonCollectionGroupBox = new ManagementGroupBox();
myNonCollectionTimeSpanPropertyLabel = new Label();
myNonCollectionTimeSpanPropertyTextBox = new TextBox();

myCollectionGroupBox = new ManagementGroupBox();
myCollectionIntPropertyLabel = new Label();
myCollectionIntPropertyTextBox = new TextBox();

myConfigSectionPropertiesGroupBox.SuspendLayout();
myNonCollectionGroupBox.SuspendLayout();
myCollectionGroupBox.SuspendLayout();
base.SuspendLayout();

196

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 196

Listing 7-13: (continued)

myConfigSectionPropertiesGroupBox.Controls.Add(
myConfigSectionBoolPropertyCheckBox);

myConfigSectionPropertiesGroupBox.Controls.Add(myConfigSectionEnumPropertyLabel);
myConfigSectionPropertiesGroupBox.Controls.Add(

myConfigSectionEnumPropertyComboBox);

myConfigSectionPropertiesGroupBox.Location = new Point(0, 10);
myConfigSectionPropertiesGroupBox.Name = "myConfigSectionPropertiesGroupBox";
myConfigSectionPropertiesGroupBox.Width = 200;
myConfigSectionPropertiesGroupBox.Height = 75;
myConfigSectionPropertiesGroupBox.TabStop = false;
myConfigSectionPropertiesGroupBox.Text = "Configuration section properties";

myConfigSectionBoolPropertyCheckBox.Location = new Point(9, 0x12);
myConfigSectionBoolPropertyCheckBox.Name = "myConfigSectionBoolPropertyCheckBox";
myConfigSectionBoolPropertyCheckBox.AutoSize = true;
myConfigSectionBoolPropertyCheckBox.TabIndex = 0;
myConfigSectionBoolPropertyCheckBox.Text = "Boolean property";
myConfigSectionBoolPropertyCheckBox.CheckedChanged +=

new EventHandler(OnMyConfigSectionBoolAttrCheckBoxCheckedChanged);

myConfigSectionEnumPropertyLabel.Location = new Point(9, 0x2a);
myConfigSectionEnumPropertyLabel.Name = "myConfigSectionEnumPropertyLabel";
myConfigSectionEnumPropertyLabel.AutoSize = true;
myConfigSectionEnumPropertyLabel.TabIndex = 1;
myConfigSectionEnumPropertyLabel.Text = "Enum property:";
myConfigSectionEnumPropertyLabel.TextAlign = ContentAlignment.MiddleLeft;

myConfigSectionEnumPropertyComboBox.FormattingEnabled = true;
myConfigSectionEnumPropertyComboBox.Location = new Point(110, 0x2a);
myConfigSectionEnumPropertyComboBox.Name = "myConfigSectionEnumPropertyComboBox";
myConfigSectionEnumPropertyComboBox.Width = 80;
myConfigSectionEnumPropertyComboBox.TabIndex = 2;
myConfigSectionEnumPropertyComboBox.SelectedIndexChanged +=

new EventHandler(OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged);

myNonCollectionGroupBox.Controls.Add(myNonCollectionTimeSpanPropertyLabel);
myNonCollectionGroupBox.Controls.Add(myNonCollectionTimeSpanPropertyTextBox);
myNonCollectionGroupBox.Location = new Point(0, 95);
myNonCollectionGroupBox.Name = "MyNonCollectionGroupBox";
myNonCollectionGroupBox.Width = 200;
myNonCollectionGroupBox.Height = 50;
myNonCollectionGroupBox.TabIndex = 1;
myNonCollectionGroupBox.TabStop = false;
myNonCollectionGroupBox.Text = "Non-collection properties";

myNonCollectionTimeSpanPropertyLabel.Location = new Point(9, 0x12);
myNonCollectionTimeSpanPropertyLabel.Name =

"myNonCollectionTimeSpanPropertyLabel";
myNonCollectionTimeSpanPropertyLabel.AutoSize = true;
myNonCollectionTimeSpanPropertyLabel.TabIndex = 0;

197

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 197

Listing 7-13: (continued)

myNonCollectionTimeSpanPropertyLabel.Text = "TimeSpan property:";
myNonCollectionTimeSpanPropertyLabel.TextAlign = ContentAlignment.MiddleLeft;

myNonCollectionTimeSpanPropertyTextBox.Location = new Point(110, 0x12);
myNonCollectionTimeSpanPropertyTextBox.Name =

"myNonCollectionTimeSpanPropertyTextBox";
myNonCollectionTimeSpanPropertyTextBox.Width = 80;
myNonCollectionTimeSpanPropertyTextBox.TabIndex = 3;
myNonCollectionTimeSpanPropertyTextBox.TextChanged +=

new EventHandler(OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged);

myCollectionGroupBox.Controls.Add(myCollectionIntPropertyLabel);
myCollectionGroupBox.Controls.Add(myCollectionIntPropertyTextBox);
myCollectionGroupBox.Location = new Point(0, 155);
myCollectionGroupBox.Name = "myCollectionGroupBox";
myCollectionGroupBox.Width = 200;
myCollectionGroupBox.Height = 50;
myCollectionGroupBox.TabIndex = 1;
myCollectionGroupBox.TabStop = false;
myCollectionGroupBox.Text = "Collection properties";

myCollectionIntPropertyLabel.Location = new Point(9, 0x12);
myCollectionIntPropertyLabel.Name = "myCollectionIntPropertyLabel";
myCollectionIntPropertyLabel.AutoSize = true;
myCollectionIntPropertyLabel.TabIndex = 0;
myCollectionIntPropertyLabel.Text = "Integer property:";
myCollectionIntPropertyLabel.TextAlign = ContentAlignment.MiddleLeft;

myCollectionIntPropertyTextBox.Location = new Point(110, 0x12);
myCollectionIntPropertyTextBox.Name = "myCollectionIntPropertyTextBox";
myCollectionIntPropertyTextBox.Width = 80;
myCollectionIntPropertyTextBox.TabIndex = 3;
myCollectionIntPropertyTextBox.TextChanged +=

new EventHandler(OnmyCollectionIntPropertyTextBoxTextChanged);
AutoScroll = true;
base.AutoScaleMode = AutoScaleMode.Font;
base.AutoScaleDimensions = new SizeF(6f, 13f);
base.ClientSize = new Size(0x1d8, 0x228);
base.Controls.Add(myConfigSectionPropertiesGroupBox);
base.Controls.Add(myNonCollectionGroupBox);
base.Controls.Add(myCollectionGroupBox);
myConfigSectionPropertiesGroupBox.ResumeLayout(false);
myNonCollectionGroupBox.PerformLayout();
myCollectionGroupBox.PerformLayout();
base.ResumeLayout(false);

}

The main responsibility of the InitializeComponent method is to create the GUI elements that make
up the MyConfigSectionPage’s user interface. Let’s go over the important parts of the implementation
of this method. Keep Figure 7-4 in mind as I review these parts. As this figure shows, the user interface

198

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 198

of the MyConfigSectionPage consists of three group boxes. The IIS7 Manager graphical architecture
comes with a class named ManagementGroupBox, which renders a group box. Figure 7-12 presents the
portion of Figure 7-1 that contains the ManagementGroupBox hierarchy. As this figure shows, the
ManagementGroupBox control inherits the standard System.Windows.Forms.GroupBox control.

Figure 7-12

As Listing 7-13 shows, the InitializeComponent method creates three instances of the
ManagementGroupBox control, one for each group box shown in Figure 7-4, starting with the top group
box, which contains a CheckBox, a Label, and a ComboBox control (see Figure 7-4):

myConfigSectionPropertiesGroupBox = new ManagementGroupBox();
myConfigSectionBoolPropertyCheckBox = new CheckBox();
myConfigSectionEnumPropertyLabel = new Label();
myConfigSectionEnumPropertyComboBox = new ComboBox();
. . .
myConfigSectionPropertiesGroupBox.Controls.Add(

myConfigSectionBoolPropertyCheckBox);
myConfigSectionPropertiesGroupBox.Controls.Add(myConfigSectionEnumPropertyLabel);
myConfigSectionPropertiesGroupBox.Controls.Add(

myConfigSectionEnumPropertyComboBox);

InitializeComponent registers the OnMyConfigSectionBoolAttrCheckBoxCheckedChanged and
OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged methods as the event handlers
for the CheckedChanged event of the CheckBox control and the SelectedIndexChanged event of the
ComboBox control, respectively:

myConfigSectionBoolPropertyCheckBox.CheckedChanged +=
new EventHandler(OnMyConfigSectionBoolAttrCheckBoxCheckedChanged);

myConfigSectionEnumPropertyComboBox.SelectedIndexChanged +=
new EventHandler(OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged);

Next, InitializeComponent instantiates the second instance of the ManagementGroupBox control to
render the middle group box shown in Figure 7-4, which includes a Label and a TextBox control:

myNonCollectionGroupBox = new ManagementGroupBox();
myNonCollectionTimeSpanPropertyLabel = new Label();
myNonCollectionTimeSpanPropertyTextBox = new TextBox();
. . .
myNonCollectionGroupBox.Controls.Add(myNonCollectionTimeSpanPropertyLabel);
myNonCollectionGroupBox.Controls.Add(myNonCollectionTimeSpanPropertyTextBox);

199

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 199

InitializeComponent registers the OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged
method as the event handler for the TextChanged event of the
myNonCollectionTimeSpanPropertyTextBox control:

myNonCollectionTimeSpanPropertyTextBox.TextChanged +=
new EventHandler(OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged);

Next, it instantiates the third instance of the ManagementGroupBox control to render the bottom group
box shown in Figure 7-4, which contains a Label and a TextBox control:

myCollectionGroupBox = new ManagementGroupBox();
myCollectionIntPropertyLabel = new Label();
myCollectionIntPropertyTextBox = new TextBox();
. . .
myCollectionGroupBox.Controls.Add(myCollectionIntPropertyLabel);
myCollectionGroupBox.Controls.Add(myCollectionIntPropertyTextBox);

InitializeComponent registers the OnmyCollectionIntPropertyTextBoxTextChanged method as
the event handler for the TextChanged event of the myCollectionIntPropertyTextBox control:

myCollectionIntPropertyTextBox.TextChanged +=
new EventHandler(OnmyCollectionIntPropertyTextBoxTextChanged);

Finally, InitializeComponent adds the three ManagementGroupBox controls to the Controls collec-
tion of the MyConfigSectionPage control:

base.Controls.Add(myConfigSectionPropertiesGroupBox);
base.Controls.Add(myNonCollectionGroupBox);
base.Controls.Add(myCollectionGroupBox);

Event Handlers
Listing 7-14 presents the implementation of the OnMyConfigSectionBoolAttrCheckBoxCheckedChanged,
OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged,
OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged, and
OnmyCollectionIntPropertyTextBoxTextChanged event handlers. Replace the declaration of these
event handlers in the MyConfigSectionPage.cs file with the code shown in this code listing.

Listing 7-14: The Event Handlers

private void OnMyConfigSectionBoolAttrCheckBoxCheckedChanged(object sender,
EventArgs e)

{
this.UpdateUIState();

}

private void OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged(
object sender, EventArgs e)

{
this.UpdateUIState();

}

200

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 200

Listing 7-14: (continued)

private void OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged(object sender,
EventArgs e)

{
this.UpdateUIState();

}

private void OnmyCollectionIntPropertyTextBoxTextChanged(object sender,
EventArgs e)

{
this.UpdateUIState();

}

As Listing 7-14 shows, all four event handlers call the UpdateUIState method. The implementation of
this method is shown in Listing 7-15. Now go ahead and replace the declaration of the UpdateUIState
method in the MyConfigSectionPage.cs file with the code shown in this code listing.

Listing 7-15: The UpdateUIState Method

private void UpdateUIState()
{
this.hasChanges = true;
base.Update();

}

The UpdateUIState method simply sets the hasChanged Boolean field to true to signal that the user
interface of the MyConfigSectionPage module has gone through changes.

HasChanges Property
As Listing 7-16 shows, the MyConfigSectionPage overrides the HasChanges property of the
ModulePage abstract base class to return the value of the hasChanges Boolean field. Now replace the
declaration of the HasChanges property in the MyConfigSectionPage.cs file with the code shown in
this code listing.

Listing 7-16: The HasChanges Property

protected override bool HasChanges
{
get { return this.hasChanges; }

}

When the end user navigates to a module page, such as MyConfigSectionPage, the task items
such as Apply and Cancel are grayed out. When the end user makes some changes in the GUI
elements that make up the module page such as entering a value in a text field, selecting an item
from a combo box, toggling a checkbox, and the like, the event handlers associated with these
GUI elements such as OnMyConfigSectionBoolAttrCheckBoxCheckedChanged,
OnmyConfigSectionEnumPropertyComboBoxSelectedIndexChanged,

201

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 201

OnmyNonCollectionTimeSpanPropertyTextBoxTextChanged, and
OnmyCollectionIntPropertyTextBoxTextChanged are automatically called. As Listing 7-14 shows,
these event handlers call the UpdateUIState method, which in turn calls the Update method of the
base class, that is, the ModuleDialogPage as shown in Listing 7-15. The Update method in turn acti-
vates the Apply and Cancel buttons, allowing the end user to commit or cancel the changes.

CanApplyChanges Property
The MyConfigSectionPage also overrides the CanApplyChanges property of the ModuleDialogPage
base class to return the value of the hasChanges Boolean field as shown in Listing 7-17. Now replace the
declaration of the CanApplyChanges property in the MyConfigSectionPage.cs file with the code
shown in this code listing.

When the end user clicks the Apply button, the base class under the hood examines the value of this
property to determine whether the MyConfigSectionPage module dialog page has indeed changes to
store in the underlying configuration file.

Listing 7-17: The CanApplyChanges Property

protected override bool CanApplyChanges
{
get {return this.hasChanges;}

}

OnActivated
The MyConfigSectionPage module dialog page overrides the OnActivated method of the
ModulePage base class as shown in Listing 7-18. Now replace the declaration of the OnActivated
method in the MyConfigSectionPage.cs file with the code shown in this code listing.

This method is called when the module page is activated. For example, when the end user clicks the
MyConfigSection item shown in Figure 7-3 and navigates to the MyConfigSectionPage module dia-
log page shown in Figure 7-4, the OnActivated method of the module page is automatically invoked.

Listing 7-18: The OnActivated Method

protected override void OnActivated(bool initialActivation)
{
base.OnActivated(initialActivation);
if (initialActivation)
{
this.serviceProxy = (MyConfigSectionModuleServiceProxy)base.CreateProxy(

typeof(MyConfigSectionModuleServiceProxy));
this.GetSettings();

}
}

OnActivated checks whether this is the first time this module page is being activated. If so, this method
must retrieve the required configuration settings from the back-end Web server and update the user

202

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 202

interface of the MyConfigSectionPage module dialog page accordingly. As discussed earlier, the com-
munications between this module dialog page and the back-end Web server must go through the
MyConfigSectionModuleServiceProxy proxy class. Therefore, the first order of business is to instan-
tiate the proxy class:

this.serviceProxy = (MyConfigSectionModuleServiceProxy)base.CreateProxy(
typeof(MyConfigSectionModuleServiceProxy));

Next, OnActivated calls the GetSettings method, which actually uses the proxy class to retrieve the
configuration settings from the back-end Web server.

GetSettings
Listing 7-19 presents the implementation of the GetSettings method of the MyConfigSectionPage mod-
ule page. Next replace the declaration of the GetSettings method in the MyConfigSectionPage.cs file
with the code shown in this code listing.

Listing 7-19: The GetSettings Method

private void GetSettings()
{
this.SetUIReadOnly(true);
base.StartAsyncTask("Getting settings...",

new DoWorkEventHandler(this.OnWorkerGetSettings),
new RunWorkerCompletedEventHandler(this.OnWorkerGetSettingsCompleted));

this.hasChanges = false;
}

The GetSettings method first invokes another method named SetUIReadOnly, passing in true as its
argument to change the state of the MyConfigSectionPage module dialog page to read-only. As men-
tioned earlier, a read-only module page does not allow the end user to change the associated configura-
tion settings. Because the GetSettings method is about to retrieve configuration settings from the
underlying configuration file, it makes sense not to allow the end user to interact with the user interface
of the module dialog page while the configuration settings are being downloaded from the server. The
following code listing presents the implementation of the SetUIReadOnly method. Now replace the
declaration of the SetUIReadOnly method in the MyConfigSectionPage.cs file with the code shown
in this code listing:

private void SetUIReadOnly(bool readOnly)
{
this.myConfigSectionPropertiesGroupBox.Enabled = !readOnly;
this.myConfigSectionBoolPropertyCheckBox.Enabled = !readOnly;
this.myConfigSectionEnumPropertyLabel.Enabled = !readOnly;
this.myConfigSectionEnumPropertyComboBox.Enabled = !readOnly;
this.myNonCollectionGroupBox.Enabled = !readOnly;
this.myNonCollectionTimeSpanPropertyLabel.Enabled = !readOnly;
this.myNonCollectionTimeSpanPropertyTextBox.ReadOnly = readOnly;
this.myCollectionGroupBox.Enabled = !readOnly;
this.myCollectionIntPropertyLabel.Enabled = !readOnly;
this.myCollectionIntPropertyTextBox.ReadOnly = readOnly;

}

203

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 203

Now back to the implementation of the GetSettings method shown in Listing 7-19. The ModulePage
base class exposes a method named StartAsyncTask that allows you to communicate with the back-
end Web server asynchronously to improve the performance of the application. The StartAsyncTask
method takes three important arguments. The first argument is just a text message. The second argu-
ment is an instance of a delegate named DoWorkEventHandler defined as follows:

public delegate void DoWorkEventHandler(object sender, DoWorkEventArgs e);

The event data class associated with this handler is a class named DoWorkEventArgs as shown in
Listing 7-20.

Every event handler delegate, such as DoWorkEventHandler, is associated with a class known as an
event data class. When the event associated with a delegate is fired, an instance of this class is instanti-
ated and populated with the required event data and passed into the delegate. The DoWorkEventArgs
class is the event data class associated with the DoWorkEventHandler delegate. As you can tell from
the properties of this event data class, the event data in this case includes two objects named Argument
and Result.

Listing 7-20: The DoWorkEventArgs Event Data Class

public class DoWorkEventArgs : CancelEventArgs
{
public DoWorkEventArgs(object argument);

public object Argument { get; }
public object Result { get; set; }

}

Notice that the DoWorkEventArgs event data class inherits the CancelEventArgs event data class,
which is the base class for all cancelable events. Listing 7-21 shows the definition of this base class.
Notice that this class exposes a single Boolean read/write property named Cancel that you can use to
cancel the data retrieval process.

Listing 7-21: The CancelEventArgs Class

public class CancelEventArgs : EventArgs
{
public CancelEventArgs();
public CancelEventArgs(bool cancel);

public bool Cancel { get; set; }
}

As Listing 7-19 shows, GetSettings wraps the OnWorkerGetSettings method in a
DoWorkEventHandler delegate, which means that this method will be called to instantiate the data
retrieval process.

204

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 204

Also note that GetSettings wraps the OnWorkerGetSettingsCompleted method in a
RunWorkerCompletedEventHandler delegate and passes the delegate as the third argument into the
StartAsyncTask method. Here is the definition of this delegate:

public delegate void RunWorkerCompletedEventHandler(object sender,
RunWorkerCompletedEventArgs e);

Listing 7-22 presents the definition of the RunWorkerCompletedEventArgs class, which is the event
data class associated with the RunWorkerCompletedEventHandler delegate.

Listing 7-22: The RunWorkerCompletedEventArgs Event Data Class

public class RunWorkerCompletedEventArgs : AsyncCompletedEventArgs
{
public RunWorkerCompletedEventArgs(object result, Exception error,

bool cancelled);
public object Result { get; }
public object UserState { get; }

}

The StartAsyncTask method automatically calls the OnWorkerGetSettingsCompleted method after
the data is downloaded from the Web server.

OnWorkerGetSettings
Listing 7-23 contains the code for the OnWorkerGetSettings method. Recall that the StartAsyncTask
method calls this method to start the data retrieval process. Now replace the declaration of the
OnWorkerGetSettings method in the MyConfigSectionPage.cs file with the code shown in this
code listing.

Listing 7-23: The OnWorkerGetSettings Method

private void OnWorkerGetSettings(object sender, DoWorkEventArgs e)
{
e.Result = this.serviceProxy.GetSettings();

}

This method simply calls the GetSettings method of the MyConfigSectionModuleServiceProxy proxy
class to retrieve the required configuration settings from the Web server (see Listing 7-2). As discussed ear-
lier, this proxy in turn invokes the GetSettings method of the MyConfigSectionModuleService server-
side class (see Listing 7-3) to retrieve the configuration settings.

OnWorkerGetSettingsCompleted
Listing 7-24 presents the implementation of the OnWorkerGetSettingsCompleted method. Recall that
the StartAsyncTask method automatically calls this method after the configuration settings are
retrieved from the Web server. Now replace the declaration of the OnWorkerGetSettings method in
the MyConfigSectionPage.cs file with the code shown in this code listing.

205

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 205

Listing 7-24: The OnWorkerGetSettingsCompleted Method

private void OnWorkerGetSettingsCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
try
{
this.bag = (PropertyBag)e.Result;
this.localInfo = new MyConfigSectionInfo(this.bag);
this.readOnly = localInfo.ReadOnly;
this.errorGetSettings = false;

}
catch (Exception exception1)
{
base.StopProgress();
base.DisplayErrorMessage(exception1.Message, "DoWorkerGetSettingsCompleted");
this.errorGetSettings = true;
this.SetUIReadOnly(true);

}
finally
{
if (this.bag != null)
this.InitializeUI();

if (this.ReadOnly)
this.SetUIReadOnly(true);

this.hasChanges = false;
}

}

The StartAsyncTask method passes an instance of the RunWorkerCompletedEventArgs event data
class into OnWorkerGetSettingsCompleted. As Listing 7-22 shows, this instance exposes a property
named Result that contains the retrieved data. As you’ll see later in this chapter, the GetSettings
method of the MyConfigSectionModuleService server-side class packs the configuration settings in a
PropertyBag collection and returns this collection to the client. In other words, in this case, the real type
of the Result object is PropertyBag:

this.bag = (PropertyBag)e.Result;

OnWorkerGetSettingsCompleted then creates a MyConfigSectionInfo instance passing in the
PropertyBag, assigns the instance to a private field named localInfo, sets the readOnly private
field to the value of the ReadOnly property of the MyConfigSectionInfo instance, and sets the
errorGetSettings field to false to signal that everything went fine with no errors. Notice that if
there’s an error, this field is set to true. Later you’ll see what happens when this field is set to true.

this.localInfo = new MyConfigSectionInfo(this.bag);
this.readOnly = localInfo.ReadOnly;
this.errorGetSettings = false;

206

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 206

OnWorkerGetSettingsCompleted then calls the InitializeUI method to initialize the user interface
of the MyConfigSectionPage module dialog page with the retrieved configuration settings.

if (this.bag != null)
this.InitializeUI();

Finally, it calls the SetUIReadOnly method passing in true if the MyConfigSectionPage module dia-
log page is in read-only mode where the end user is not allowed to modify the associated configuration
settings.

if (this.ReadOnly)
this.SetUIReadOnly(true);

As you can see from the following code listing, the ReadOnly property of the MyConfigSectionPage
module dialog page simply returns the value of the readOnly field. Now replace the declaration of the
ReadOnly property in the MyConfigSectionPage.cs file with the code shown in this code listing:

protected sealed override bool ReadOnly
{
get { return this.readOnly; }

}

MyConfigSectionInfo
Recall from Listing 7-24 that the OnWorkerGetSettingsCompleted method instantiates an instance of
the MyConfigSectionInfo type passing in the PropertyBag object that contains the configuration set-
tings downloaded from the server and assigns this instance to a private field named localInfo.
Listing 7-25 presents the implementation of the MyConfigSectionInfo class. Add a new source file
name MyConfigSectionInfo.cs to the GraphicalManagement/Client directory of the
MyConfigSection project and add the code shown in this code listing to this source file.

Listing 7-25: The MyConfigSectionInfo Class

using Microsoft.Web.Management.Server;
using System;
using MyNamespace.ImperativeManagement;

namespace MyNamespace.GraphicalManagement.Client
{
public sealed class MyConfigSectionInfo
{
private PropertyBag bag;

public MyConfigSectionInfo(PropertyBag bag)
{
this.bag = bag.Clone();

}

public bool MyConfigSectionBoolProperty
{
get { return (bool)this.bag[0]; }

}

207

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 207

Listing 7-25: (continued)

public MyConfigSectionEnum MyConfigSectionEnumProperty
{
get { return (MyConfigSectionEnum)this.bag[1]; }

}

public TimeSpan MyNonCollectionTimeSpanProperty
{
get { return (TimeSpan)this.bag[2]; }

}

public int MyCollectionIntProperty
{
get { return (int)this.bag[3]; }

}

public bool ReadOnly
{
get
{
object obj = this.bag[4];
if (obj != null)
return (bool)obj;

return false;
}

}
}

}

First, let me explain why you need the MyConfigSectionInfo class in the first place. As Listing 7-24
shows, the MyConfigSectionPage module dialog page receives a PropertyBag object from the
server-side class that contains the retrieved configuration settings. As you can see from Listing 7-4, the
PropertyBag class is an IDictionary class, which means that you have to use a type-unsafe approach
such as indexing into the IDictionary object to access the retrieved configuration settings. The
MyConfigSectionInfo class allows you to expose the content of the PropertyBag collection as
strongly-typed properties, which will provide among many others the following benefits:

❑ Visual Studio provides IntelliSense support for strongly-typed properties, which means that you
can catch problems as you’re typing.

❑ Compilers provide type-checking support for strongly-typed properties, which means that you
can catch problems as you’re compiling.

❑ It allows you to use object-oriented techniques to program against these configuration settings,
which means that you can take advantage of the well-known benefits of the object-oriented
programming.

You won’t get any of these benefits if you directly program against the PropertyBag object itself. You
may be wondering why you should bother with the PropertyBag object to begin with. In other words,
why doesn’t the GetSettings method of the MyConfigSectionModuleService server-side class
return a MyConfigSectionInfo to begin with? The answer lies in the fact that any information passed

208

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 208

between the client and server must be serialized in one end and deserialized in the other end. As
Listings 7-8 and 7-9 show, the PropertyBag uses an ObjectStateFormatter to serialize and deserial-
ize itself. The ObjectStateFormatter class has been optimized for serializing and deserializing a
PropertyBag object, as long as the object does not contain complex types.

Next, I discuss the implementation of the MyConfigSectionInfo class shown in Listing 7-25. The
PropertyBag collection passed into the constructor of this class contains the following items down-
loaded from the server:

❑ The first item in this collection contains the value of the myConfigSectionBoolAttr
attribute on the <myConfigSection> containing element. As Listing 7-25 shows, the
MyConfigSectionInfo class exposes this value as a strong-typed property named
MyConfigSectionBoolProperty:

public bool MyConfigSectionBoolProperty
{
get { return (bool)this.bag[0]; }

}

❑ The second item in this collection contains the value of the myConfigSectionEnumAttr
attribute on the <myConfigSection> containing element. As Listing 7-25 shows, the
MyConfigSectionInfo class exposes this value as a strong-typed property named
MyConfigSectionEnumProperty:

public MyConfigSectionEnum MyConfigSectionEnumProperty
{
get { return (MyConfigSectionEnum)this.bag[1]; }

}

❑ The third item in this collection contains the value of the myNonCollectionTimeSpanAttr
attribute on the <myNonCollection> non-collection element. As Listing 7-25 shows, the
MyConfigSectionInfo class exposes this value as a strong-typed property named
MyNonCollectionTimeSpanProperty:

public TimeSpan MyNonCollectionTimeSpanProperty
{
get { return (TimeSpan)this.bag[2]; }

}

❑ The fourth item in this collection contains the value of the myCollectionIntAttr
attribute on the <myCollection> Collection XML element. As Listing 7-25 shows, the
MyConfigSectionInfo class exposes this value as a strongly-typed property named
MyCollectionIntProperty:

public int MyCollectionIntProperty
{
get { return (int)this.bag[3]; }

}

❑ The fifth item in this collection contains the value of the isLocked attribute on the
<myConfigSection> containing element. As Listing 7-25 shows, the MyConfigSectionInfo
class exposes this value as a strong-typed property named ReadOnly:

public bool ReadOnly

209

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 209

{
get
{
object obj = this.bag[4];
if (obj != null)
return (bool)obj;

return false;
}

}

InitializeUI
Recall from Listing 7-24 that the OnWorkerGetSettingsCompleted method calls the InitializeUI
method to initialize the user interface of the MyConfigSectionPage module page with the configura-
tion settings retrieved from the server. Listing 7-26 contains the implementation of the InitializeUI
method. Now replace the declaration of the InitializeUI method in the MyConfigSectionPage.cs
file with the code shown in this code listing.

Listing 7-26: The InitializeUI Method

private void InitializeUI()
{
if (localInfo == null)
return;

this.SetUIReadOnly(false);
ClearSettings();
myConfigSectionEnumPropertyComboBox.Items.AddRange(new object[] {

new MyConfigSectionEnumObject(MyConfigSectionEnum.MyConfigSectionEnumVal1),
new MyConfigSectionEnumObject(MyConfigSectionEnum.MyConfigSectionEnumVal2),
new MyConfigSectionEnumObject(MyConfigSectionEnum.MyConfigSectionEnumVal3)

});

MyConfigSectionEnum enumVal = localInfo.MyConfigSectionEnumProperty;
int num1 = 0;
foreach (MyConfigSectionEnumObject obj1 in

myConfigSectionEnumPropertyComboBox.Items)
{
if (obj1.EnumVal == enumVal)
{
myConfigSectionEnumPropertyComboBox.SelectedIndex = num1;
break;

}
num1++;

}
myConfigSectionBoolPropertyCheckBox.Checked =

localInfo.MyConfigSectionBoolProperty;
}

InitializeUI first calls the SetUIReadOnly method, passing in false as its argument to enable end
users to modify the associated configuration settings:

this.SetUIReadOnly(false);

210

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 210

Next, it calls the ClearSettings method:

ClearSettings();

As Listing 7-27 shows, the ClearSettings method clears the myConfigSectionEnumPropertyComboBox
combo box in the top group box shown in Figure 7-4 and the myNonCollectionTimeSpanPropertyTextBox
text field in the middle group box of the same figure. Now replace the declaration of the ClearSettings
method in the MyConfigSectionPage.cs file with the code shown in this code listing.

Listing 7-27: The ClearSettings Method

private void ClearSettings()
{
this.myConfigSectionEnumPropertyComboBox.Items.Clear();
this.myConfigSectionEnumPropertyComboBox.SelectedIndex = -1;
this.myNonCollectionTimeSpanPropertyTextBox.Clear();

}

After calling the ClearSettings method, InitializeUI initializes the
myConfigSectionEnumPropertyComboBox combo box. Recall that this combo box displays the possible
values of the myConfigSectionEnumAttr attribute of the <myConfigSection> Containing element.

myConfigSectionEnumPropertyComboBox.Items.AddRange(new object[] {
new MyConfigSectionEnumObject(MyConfigSectionEnum.MyConfigSectionEnumVal1),
new MyConfigSectionEnumObject(MyConfigSectionEnum.MyConfigSectionEnumVal2),
new MyConfigSectionEnumObject(MyConfigSectionEnum.MyConfigSectionEnumVal3) });

Note that this code fragment represents each enumeration value with an instance of a class named
MyConfigSectionEnumObject. This class is simply a wrapper around the value to allow the combo
box to display the value in this user interface. Listing 7-28 presents the implementation of this class.
Now replace the declaration of the MyConfigSectionEnumObject nested class in the
MyConfigSectionPage.cs file with the code shown in this code listing.

Listing 7-28: The MyConfigSectionEnumObject Class

private sealed class MyConfigSectionEnumObject
{
public MyConfigSectionEnumObject(MyConfigSectionEnum enumVal)
{
this.enumVal = enumVal;
switch (enumVal)
{
case MyConfigSectionEnum.MyConfigSectionEnumVal1:
this.enumValText = "Value 1";
break;

case MyConfigSectionEnum.MyConfigSectionEnumVal2:
this.enumValText = "Value 2";
break;

case MyConfigSectionEnum.MyConfigSectionEnumVal3:

211

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 211

Listing 7-28: (continued)

this.enumValText = "Value 3";
break;

}
}

public override string ToString()
{
return this.enumValText;

}

public MyConfigSectionEnum EnumVal
{
get { return this.enumVal; }

}

private MyConfigSectionEnum enumVal;
private string enumValText;

}

Now back to the InitializeUI method. Next, InitializeUI sets the selected item of the
myConfigSectionEnumPropertyComboBox combo box to display the current value of the
MyConfigSectionEnumProperty property of the localInfo field. Recall from Listings 7-24 and 7-25
that the localInfo field is an instance of the MyConfigSectionInfo class and exposes the configura-
tion settings retrieved from the server as strongly-typed properties. As Listing 7-25 shows, the
MyConfigSectionEnumProperty property of the localInfo field contains the current value of the
myConfigSectionEnumAttr attribute of the <myConfigSection> Containing element:

MyConfigSectionEnum enumVal = localInfo.MyConfigSectionEnumProperty;
int num1 = 0;
foreach (MyConfigSectionEnumObject obj1 in

myConfigSectionEnumPropertyComboBox.Items)
{
if (obj1.EnumVal == enumVal)
{
myConfigSectionEnumPropertyComboBox.SelectedIndex = num1;
break;

}
num1++;

}

Finally, InitializeUI ensures that the myConfigSectionBoolPropertyCheckBox checkbox in
the top group box of Figure 7-4 reflects the current value of the MyConfigSectionBoolProperty prop-
erty of the localInfo field. As Listing 7-25 shows, this property contains the current value of the
myConfigSectionBoolAttr attribute of the <myConfigSection> Containing element.

myConfigSectionBoolPropertyCheckBox.Checked =
localInfo.MyConfigSectionBoolProperty;

212

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 212

ApplyChanges
Listing 7-29 contains the code for the ApplyChanges method of the MyConfigSectionPage module dia-
log page. Now replace the declaration of the ApplyChanges method in the MyConfigSectionPage.cs
file with the code shown in this code listing.

Listing 7-29: The ApplyChanges Method

protected override bool ApplyChanges()
{
bool flag = false;
if (!this.ReadOnly && this.ValidateUserInputs())
{
try
{
Cursor.Current = Cursors.WaitCursor;
GetValues();
this.serviceProxy.UpdateSettings(this.clone);
this.bag = this.clone;
this.localInfo = new MyConfigSectionInfo(this.bag);
flag = true;
this.hasChanges = false;

}

catch (Exception exception)
{
base.DisplayErrorMessage(exception.Message, "ApplyChanges");

}

finally
{
Cursor.Current = Cursors.Default;
base.Update();

}
}

return flag;
}

ApplyChanges first checks whether both of the following conditions are met:

❑ The MyConfigSectionPage module dialog page is not in read-only mode. In other words, the
end user is allowed to modify the associated configuration settings. Recall that the value of the
ReadOnly property of the MyConfigSectionPage module dialog page reflects the value of the
isLocked attribute on the <myConfigSection> containing element in the underlying configu-
ration file.

❑ The user inputs are valid. Your custom module page should expose a method such as
ValidateUserInputs that contains the logic that validates the user inputs. To keep these
discussions focused, the implementation of the ValidateUserInputs method always

213

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 213

returns true. Now replace the declaration of the ValidateUserInputs method in the
MyConfigSectionPage.cs file with the code shown in the following code listing:

private bool ValidateUserInputs()
{
return true;

}

If both of these conditions are met, the ApplyChanges method calls the GetValues method to extract
the new values of the associated configuration settings from the user interface of the
MyConfigSectionPage module page:

GetValues();

Recall from Listing 7-18 that when the MyConfigSectionPage module page is accessed for the first
time, the OnActivated method instantiates an instance of the MyConfigSectionModuleServiceProxy
proxy class and assigns it to a private field named serviceProxy. The following code listing repeats
Listing 7-18:

protected override void OnActivated(bool initialActivation)
{
base.OnActivated(initialActivation);
if (initialActivation)
{
this.serviceProxy = (MyConfigSectionModuleServiceProxy)base.CreateProxy(

typeof(MyConfigSectionModuleServiceProxy));
this.GetSettings();

}
}

As Listing 7-29 shows, the ApplyChanges method calls the UpdateSettings method of this proxy
object, passing in the clone PropertyBag collection to update the specified configuration settings in the
underlying configuration file. As you’ll see shortly, the GetValues method retrieves the user inputs
from the user interface of the MyConfigSectionPage module dialog page and stores them in the clone
collection, which is a PropertyBag.

this.serviceProxy.UpdateSettings(this.clone);

GetValues
Listing 7-30 contains the code for the GetValues method. Replace the declaration of the GetValues
method in the MyConfigSectionPage.cs file with the code shown in this code listing.

Listing 7-30: The GetValues Method

private void GetValues()
{
this.clone = this.bag.Clone();
this.clone[0] = (bool)myConfigSectionBoolPropertyCheckBox.Checked;
object selectedItem = myConfigSectionEnumPropertyComboBox.SelectedItem;
MyConfigSectionEnum enumVal = ((MyConfigSectionEnumObject)selectedItem).EnumVal;

214

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 214

Listing 7-30: (continued)

this.clone[1] = (int)enumVal;
this.clone[2] = TimeSpan.Parse(myNonCollectionTimeSpanPropertyTextBox.Text);
this.clone[3] = int.Parse(myCollectionIntPropertyTextBox.Text);

}

The main responsibility of the GetValues method is to retrieve the user inputs from the user interface of
the MyConfigSectionPage module dialog page and store them in the clone PropertyBag collection.
Recall from Listing 7-29 that the ApplyChanges method passes this clone PropertyBag collection into
the UpdateSettings method of the proxy object.

As Listing 7-30 shows, GetValues begins by cloning the bag PropertyBag collection and storing this
cloned collection in the clone field. Next, it stores the value of the Checked Boolean property of the
myConfigSectionBoolPropertyCheckBox checkbox as the first item in the clone PropertyBag col-
lection. Recall that this checkbox represents the value of the myConfigSectionBoolAttr attribute of
the <myConfigSection> Containing element:

this.clone[0] = (bool)myConfigSectionBoolPropertyCheckBox.Checked;

Next, GetValues stores the selected value of the myConfigSectionEnumPropertyComboBox combo
box as the second item in the clone PropertyBag collection. Recall that this combo box displays the
value of the myConfigSectionEnumAttr attribute of the <myConfigSection> containing element:

object selectedItem = myConfigSectionEnumPropertyComboBox.SelectedItem;
MyConfigSectionEnum enumVal = ((MyConfigSectionEnumObject) selectedItem).EnumVal;
this.clone[1] = (int)enumVal;

GetValues then retrieves the value that the user has entered into the
myNonCollectionTimeSpanPropertyTextBox text field and stores it as the third item in the clone
PropertyBag collection. This text field contains the value of the myNonCollectionTimeSpanAttr
attribute of the <myNonCollection> non-collection element:

this.clone[2] = TimeSpan.Parse(myNonCollectionTimeSpanPropertyTextBox.Text);

Finally, GetValues stores the value of the myCollectionIntPropertyTextBox text field as the fourth
item in the clone PropertyBag collection. This text field displays the value of the myCollectionIntAttr
attribute of the <myCollection> collection element:

this.clone[3] = int.Parse(myCollectionIntPropertyTextBox.Text);

CancelChanges
The MyConfigSectionPage module dialog page overrides the CancelChanges method of the
ModuleDialogPage base class to add the code that you want to run when the user clicks the Cancel
button. Listing 7-31 presents the implementation of this method. Now replace the declaration of the
CancelChanges method in the MyConfigSectionPage.cs file with the code shown in this code listing.

215

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 215

Listing 7-31: The CancelChanges Method

protected override void CancelChanges()
{
this.InitializeUI();
this.hasChanges = false;
base.Update();

}

CancelChanges first calls the InitializeUI method to reset the values that the user interface of the
MyConfigSectionPage module page displays to the current values of the associated attributes in the
underlying configuration file. Next, it calls the Update method of the base class to update the user interface.

Adding Support for New Task Items
Because the base class of the MyConfigSectionPage module dialog page automatically adds the Apply
and Cancel buttons and registers the ApplyChanges and CancelChanges methods as event handlers
for the Click events of these two buttons, all you had to do was to override these two event handlers to
add the code that you want to run when the user clicks the Apply and Cancel buttons.

However, if you need to add a new button to the task panel associated with the MyConfigSectionPage
module dialog page, there is no method like ApplyChanges or CancelChanges that you could override.
You have to write extra code to add the new button, register an event handler, and implement the event
handler.

In this section, you add a new link named “View collection items” to the task panel to allow the users to
navigate to the MyCollectionPage module list page where they can view the collection items, update,
delete, and add new items to the collection, and change the identifiers of the displayed items. Figure 7-4
shows this new link.

Follow these steps to add a new link to the task panel:

❑ Implement a class that inherits a base class named TaskList. This class must be a private class
nested within your module page.

❑ Override the Tasks property of your module page.

❑ Implement the event handler associated with the new link.

In the following section I use this recipe to add the “View collection items” link.

TaskList
Recall from Listing 6-16 that the TaskList abstract class exposes an abstract method named
GetTaskItems as shown in the highlighted portion of the following code listing:

public abstract class TaskList
{
public virtual object GetPropertyValue(string propertyName);
public abstract ICollection GetTaskItems();
public virtual object InvokeMethod(string methodName, object userData);

216

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 216

public virtual void SetPropertyValue(string propertyName, object value);

public virtual bool IsDirty { get; }
}

You must implement a nested private class that derives from the TaskList abstract base class, and
implements its GetTaskItems abstract method. Your implementation of this method must return an
ICollection of TaskItem objects, each of which represents a new button, link, text, and so on that you
want to add to the task panel.

Listing 7-32 presents the implementation of a class named PageTaskList that extends the TaskList
base class. Keep in mind that this nested private class is normally named PageTaskList. Now replace
the declaration of the PageTaskList nested private class in the MyConfigSectionPage.cs file
with the code shown Listing 7-32.

Listing 7-32: The PageTaskList Class

private sealed class PageTaskList : TaskList
{
public PageTaskList(MyConfigSectionPage owner)
{
this.owner = owner;

}

public override ICollection GetTaskItems()
{
ArrayList list1 = new ArrayList();
if (this.owner.errorGetSettings)
{
MessageTaskItem message = new MessageTaskItem(MessageTaskItemType.Error,

"Error in getting settings",
null);

list1.Add(message);
}

MethodTaskItem method = new MethodTaskItem("ViewCollectionItems",
"View collection items", "View");

list1.Add(method);

foreach (TaskItem item2 in list1)
{
if (!(item2 is MessageTaskItem) && !(item2 is TextTaskItem))
item2.Enabled = !this.owner.InProgress;

}
return (TaskItem[])list1.ToArray(typeof(TaskItem));

}

public void ViewCollectionItems()
{
this.owner.ViewCollectionItems();

}

private MyConfigSectionPage owner;
}

217

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 217

To implement a custom task list, first add a private field of the same type as your module page to the
custom task list:

private MyConfigSectionPage owner;

Next, implement a constructor for your custom task list that takes an instance of the module page that
uses it as its parameter and stores it in the private field you just created:

public PageTaskList(MyConfigSectionPage owner)
{
this.owner = owner;

}

Override the GetTaskItems method of the TaskList base class. As Listing 7-32 shows, the
PageTaskList class’s implementation of the GetTaskItems method instantiates a local ArrayList:

ArrayList list1 = new ArrayList();

The GetTaskItems method then checks whether the module page associated with this task list had
problems retrieving the configuration settings from the back-end Web server. If so, it instantiates a
MessageTaskItem task item and adds it to the ArrayList. This message task item will display the
specified error message to the end user. As discussed in Chapter 6, the message task item displays its
message in the Alerts panel on the top of the task panel (see Figure 6-10).

if (this.owner.errorGetSettings)
{
MessageTaskItem message = new MessageTaskItem(MessageTaskItemType.Error,

"Error in getting settings", null);
list1.Add(message);

}

Recall from Listing 7-24 that the OnWorkerGetSettingsCompleted method sets the
errorGetSettings field to true when there’s an error in getting the configuration settings as shown in
highlighted portion of the following code listing:

private void OnWorkerGetSettingsCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
try
{

this.bag = (PropertyBag)e.Result;
this.localInfo = new MyConfigSectionInfo(this.bag);
this.readOnly = localInfo.ReadOnly;
this.errorGetSettings = false;

}

catch (Exception exception1)
{

base.StopProgress();
base.DisplayErrorMessage(exception1.Message, "DoWorkerGetSettingsCompleted");
this.errorGetSettings = true;
this.SetUIReadOnly(true);

218

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 218

}

finally
{

if (this.bag != null)
this.InitializeUI();

if (this.ReadOnly)
this.SetUIReadOnly(true);

this.hasChanges = false;
}

}

Now back to the implementation of the GetTaskItems method. Next, this method instantiates an
instance of the MethodTaskItem class to represent the “View collection items” link in the task panel and
adds the instance to the ArrayList:

MethodTaskItem method = new MethodTaskItem("ViewCollectionItems",
"View collection items", "View");

list1.Add(method);

Note that the MethodTaskItem instance registers the ViewCollectionItems method as the event han-
dler for the Click event of the “View collection items” link. Next, the GetTaskItems method iterates
through the task items in the ArrayList (that is, the message and method task items) and disables the
“View collection items” link if the module page is still busy.

foreach (TaskItem item2 in list1)
{
if (!(item2 is MessageTaskItem) && !(item2 is TextTaskItem))
item2.Enabled = !this.owner.InProgress;

}

Finally, the GetTaskItems method dumps the content of the ArrayList into an array and returns the
array to its caller. In other words, the caller of this method receives an array that contains all the task
items that the task list has added. As you’ll see later, the caller of this method is the associated module
page, which is the MyConfigSectionPage module dialog page in our case.

return (TaskItem[])list1.ToArray(typeof(TaskItem));

As mentioned, the PageTaskList instantiates a MethodTaskItem task item that registers the
ViewCollectionItems method as the event handler for the “View collection items” link. Listing 7-33
presents the implementation of this event handler.

Listing 7-33: The ViewCollectionItems Method

public void ViewCollectionItems()
{
this.owner.ViewCollectionItems();

}

219

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 219

The ViewCollectionItems method simply delegates to the ViewCollectionItems method of the
MyConfigSectionPage module dialog page, which is discussed in the next section.

ViewCollectionItems
Listing 7-34 contains the code for the ViewCollectionItems method of the MyConfigSectionPage
module dialog page. Now replace the declaration of the ViewCollectionItems method in the
MyConfigSectionPage.cs file with the code shown Listing 7-34.

Listing 7-34: The ViewCollectionItems Method

public void ViewCollectionItems()
{
Type type1 = typeof(MyCollectionPage);
base.Navigate(type1);

}

ViewCollectionItems calls the Navigate method of its base class, passing in the Type object that rep-
resents the MyCollectionPage module dialog page. The Navigate method under the hood calls the
Navigate method of the navigation service to navigate to the MyCollectionPage module dialog page.

Tasks
The MyConfigSectionPage module page overrides the Tasks property of its base class, as shown in
Listing 7-35. Now replace the declaration of the Tasks property in the MyConfigSectionPage.cs file
with the code shown in this code listing.

Listing 7-35: The Tasks Property

protected override TaskListCollection Tasks
{
get
{
if (this.taskList == null)
this.taskList = new PageTaskList(this);

TaskListCollection col = base.Tasks;
col.Add(this.taskList);
return col;

}
}

Tasks first instantiates the PageTaskList class, if it hasn’t already been instantiated:

if (this.taskList == null)
this.taskList = new PageTaskList(this);

Then, it adds the PageTaskList instance to the Tasks collection of its base class:

TaskListCollection col = base.Tasks;
col.Add(this.taskList);
return col;

220

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 220

It’s very important that you add your custom task list to the Tasks collection property of the base class
as opposed to creating a new TaskListCollection collection. Otherwise, you would lose the task
items created by the task list of the base class. In our case, the task list of ModuleDialogPage base class
creates the method task items that represent the Apply and Cancel buttons. If you were to create a new
TaskListCollection collection, add your task list to this new collection, and return the new collection
ignoring the task list of the base class, the task panel would not include the Apply and Cancel buttons,
which means that the code that you’ve added to the ApplyChanges and CancelChanges methods
would not run.

Refreshing
Recall from Chapter 6 that an instance of a frame named ManagementFrame contains the entire user
interface of the IIS7 Manager. Listing 7-36 repeats Listing 6-28, which contains a simplified version of the
internal implementation of the ManagementFrame constructor.

Listing 7-36: The ManagementFrame Constructor

public ManagementFrame(IServiceProvider serviceProvider,
IManagementFrameHost owner)

{
_serviceProvider = serviceProvider;
_owner = owner;
INavigationService service2 =

(INavigationService)_serviceProvider.GetService(typeof(INavigationService));
service2.NavigationPerformed +=

new NavigationEventHandler(OnNavigationPerformed);
CreateHeader();
CreateMenuBar();
CreateStatusBar();
CreateMainArea();

}

As the highlighted portion of Listing 7-36 shows, the constructor of the ManagementFrame calls four
methods named CreateHeader, CreateMenuBar, CreateStatusBar, and CreateMainArea to create
the header, menu bar, status bar, and main area of the IIS7 Manager interface as shown in Figure 6-11
in the previous chapter.

As you’ll see shortly, the CreateHeader method instantiates an instance of a control named
PageHeader to represent the header of the IIS7 Manager user interface. Listing 7-37 presents
the PageHeader class and its members.

Listing 7-37: The PageHeader Class

internal sealed class PageHeader : ToolStrip
{
// Fields
private bool active;
private ToolStripButton backButton;
private BreadcrumbBar breadcrumbBar;
private ToolStripButton forwardButton;
private ToolStripSplitButton helpButton;

221

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 221

Listing 7-37: (continued)

private ToolStripButton homeButton;
private ToolStripSeparator navigationSeparator;
private ToolStripButton refreshButton;
private IServiceProvider serviceProvider;
private ToolStripButton stopButton;

// Methods
public PageHeader(IServiceProvider serviceProvider);
private void InitializeButtons();
protected override void OnGotFocus(EventArgs e);
private void Reset();

// Properties
public bool Active { get; set; }
public ToolStripButton BackButton { get; }
public BreadcrumbBar Breadcrumb { get; }
public ToolStripButton ForwardButton { get; }
public ToolStripSplitButton HelpButton { get; }
public ToolStripButton HomeButton { get; }
public ToolStripButton RefreshButton { get; }
public ToolStripButton StopButton { get; }

}

As you can see from Listing 7-38, the PageHeader control extends the standard ToolStrip control of
the System.Windows.Forms namespace to add support for the following GUI elements:

❑ Back Button: This button, the first from the left in the header of the IIS7 Manager, allows the end
user to navigate backward.

❑ Forward Button: This button, located to the right of the back button, allows the end user to navi-
gate forward.

❑ Breadcrumbs Bar: As the name suggests, the breadcrumbs bar, located to the right of the forward
button, allows users to keep track of their navigation through the module pages.

❑ Refresh Button: This button is located to the right of the breadcrumbs bar. The user clicks this
button to refresh the module page shown in middle pane (also known as the workspace) of
the IIS7 Manager’s user interface, which is the MyConfigSectionPage module dialog page in
our case.

❑ Stop Button: This button, located to the right of the refresh button, allows the end user to stop
the current operation.

❑ Home Button: As the name suggests, this button, located to the right of the stop button, allows
the end user to navigate to the home page.

❑ Help Button: This button is located to the right of the home button.

Next, I walk you through the internal implementation of the CreateHeader method shown in
Listing 7-38.

222

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 222

Listing 7-38: The CreateHeader Method

private void CreateHeader()
{
this.pageHeader = new PageHeader(this.serviceProvider);
this.pageHeader.Dock = DockStyle.Top;
this.pageHeader.TabStop = true;
this.pageHeader.BackButton.Click += new EventHandler(this.OnCommandBarBack);
this.pageHeader.ForwardButton.Click +=

new EventHandler(this.OnCommandBarForward);
this.pageHeader.HomeButton.Click += new EventHandler(this.OnCommandBarHome);
this.pageHeader.StopButton.Click += new EventHandler(this.OnCommandBarStop);
this.pageHeader.RefreshButton.Click +=

new EventHandler(this.OnCommandBarRefresh);
this.pageHeader.HelpButton.DropDownItems.AddRange(

(ToolStripItem[]) helpButtonItems.ToArray(typeof(ToolStripItem)));
this.pageHeader.HelpButton.ButtonClick +=

new EventHandler(this.OnCommandBarHelp);
base.Controls.Add(this.pageHeader);

}

The main responsibility of the CreateHeader method is to instantiate and initialize the PageHeader
control that represents the header of the IIS7 Manager. As such, this method begins by creating an
instance of this control:

this.pageHeader = new PageHeader(this.serviceProvider);

Next, CreateHeader registers methods named OnCommandBarBack, OnCommandBarForward,
OnCommandBarHome, OnCommandBarStop, OnCommandBarRefresh, and OnCommandBarHelp as event
handlers for the Click events of the back, forward, home, stop, refresh, and help buttons, respectively.

We’re only interested in the refresh button and consequently in the OnCommandBarRefresh method that
the CreateHeader method registers for the Click event of this button. Listing 7-39 presents a portion
of the internal implementation of the OnCommandBarRefresh method of the ManagementFrame control.

Listing 7-39: The OnCommandBarRefresh Method of ManagementFrame

private void OnCommandBarRefresh(object sender, EventArgs e)
{
if ((this.activePage != null) && !this.activePage.InProgress)
{
IModulePage page = this.activePage;
if (page.CanRefresh)
page.Refresh();

}

. . .
}

The ManagementFrame control maintains the reference to the active module page in a private field
named activePage. Recall from Chapter 6 that there can be only one active module page at a time. The

223

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 223

active module page is the module page currently displayed in the middle pane (also known as the work-
space) of the IIS7 Manager. As you can see from Listing 7-39, the OnCommandBarRefresh method first
invokes the CanRefresh property on the active module page to determine whether the module page is
refreshable. If so, it invokes the Refresh method on the active module page to have this module page
refresh itself.

The ModulePage class, which is the base class for all module pages, implements an interface named
IModulePage, which exposes a Boolean property named CanRefresh. As Listing 7-40 shows, the
ModulePage base class’s implementation of the CanRefresh property of the IModulePage interface
returns false.

Listing 7-40: The CanRefresh Property of the ModulePage Base Class

public abstract class ModulePage : ContainerControl, IModulePage, IDisposable
{
bool IModulePage.CanRefresh
{
get { return this.CanRefresh; }

}

protected virtual bool CanRefresh
{
get { return false; }

}
}

Because every module page, including your own custom module page, directly or indirectly derives
from the ModulePage base class, it automatically inherits the ModulePage base class’s implementation
of the CanRefresh property. This means that your custom module page is not refreshable by default. To
put it differently, by default the end user cannot refresh your custom module page by clicking the
Refresh button in the header of the IIS7 Manager user interface.

The MyConfigSectionPage module dialog page overrides the CanRefresh property that it inherits
from the ModulePage base class to return true to allow the end user to use the Refresh button to
refresh the module page as shown in Listing 7-41. Now replace the declarations of the CanRefresh
property in the MyConfigSectionPage.cs file with the code shown in this code listing.

Listing 7-41: The CanRefresh Property of MyConfigSectionPage Module Dialog Page

protected override bool CanRefresh
{
get { return true; }

}

As discussed earlier, the OnCommandBarRefresh method first invokes the CanRefresh property on the
active module page to check whether the module page is refreshable. If it is, it invokes the Refresh
method on the active module page to have the module page refresh itself.

Listing 7-42 presents the ModulePage base class’s implementation of the Refresh method of
IModulePage interface.

224

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 224

Listing 7-42: The Refresh Method of ModulePage Base Class

public abstract class ModulePage : ContainerControl, IModulePage, IDisposable
{
void IModulePage.Refresh()
{
this.Refresh();

}

protected virtual void Refresh()
{
throw new NotImplementedException();

}
}

As you can see, the ModulePage base class’s implementation of the Refresh method simply raises a
NotImplementedException exception. The ModuleDialogPage base class, which is the base class for
all module dialog pages, including your MyConfigSectionPage module dialog page, overrides the
Refresh method that it inherits from the ModulePage base class. Listing 7-43 presents the internal
implementation of the Refresh method of the ModuleDialogPage base class.

Listing 7-43: The Refresh Method of the ModuleDialogPage Base Class

protected sealed override void Refresh()
{
if (this.HasChanges && !this.ReadOnly)
{
string msg =

"The changes you have made will be lost. Do you want to save changes?";
switch (base.ShowMessage(msg,

MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Exclamation,
MessageBoxDefaultButton.Button3))

{
case DialogResult.Cancel:
return;

case DialogResult.Yes:
if (this.CanApplyChanges)
{
if (!this.ApplyChanges())
return;

}

else
{
base.ShowMessage("Changes cannot be applied.");
return;

}
break;

}
}

225

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 225

226

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-43: (continued)

if (this.dialogTaskList != null)
((DialogTaskList) this.dialogTaskList).AppliedChanges = false;

this.showDirtyPageAlert = false;
this.OnRefresh();

}

As the name suggests, the main responsibility of the Refresh method is to download fresh data from
the back-end server and to refresh the user interface of the module page with this data. Downloading
data involves two classes: the server-side class, which is the MyConfigSectionModuleService class in
this case, and the client-side class, which is the MyConfigSectionModuleServiceProxy class in this
case. As should be clear by now, different types of module pages use different types of server-side and
client-side classes. In other words, the logic that downloads data from the back-end server varies from
one type of module dialog page to another. The logic that updates the user interface of the module dia-
log page with fresh data is also module-dialog-page–specific because the user interface of different types
of module dialog pages consists of different types of GUI elements.

Because the ModuleDialogPage base class is the base class for all types of module dialog pages includ-
ing our MyConfigSectionPage module dialog page and because all types of module dialog pages
inherit the ModuleDialogPage base class’s implementation of the Refresh method, this implementa-
tion must not contain module-dialog-page–specific code such as the logic that downloads fresh data
from the back-end server and the logic that updates the user interface of the module dialog page with
the fresh data. That is why the ModuleDialogPage base class’s implementation of the Refresh method
delegates the responsibility of downloading fresh data from the back-end server and updating the user
interface of the module dialog page to another method named OnRefresh.

As Listing 7-44 shows, the ModuleDialogPage base class’s implementation of the OnRefresh method
simply raises a NotImplementedException exception. It is the responsibility of the subclasses of the
ModuleDialogPage base class, such as MyConfigSectionPage, to implement the OnRefresh method
to incorporate the logic that downloads the fresh data from the back-end server and the logic that
updates the user interface of the module dialog page with the fresh data.

Listing 7-44: The OnRefresh Method

protected virtual void OnRefresh()
{
throw new NotImplementedException();

}

Even though the ModuleDialogPage base class does not implement the OnRefresh method, it does
guarantee the automatic invoking of this method every time the end user clicks the Refresh button in the
header of the IIS7 Manager user interface. The ModuleDialogPage base class provides this guarantee by
automatically invoking the OnRefresh method from the Refresh method as shown in Listing 7-43.
Recall that the Refresh method is automatically invoked every time the end user clicks the Refresh
button in the header of the IIS7 Manager user interface.

Therefore, your custom module dialog page does not have to worry about invoking the OnRefresh
method. It is done automatically behind the scenes. Your custom module dialog page’s sole responsibility

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 226

is to implement this method to incorporate the logic that downloads fresh data from the server and the
logic that updates its user interface with this fresh data. I present the MyConfigSectionPage module dia-
log page’s implementation of the OnRefresh method shortly. However, before diving into this implemen-
tation, let’s study the ModuleDialogPage base class’s implementation of the Refresh method as shown
in Listing 7-43.

As you can see, the Refresh method first checks whether both of the following conditions are met:

❑ The HasChanges property of the module dialog page returns true. This property returns true
when the module dialog page has changes to commit to the underlying configuration file.

❑ The ReadOnly property of the module dialog page returns false to indicate that the module
dialog page is not in read-only mode. Recall that when a module page is in read-only mode, the
end users cannot update the configuration settings that the module page displays.

If both of these conditions are met, the Refresh method knows that the end user has changed some of
the values displayed in the module dialog page’s user interface. Therefore, the Refresh method needs
to do several things before an attempt is made to download fresh data from the server and to update the
user interface with this fresh data. First, it pops up a dialog with Yes, No, and Cancel buttons that dis-
plays the following message:

string msg =
"The changes you have made will be lost. Do you want to save changes?";

To see this dialog in action, launch the IIS7 Manager. Click the Default Web Site node from the
Connections pane and double-click the Session State option from the workspace to navigate to the
Session State page shown in Figure 7-13.

Figure 7-13

227

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 227

Now select the “In process” radio button. Now if you click the Refresh button in the header of the IIS7
Manager’s user interface, the dialog box shown in Figure 7-14 will pop up.

Figure 7-14

As you can see, this dialog box contains three buttons: Yes, No, and Cancel.

Now back to the ModuleDialogPage base class’s implementation of the Refresh method shown in
Listing 7-43. If the end user clicks the Cancel button, the Refresh method simply returns, bypassing the
call into the OnRefresh method, which is the method that downloads fresh data and updates the user
interface of the module dialog page with this fresh data.

case DialogResult.Cancel:
return;

If the end user clicks the Yes button, the Refresh method first invokes the CanApplyChanges method
on the module dialog page to determine whether the module dialog page allows changes to be commit-
ted to the underlying configuration file. Recall that the MyConfigSectionPage module dialog page’s
implementation of the CanApplyChanges property simply returns the value of the hasChanged Boolean
value. If the module dialog page does allow changes to be committed, the Refresh method calls the
ApplyChanges method on the module dialog page to commit the changes to the underlying configura-
tion file. If the ApplyChanges method returns false, indicating that something went wrong and the
changes were not committed, the Refresh method simply returns, bypassing the call into the
OnRefresh method.

case DialogResult.Yes:
if (this.CanApplyChanges)
{
if (!this.ApplyChanges())
return;

}

Finally, the Refresh method invokes the OnRefresh method to download fresh data from the server
and to update the module dialog page’s user interface with the fresh data:

this.OnRefresh();

The following code presents the MyConfigSectionPage module dialog page’s implementation
of the OnRefresh method. Now replace the declaration of the OnRefresh method in the
MyConfigSectionPage.cs file with the code shown here:

protected override void OnRefresh()

228

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 228

{
this.GetSettings();

}

As you can see, the OnRefresh method invokes the GetSettings method discussed earlier in this
chapter to download fresh data from the server and to update the user interface of the
MyConfigSectionPage module dialog page with this fresh data.

MyCollectionPage
As discussed, when the user clicks the “View collection items” link shown in Figure 7-4, the
ViewCollectionItems method of the MyConfigSectionPage module dialog page uses the navigation
service to navigate to the MyCollectionPage module list page.

Listing 7-45 presents the MyCollectionPage class and the declaration of its members. Add a new
source file named MyCollectionPage.cs to the Client subdirectory of the GraphicalManagement
directory of the MyConfigSection project and add the code shown in this code listing to this source file.

Listing 7-45: The MyCollectionPage Class

using Microsoft.Web.Management.Client;
using Microsoft.Web.Management.Client.Win32;
using Microsoft.Web.Management.Server;
using System.ComponentModel;
using System.Collections;
using System.Windows.Forms;
using System;

namespace MyNamespace.GraphicalManagement.Client
{
public class MyCollectionPage : ModuleListPage, IModuleChildPage
{
private IModulePage parentPage;
private bool errorGetCollectionItems;
private ColumnHeader myCollectionItemBoolValueColumnHeader;
private ColumnHeader myCollectionItemIdentifierColumnHeader;
private MyConfigSectionModuleServiceProxy serviceProxy;
private PageTaskList taskList;
private PropertyBag bag;
private bool readOnly;
private ModuleListPageGrouping booleanPropertyGrouping;
private ListViewGroup trueGroup;
private ListViewGroup falseGroup;

protected override void InitializeListPage();
protected override void OnActivated(bool initialActivation);
private void GetCollectionItems();
private void OnWorkerGetCollectionItems(object sender, DoWorkEventArgs e);
private void OnWorkerGetCollectionItemsCompleted(object sender,

RunWorkerCompletedEventArgs e);

229

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 229

230

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-45: (continued)

private sealed class MyCollectionItemListViewItem : ListViewItem { }
private void AddItem(MyCollectionItemInfo itemInfo, bool isSelected);
private sealed class PageTaskList : TaskList { }
protected override TaskListCollection Tasks { get; }
private void AddCollectionItem();
private void DeleteCollectionItem();
private void UpdateCollectionItem();

IModulePage IModuleChildPage.ParentPage { get; set; }
private MyCollectionItemListViewItem SelectedCollectionItem { get; }

private void ReplaceItem(MyCollectionItemListViewItem item,
MyCollectionItemInfo itemInfo);

private void OnListViewSelectedIndexChanged(object sender, EventArgs e);
private void OnListViewDoubleClick(object sender, EventArgs e);
private void OnListViewKeyUp(object sender, KeyEventArgs e);
private void SetItemGroup(MyCollectionItemListViewItem item);
protected override void OnGroup(ModuleListPageGrouping grouping);
protected override ListViewGroup[] GetGroups(ModuleListPageGrouping grouping);
public override ModuleListPageGrouping[] Groupings { get; }
protected override void Refresh();
protected override bool CanRefresh { get; }
protected sealed override bool ReadOnly { get; }
protected override string ReadOnlyDescription { get; }
private void UpdateCollectionItemIdentifier();
private void OnListViewBeforeLabelEdit(object sender, LabelEditEventArgs e);
private void OnListViewAfterLabelEdit(object sender, LabelEditEventArgs e);

}
}

I present and discuss the implementations of the methods and properties of the MyCollectionPage
module list page in the following sections.

The MyCollectionPage module list page, like any other module list page, inherits from the
ModuleListPage base class, which in turn inherits from the ModulePage. Note that the
MyCollectionPage module list page also implements the IModuleChildPage interface:

The following code listing presents the definition of the IModuleChildPage interface:

public interface IModuleChildPage
{
IModulePage ParentPage { get; set; }

}

This interface exposes a single property named ParentPage, which references the parent module
page. In our case, the parent module page of the MyCollectionPage module list page is the
MyConfigSectionPage module dialog page. The following code listing contains the MyCollectionPage

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 230

module page’s implementation of the ParentPage property of this interface. Replace the declaration of the
IModuleChildPage.ParentPage property in the MyCollectionPage.cs file with the following code:

IModulePage IModuleChildPage.ParentPage
{
get { return parentPage; }
set { parentPage = value; }

}

Your module page mustn’t assign a value to the ParentPage property. The IIS7 Manager infrastructure
does this automatically behind the scenes as shown in Listing 7-46, which contains a portion of the inter-
nal implementation of the NavigationService class.

Listing 7-46: The NavigationService Class

internal sealed class NavigationService : INavigationService, IDisposable
{
bool INavigationService.Navigate(Connection connection,

ManagementConfigurationPath configurationPath,
Type pageType, object navigationData)

{
NavigationItem destinationNavigationItem =

this.CreateNavigationItem(connection, configurationPath,
pageType, navigationData);

return this.NavigateToItem(destinationNavigationItem, true);
}

private NavigationItem CreateNavigationItem(Connection connection,
ManagementConfigurationPath configurationPath,
Type pageType, object navigationData)

{
NavigationItem destinationNavigationItem =

new NavigationItem(connection, configurationPath, pageType, navigationData);

if (typeof(IModuleChildPage).IsAssignableFrom(pageType))
{
IModuleChildPage childModulePage =

destinationNavigationItem.Page as IModuleChildPage;
if (childModulePage != null)
{
INavigationService navigationService = (INavigationService)

((IServiceProvider) connection).GetService(typeof(INavigationService));
NavigationItem currentNavigationItem = navigationService.CurrentItem;
childModulePage.ParentPage = currentNavigationItem.Page;

}
}

return destinationNavigationItem;
}
. . .

}

Listing 7-46 presents the NavigationService class’s implementation of the Navigate method of the
INavigationService interface. This method is automatically invoked every time the end user takes an

231

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 231

action that triggers navigation from one module page to another. As discussed in Chapter 6, navigation
involves two NavigationItem navigation items: the current navigation item and destination navigation
item. In other words, the navigation service navigates from the current navigation item to the destina-
tion navigation item. For example, when the end user clicks the “View collection items” link in the task
panel associated with the MyConfigSectionPage module dialog page, the navigation service navigates
from the current navigation item, which represents the MyConfigSectionPage module dialog page, to
the destination navigation item, which represents the MyCollectionPage module list page.

As you can see from Listing 7-46, the Navigate method begins by invoking another method named
CreateNavigationItem to create the destination navigation item with the specified connection, config-
uration path, module page type, and navigation data as discussed in Chapter 6:

NavigationItem destinationNavigationItem =
this.CreateNavigationItem(connection, configurationPath,

pageType, navigationData);

Finally, the Navigate method invokes the NavigateToItem method to navigate to the destination navi-
gation item:

this.NavigateToItem(destinationNavigationItem, true);

Next, I walk you through the implementation of the CreateNavigationItem method. As Listing 7-47
shows, this method begins by instantiating the target navigation item with the specified connection, con-
figuration path, module page type, and navigation data as you would expect:

NavigationItem destinationNavigationItem =
new NavigationItem(connection, configurationPath, pageType, navigationData);

Next, it invokes the IsAssignableFrom method on the Type object that represents the IModuleChildPage
interface, passing in the Type object that represents the target module page to determine whether the target
module page implements the IModuleChildPage interface. For example, in this case, when the end user
clicks the “View collection items” link in the task panel associated with the MyConfigSectionPage
module list page, a call into the Navigate method of the NavigationService is automatically trig-
gered. This call in turns triggers the call into the CreateNavigationItem method, which in turn
calls the IsAssignableFrom method to determine whether the target module page, which is
the MyCollectionPage module list page, implements the IModuleChildPage. In our case, the
MyCollectionPage module list page indeed implements this interface.

As Listing 7-46 shows, if the target module page implements the IModuleChildPage interface, the
CreateNavigationItem method invokes the Page property on the newly instantiated navigation item to
return a reference to the target module page, which is the MyCollectionPage module list page in this case.

IModuleChildPage childModulePage =
destinationNavigationItem.Page as IModuleChildPage;

Next, the CreateNavigationItem invokes the GetService method on the connection object that
represents the current connection to the server, passing in the Type object that represents the
INavigationService interface to return a reference to the NavigationService object:

INavigationService navigationService = (INavigationService)
((IServiceProvider) connection).GetService(typeof(INavigationService));

232

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 232

Next, the CreateNavigationItem method invokes the CurrentItem property on the navigation serv-
ice to return a reference to the current navigation item, which is the navigation item that represents the
MyConfigSectionPage module list page in this case:

NavigationItem currentNavigationItem = navigationService.CurrentItem;

Then, CreateNavigationItem calls the Page property on the current navigation item to
return a reference to the module page associated with the current navigation item, which is the
MyConfigSectionPage module list page in this case, and assigns this reference to the ParentPage
property of the target module page, which is the MyCollectionPage module list page in our case:

childModulePage.ParentPage = currentNavigationItem.Page;

Therefore, when the user attempts to navigate from a module page to its child module page, the
navigation service automatically assigns the reference to the parent module page, which is the
MyConfigSectionPage module dialog page in this case, to the ParentPage property of the child
module page, which is the MyCollectionPage module list page in this case. As such you mustn’t
directly set the value of the ParentPage property of your custom module page.

Listing 7-47 presents those members of the ModuleListPage base class that MyCollectionPage
overrides.

Listing 7-47: The ModuleListPage Class

public abstract class ModuleListPage : ModulePage
{
protected abstract void InitializeListPage();
protected override void OnActivated(bool initialActivation);
protected virtual ListViewGroup[] GetGroups(ModuleListPageGrouping grouping);
protected virtual void OnGroup(ModuleListPageGrouping grouping);
public virtual ModuleListPageGrouping[] Groupings { get; }

}

Note that the ModuleListPage base class features an abstract method named InitializeListPage
that your custom module list page must implement if it inherits from this base class.

Listing 7-48 presents those members of the ModulePage base class that the MyCollectionPage
overrides.

Listing 7-48: The ModulePage Class

public abstract class ModulePage : ContainerControl, IModulePage, IDisposable
{
protected virtual void Refresh();
protected virtual TaskListCollection Tasks { get; }
protected virtual bool CanRefresh { get; }
protected virtual bool ReadOnly { get; }
protected virtual string ReadOnlyDescription { get; }

}

233

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 233

InitializeListPage
Every module page that inherits from the ModuleListPage base class must implement the
InitializeListPage method because this method is marked as abstract. Listing 7-49 contains the
MyCollectionPage module list page’s implementation of the InitializeListPage method. Now
replace the declaration of the InitializeListPage method in the MyCollectionPage.cs file with
the code shown in this code listing.

Listing 7-49: The InitializeListPage Method

protected override void InitializeListPage()
{
myCollectionItemBoolValueColumnHeader = new ColumnHeader();
myCollectionItemBoolValueColumnHeader.Text = "Boolean Value";
myCollectionItemBoolValueColumnHeader.Width = 90;
myCollectionItemIdentifierColumnHeader = new ColumnHeader();
myCollectionItemIdentifierColumnHeader.Text = "Identifier";
myCollectionItemIdentifierColumnHeader.Width = 90;
base.ListView.Columns.Clear();
base.ListView.Columns.AddRange(new ColumnHeader[] {

myCollectionItemIdentifierColumnHeader,
myCollectionItemBoolValueColumnHeader });

base.ListView.MultiSelect = false;
base.ListView.LabelEdit = true;
base.ListView.AfterLabelEdit +=

new LabelEditEventHandler(this.OnListViewAfterLabelEdit);
base.ListView.BeforeLabelEdit +=

new LabelEditEventHandler(this.OnListViewBeforeLabelEdit);
base.ListView.SelectedIndexChanged +=

new EventHandler(this.OnListViewSelectedIndexChanged);
base.ListView.DoubleClick += new EventHandler(this.OnListViewDoubleClick);
base.ListView.KeyUp += new KeyEventHandler(this.OnListViewKeyUp);

}

InitializeListPage creates two columns to display the values of the Boolean property and
identifier of the collection items, and adds them to the list of columns. It then registers the
OnListViewAfterLabelEdit, OnListViewBeforeLabelEdit, OnListViewSelectedIndexChanged,
OnListViewDoubleClick, and OnListViewKeyUp methods as event handlers for the AfterLabelEdit,
BeforeLabelEdit, SelectedIndexChanged, DoubleClick, and KeyUp events of the ListView list
view that displays the collection items:

base.ListView.AfterLabelEdit +=
new LabelEditEventHandler(this.OnListViewAfterLabelEdit);

base.ListView.BeforeLabelEdit +=
new LabelEditEventHandler(this.OnListViewBeforeLabelEdit);

base.ListView.SelectedIndexChanged +=
new EventHandler(this.OnListViewSelectedIndexChanged);

base.ListView.DoubleClick += new EventHandler(this.OnListViewDoubleClick);
base.ListView.KeyUp += new KeyEventHandler(this.OnListViewKeyUp);

234

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 234

OnActivated
The OnActivated method is invoked when the MyCollectionPage is accessed (see Listing 7-50). If the
module page is being accessed for the first time, the method calls the CreateProxy method of the
ModulePage base class to instantiate the MyConfigSectionModuleServiceProxy proxy class and
stores this instance in a private field named serviceProxy for future reference. Note that OnActivated
calls the GetCollectionItems method to download the collection items from the server. Replace the
declaration of the OnActivated method in the MyCollectionPage.cs file with the code shown in
Listing 7-50.

Listing 7-50: The OnActivated Method

protected override void OnActivated(bool initialActivation)
{
base.OnActivated(initialActivation);
if (initialActivation)
{
this.serviceProxy = (MyConfigSectionModuleServiceProxy)base.CreateProxy(

typeof(MyConfigSectionModuleServiceProxy));
this.GetCollectionItems();

}
}

GetCollectionItems
The GetCollectionItems method passes two delegates to the StartAsyncTask method of the
base class (see Listing 7-51). The first delegate is a DoWorkEventHandler delegate that wraps the
OnWorkerGetCollectionItems method. The second delegate is a RunWorkerCompletedEventHandler
delegate that encapsulates the OnWorkerGetCollectionItemsCompleted method. These two delegates
and the StartAsyncTask method were discussed in the previous chapter. Replace the declaration of the
GetCollectionItems method in the MyCollectionPage.cs file with the code shown in Listing 7-51.

Listing 7-51: The GetCollectionItems Method

private void GetCollectionItems()
{
base.ListView.LabelEdit = false;
base.StartAsyncTask("Getting collection items",

new DoWorkEventHandler(OnWorkerGetCollectionItems),
new RunWorkerCompletedEventHandler(OnWorkerGetCollectionItemsCompleted));

}

OnWorkerGetCollectionItems
The OnWorkerGetCollectionItems method simply calls the GetCollectionItems method of the
proxy to download the collection items from the server (see Listing 7-52). As discussed in the previous
chapter, the GetCollectionItems method of the proxy calls the GetCollectionItems method of the
server-side class. Replace the declaration of the OnWorkerGetCollectionItems method in the
MyCollectionPage.cs file with the code shown in Listing 7-52.

235

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 235

Listing 7-52: The OnWorkerGetCollectionItems Method

private void OnWorkerGetCollectionItems(object sender, DoWorkEventArgs e)
{
e.Result = serviceProxy.GetCollectionItems();

}

OnWorkerGetCollectionItemsCompleted
The OnWorkerGetCollectionItemsCompleted method is automatically called right after the collec-
tion items are retrieved from the server (see Listing 7-53). Now replace the declaration of the
OnWorkerGetCollectionItemsCompleted method in the MyCollectionPage.cs file with the code
shown in Listing 7-53.

Listing 7-53: The OnWorkerGetCollectionItemsCompleted Method

private void OnWorkerGetCollectionItemsCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
base.ListView.BeginUpdate();
try
{
if (e.Result != null)
{
base.ListView.Items.Clear();
this.bag = (PropertyBag)e.Result;
this.readOnly = (bool)this.bag[1];
ArrayList list1 = (ArrayList)this.bag[0];
if (list1 != null)
{
for (int num1 = 0; num1 < list1.Count; num1++)
{
MyCollectionItemInfo info1 =

new MyCollectionItemInfo((PropertyBag)list1[num1]);
this.AddItem(info1, false);

}
}
this.errorGetCollectionItems = false;

}
}

catch (Exception exception1)
{
base.StopProgress();
base.DisplayErrorMessage(exception1.Message, "GetCollectionItemsCompleted");
this.errorGetCollectionItems = true;
return;

}
finally
{
base.ListView.LabelEdit = true;
base.ListView.EndUpdate();

}
}

236

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 236

This method first clears the Items collection of the ListView list view that displays the collection items:

base.ListView.Items.Clear();

Then, it stores the PropertyBag collection that contains the retrieved collection items in the local bag
PropertyBag for future reference:

this.bag = (PropertyBag)e.Result;

As you’ll see later, the GetCollectionItems method of the server-side class adds the value of the
isLocked attribute of the underlying configuration section as the second item to the PropertyBag col-
lection. OnWorkerGetCollectionItemsCompleted assigns this item to the readOnly Boolean field:

this.readOnly = (bool)this.bag[1];

As a matter of fact, the MyCollectionPage module list page overrides the ReadOnly and
ReadOnlyDescription properties of its base class, as shown in Listing 7-54. Now replace the declara-
tions of the ReadOnly and ReadOnlyDescription properties in the MyCollectionPage.cs file with
the code shown in this code listing.

Listing 7-54: The ReadOnly and ReadOnlyDescription Properties

protected sealed override bool ReadOnly
{
get{return this.readOnly;}

}

protected override string ReadOnlyDescription
{
get{return "This feature is locked";}

}

Now back to the implementation of the OnWorkerGetCollectionItemsCompleted method. As
you’ll see later, the GetCollectionItems method of the server-side class creates one PropertyBag
object for each collection item, stores the values of the Boolean property and identifier of the collection
item in this PropertyBag, and adds the PropertyBag object into an ArrayList. It then creates another
PropertyBag object, stores the ArrayList into it, and sends this PropertyBag to the client. As men-
tioned earlier, this PropertyBag collection also contains the isLocked attribute value of the configura-
tion section. Therefore, the OnWorkerGetCollectionItemsCompleted method accesses the
ArrayList:

ArrayList list1 = (ArrayList)this.bag[0];

It then iterates through the PropertyBag objects in this ArrayList, creates one
MyCollectionItemInfo object for each enumerated PropertyBag object, and calls the AddItem
method, passing in the MyCollectionItemInfo object:

if (list1 != null)
{
for (int num1 = 0; num1 < list1.Count; num1++)

237

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 237

{
MyCollectionItemInfo info1 = new

MyCollectionItemInfo((PropertyBag)list1[num1]);
this.AddItem(info1, false);

}
}

MyCollectionItemInfo
The MyCollectionItemInfo class exposes the contents of its associated PropertyBag object as
strongly-typed properties (see Listing 7-55). The previous section discussed the benefits of exposing
the contents of a PropertyBag object as strongly-typed properties. Add a new source file named
MyCollectionItemInfo.cs to the GraphicalManagement/Client directory of the MyConfigSection
project and add the code shown in Listing 7-55 to this source file.

Listing 7-55: The MyCollectionItemInfo Class

using Microsoft.Web.Management.Server;

namespace MyNamespace.GraphicalManagement.Client
{
internal sealed class MyCollectionItemInfo
{
internal MyCollectionItemInfo(PropertyBag bag)
{
this.bag = bag;

}

public bool MyCollectionItemBoolProperty
{
get { return (bool)this.bag[1]; }
set { this.bag[1] = value; }

}

public string MyCollectionItemIdentifier
{
get { return (string)this.bag[0]; }
set { this.bag[0] = value; }

}

private PropertyBag bag;
}

}

As you can see from Listing 7-55, the MyCollectionItemInfo class exposes the first item in the
PropertyBag collection, which is nothing but the value of the myCollectionItemIdentifier attrib-
ute, as a strongly-typed property named MyCollectionItemIdentfier. It exposes the second item in
the PropertyBag collection, which is nothing but the value of the myCollectionItemBoolAttr attrib-
ute, as a strongly-typed property named MyCollectionItemBoolProperty.

238

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 238

MyCollectionItemListViewItem
When you write a custom module page that inherits the ModuleListPage base class, you must also
implement a class that inherits the ListViewItem class. This class must be private and nested within
your custom module list page (see Listing 7-56). Each instance of this class will represent a particular
item in the list of items that your custom module list page displays.

Following this pattern, Listing 7-56 implements a private nested class named
MyCollectionItemListViewItem that inherits the ListViewItem class. Note that the constructor of
this class passes the identifier of the associated item to the constructor of the ListViewItem base class.
The base class uses this value to uniquely identify each item in the list of displayed items. Replace the
declaration of the MyCollectionItemListViewItem nested class in the MyCollectionPage.cs file
with the code shown in Listing 7-56.

Listing 7-56: The MyCollectionItemListViewItem Class

class MyCollectionPage : ModuleListPage
{
. . .
private sealed class MyCollectionItemListViewItem : ListViewItem
{
public MyCollectionItemListViewItem(MyCollectionItemInfo itemInfo)

: base(itemInfo.MyCollectionItemIdentifier)
{
this.itemInfo = itemInfo;
base.SubItems.Add(new ListViewItem.ListViewSubItem(this,

itemInfo.MyCollectionItemBoolProperty.ToString()));
}

public MyCollectionItemInfo ItemInfo
{
get { return this.itemInfo; }

}

private MyCollectionItemInfo itemInfo;
}

}

AddItem
Recall from Listing 7-53 that the OnWorkerGetCollectionItemsCompleted method iterates
through the ArrayList of PropertyBag objects that it has received from the server, creates a
MyCollectionItemInfo object for each enumerated PropertyBag object, and calls the AddItem
method, passing in the MyCollectionItemInfo object. The main responsibility of the AddItem
method is to create a MyCollectionItemListViewItem list view item to represent the associated
MyCollectionItemInfo object and add this MyCollectionItemListViewItem list view item
to the Items collection of the ListView list view that displays the collection items. This collection con-
tains the list view items that represent the displayed items. Note that the AddItem method invokes the
SetItemGroup method, passing in the new MyCollectionItemListViewItem list view item to set the
item’s group. I discuss grouping later in this chapter. Now replace the declaration of the AddItem
method in the MyCollectionPage.cs file with the code shown in Listing 7-57.

239

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 239

Listing 7-57: The AddItem Method

private void AddItem(MyCollectionItemInfo itemInfo, bool isSelected)
{
MyCollectionItemListViewItem item1 = new MyCollectionItemListViewItem(itemInfo);
base.ListView.Items.Add(item1);
this.SetItemGroup(item1);

if (isSelected)
{
item1.Selected = true;
item1.Focused = true;
base.ListView.EnsureVisible(base.ListView.Items.IndexOf(item1));

}
}

Adding Support for New Task Items
Next, you would like to add four new links titled “Add collection item,” “Update collection item,” “Delete
collection item,” and “Change identifier” to the task panel associated with the MyCollectionPage module
page (see Figure 7-7). As discussed earlier, it takes three steps to add these new links:

❑ Implement a private nested class that inherits the TaskList base class. This nested class is nor-
mally named PageTaskList.

❑ Override the Tasks property of your module page.

❑ Implement an event handler associated with each new link.

Custom Task List
Listing 7-58 presents the implementation of the PageTaskList class. As you can see, PageTaskList,
like any other task list, derives from the TaskList base class and overrides the GetTaskItems method
that it inherits from this base class. Replace the declaration of the PageTaskList nested class in the
MyCollectionPage.cs file with the code shown in Listing 7-58.

Listing 7-58: The PageTaskList Class

namespace MyNamespace.GraphicalManagement.Client
{
public class MyCollectionPage : ModuleListPage, IModuleChildPage
{
. . .

private sealed class PageTaskList : TaskList
{
public PageTaskList(MyCollectionPage owner)
{
this.owner = owner;

}

public void AddCollectionItem()

240

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 240

Listing 7-58: (continued)

{
this.owner.AddCollectionItem();

}

public void DeleteCollectionItem()
{
this.owner.DeleteCollectionItem();

}

public void UpdateCollectionItem()
{
this.owner.UpdateCollectionItem();

}

public void UpdateCollectionItemIdentifier()
{
this.owner.UpdateCollectionItemIdentifier();

}

public override ICollection GetTaskItems()
{
ArrayList list1 = new ArrayList();
if (!owner.ReadOnly && !owner.errorGetCollectionItems)
{
list1.Add(new MethodTaskItem("AddCollectionItem",

"Add collection item", "Add"));
if (owner.SelectedCollectionItem != null)
{
list1.Add(new MethodTaskItem("UpdateCollectionItem",

"Update collection item", "Tasks"));
list1.Add(new MethodTaskItem("UpdateCollectionItemIdentifier",

"Change identifier", "Tasks"));
list1.Add(new MethodTaskItem("DeleteCollectionItem",

"Delete collection item", "Tasks"));
}

}
if (owner.errorGetCollectionItems)
list1.Add(new MessageTaskItem(MessageTaskItemType.Error, "Error",

"Info", "Error"));

foreach (TaskItem item2 in list1)
{
if (!(item2 is MessageTaskItem) && !(item2 is TextTaskItem))
item2.Enabled = !owner.InProgress;

}
return (TaskItem[])list1.ToArray(typeof(TaskItem));

}

private MyCollectionPage owner;
}

}
}

241

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 241

Now, let’s walk through the implementation of the GetTaskItems method of our PageTaskList nested
class. This method follows the same pattern as the GetTaskItems method of any other task list class.
First, it creates an ArrayList:

ArrayList list1 = new ArrayList();

Next, it checks whether both of the following conditions are met:

❑ The MyCollectionPage module list page is editable, that is, the end user can add, remove, and
update collection items and change their identifiers.

❑ The MyCollectionPage module list page did not have problems downloading the collection
items from the server.

If both of these conditions are met, the method creates a MethodTaskItem task item to represent the
“Add collection item” link. Note that it specifies the AddCollectionItem method as the event handler
for the Click event of this link button. As Listing 7-58 shows, this method calls the
AddCollectionItem method of the MyCollectionPage module page:

list1.Add(new MethodTaskItem("AddCollectionItem", "Add collection item", "Add"));

The GetTaskItems method then checks whether an item has been selected from the list of displayed
items. If so, it creates three more MethodTaskItem task items to represent the “Update collection item,”
“Change identifier,” and “Delete collection item” links. This means that these three links are rendered
only when an item is selected from the list. This makes sense because the user must first select an item
before updating or deleting it or changing its identifier. Notice that these three method task items regis-
ter the UpdateCollectionItem, UpdateCollectionItemIdentifier, and DeleteCollectionItem
methods as event handlers for the Click events of these three links. As Listing 7-58 shows, these
three methods call the UpdateCollectionItem, UpdateCollectionItemIdentifier, and
DeleteCollectionItem methods of the MyCollectionPage module page, respectively. Note that
GetTaskItems method passes the same string “Tasks” as the third argument to the constructor of the
MethodTaskItem class when it is instantiating these three task items to instruct the IIS7 Manager that
all these three tasks items belong to the same category named “Tasks.”

if (owner.SelectedCollectionItem != null)
{
list1.Add(new MethodTaskItem("UpdateCollectionItem",

"Update collection item", "Tasks"));
list.Add(new MethodTaskItem("UpdateCollectionItemIdentifier",

"Change identifier", "Tasks");
list1.Add(new MethodTaskItem("DeleteCollectionItem",

"Delete collection item", "Tasks"));
}

GetTaskItems then checks whether the MyCollectionPage module list page had trouble retrieving the
collection items from the server. If so, it creates a MessageTaskItem task item to display an error mes-
sage in the Alerts panel.

if (owner.errorGetCollectionItems)
list1.Add(new MessageTaskItem(MessageTaskItemType.Error,"Error","Info","Error"));

242

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 242

Tasks
The MyCollectionPage module list page overrides the Tasks property where it follows the same
pattern as the Tasks property of any other module page (see Listing 7-59). First, it instantiates the
PageTaskList if it hasn’t already been instantiated. Next, it adds this PageTaskList task list to the
Tasks collection property of its base class. Replace the declaration of the Tasks property in the
MyCollectionPage.cs file with the code shown in Listing 7-59.

Listing 7-59: The Tasks Property

protected override TaskListCollection Tasks
{
get
{
if (this.taskList == null)
this.taskList = new PageTaskList(this);

TaskListCollection collection1 = base.Tasks;
collection1.Add(this.taskList);
return collection1;

}
}

UpdateCollectionItemIdentifier
As discussed earlier, the GetTaskItems method of the PageTaskList nested type registers the
UpdateCollectionItemIdentifier method of the PageTaskList nested type as the event
handler for the Click event of the “Change identifier” link button. As Listing 7-58 shows, this method
simply delegates to the UpdateCollectionItemIdentifier method of the MyCollectionPage mod-
ule dialog page shown in Listing 7-60. This method in turn invokes the BeginEdit method on the
MyCollectionItemListViewItem list view item that represents the selected item to start the label edit-
ing process, which allows the end user to edit the identifier of the selected item. Replace the declaration
of the UpdateCollectionItemIdentifier method in the MyCollectionPage.cs file with the code
shown in Listing 7-60.

Listing 7-60: The UpdateCollectionItemIdentifier Method of MyCollectionPage

private void UpdateCollectionItemIdentifier()
{
this.SelectedCollectionItem.BeginEdit();

}

AddCollectionItem
Listing 7-61 presents the implementation of the AddCollectionItem method of the
MyCollectionPage module list page. Replace the declaration of the AddCollectionItem method in
the MyCollectionPage.cs file with the code shown in this code listing.

The AddCollectionItem method first instantiates and launches a MyCollectionItemTaskForm task
form to allow the end user to specify the values of the Boolean property and identifier of the collection
item being added (see Listing 7-61). As you’ll see later, when the user clicks the OK button on the task
form, the event handler for the button uses the proxy to add the new collection item to the underlying

243

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 243

configuration file. When the task form finally returns, AddCollectionItem takes these steps to add the
new collection item to the list of displayed items:

1. Creates a PropertyBag:

PropertyBag bag1 = new PropertyBag();

2. Populates the PropertyBag with the values of the Boolean property and identifier of the new
collection item. As you’ll see later, the MyCollectionItemTaskForm task form exposes these
two values as strongly-typed MyCollectionItemBoolProperty and
MyCollectionItemIdentifier properties.

bag1[0] = form1.MyCollectionItemIdentifier;
bag1[1] = form1.MyCollectionItemBoolProperty;

3. Creates a MyCollectionItemInfo object, passing in the PropertyBag. Recall that the
MyCollectionItemInfo object exposes the content of the PropertyBag as strongly-typed
properties. Finally it calls the AddItem method to add the new collection item to the list of items
displayed in the MyCollectionPage module list page.

this.AddItem(new MyCollectionItemInfo(bag1), true);

Listing 7-61: The AddCollectionItem Method of MyCollectionPage Module List Page

private void AddCollectionItem()
{
using (MyCollectionItemTaskForm form1 =

new MyCollectionItemTaskForm(base.Module, this.serviceProxy))
{
if (base.ShowDialog(form1) == DialogResult.OK)
{
PropertyBag bag1 = new PropertyBag();
bag1[0] = form1.MyCollectionItemIdentifier;
bag1[1] = form1.MyCollectionItemBoolProperty;
this.AddItem(new MyCollectionItemInfo(bag1), true);

}
}

}

DeleteCollectionItem
Listing 7-62 contains the code for the DeleteCollectionItem method of the MyCollectionPage mod-
ule list page. Replace the declaration of the DeleteCollectionItem method in the
MyCollectionPage.cs file with the code shown in this code listing.

Listing 7-62: The DeleteCollectionItem Method of MyCollectionPage Module List Page

private void DeleteCollectionItem()
{
MyCollectionItemListViewItem item1 = this.SelectedCollectionItem;
if (item1 != null)
{
DialogResult result1 = base.ShowMessage(

244

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 244

Listing 7-62: (continued)

"Do you really want to delete this item?", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button1, "Removed");

if (result1 == DialogResult.Yes)
{
try
{
Cursor.Current = Cursors.WaitCursor;
PropertyBag bag = new PropertyBag();
bag[0] = item1.ItemInfo.MyCollectionItemIdentifier;
this.serviceProxy.DeleteCollectionItem(bag);
base.ListView.Items.Remove(item1);

}
catch (Exception exception1)
{
base.DisplayErrorMessage(exception1, null);
return;

}
finally
{
Cursor.Current = Cursors.Default;

}
}

}
}

Next, I walk you through the implementation of the DeleteCollectionItem method. This method first
accesses the MyCollectionItemListViewItem list view item that represents the selected item:

MyCollectionItemListViewItem item1 = this.SelectedCollectionItem;

Here is the implementation of the SelectedCollectionItem property. Replace the declaration of the
SelectedCollectionItem property in the MyCollectionPage.cs file with the code shown in this
code listing:

private MyCollectionItemListViewItem SelectedCollectionItem
{
get
{
if (base.ListView.SelectedItems.Count != 0)
return (MyCollectionItemListViewItem)base.ListView.SelectedItems[0];

return null;
}

}

Now back to the implementation of the DeleteCollectionItem method. Next, this method launches a
message box to double-check whether the user indeed wants to delete the selected collection item:

DialogResult result1 = base.ShowMessage(
"Do you really want to delete this item?", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button1, "Removed");

245

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 245

If the user confirms the deletion, the DeleteCollectionItem method takes these steps:

1. Creates a PropertyBag:

PropertyBag bag = new PropertyBag();

2. Adds the identifier of the collection item being deleted to the PropertyBag:

bag[0] = item1.ItemInfo.MyCollectionItemIdentifier;

3. Calls the DeleteCollectionItem method of the proxy, passing in the PropertyBag to delete
the collection item from the underlying configuration file:

this.serviceProxy.DeleteCollectionItem(bag);

4. Removes the deleted collection item from the list of items displayed in the MyCollectionPage
module list page:

base.ListView.Items.Remove(item1);

UpdateCollectionItem
Listing 7-63 presents the implementation of the UpdateCollectionItem method of the
MyCollectionPage module list page. Replace the declaration of the UpdateCollectionItem method
in the MyCollectionPage.cs file with the code shown in this code listing.

Listing 7-63: The UpdateCollectionItem Method of MyCollectionPage Module List Page

private void UpdateCollectionItem()
{
MyCollectionItemListViewItem item1 = this.SelectedCollectionItem;
if (item1 != null)
{
MyCollectionItemInfo info1 = item1.ItemInfo;
using (MyCollectionItemTaskForm form1 =

new MyCollectionItemTaskForm(base.Module, this.serviceProxy,
item1.ItemInfo.MyCollectionItemIdentifier,
item1.ItemInfo.MyCollectionItemBoolProperty))

{
if ((base.ShowDialog(form1) == DialogResult.OK) && form1.HasChanges)
{
info1.MyCollectionItemIdentifier = form1.MyCollectionItemIdentifier;
info1.MyCollectionItemBoolProperty = form1.MyCollectionItemBoolProperty;
this.ReplaceItem(item1, info1);

}
}

}
}

UpdateCollectionItem first accesses the MyCollectionItemListViewItem list view item that repre-
sents the selected collection item. Recall that the users must first select the item that they want to update:

MyCollectionItemListViewItem item1 = this.SelectedCollectionItem;

246

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 246

Then, it launches the MyCollectionItemTaskForm task form to allow the user to update the values of
the Boolean property and identifier of the collection item being updated:

MyCollectionItemTaskForm form1 =
new MyCollectionItemTaskForm(base.Module, this.serviceProxy,

item1.ItemInfo.MyCollectionItemIdentifier,
item1.ItemInfo.MyCollectionItemBoolProperty)

As you’ll see later, after the user updates the values and clicks the OK button on the task form, the event
handler for this button calls the UpdateCollectionItem method of the proxy to update the values of
the corresponding collection item in the underlying configuration file. If the user has indeed changed the
current values, UpdateCollectionItem takes these steps to replace the item in the list of displayed
items in the MyCollectionPage module page:

info1.MyCollectionItemIdentifier = form1.MyCollectionItemIdentifier;
info1.MyCollectionItemBoolProperty = form1.MyCollectionItemBoolProperty;
this.ReplaceItem(item1, info1);

Here is the implementation of the ReplaceItem method. Replace the declaration of the ReplaceItem
method in the MyCollectionPage.cs file with the code shown in this code listing:

private void ReplaceItem(MyCollectionItemListViewItem item,
MyCollectionItemInfo itemInfo)

{
base.ListView.Items.Remove(item);
this.AddItem(itemInfo, true);

}

As you can see, the ReplaceItem method first removes the specified MyCollectionItemListViewItem
list view item from the Items collection of the ListView list view that displays the collection items, and
then calls the AddItem method to create and to add a new MyCollectionItemListViewItem list view
item to the Items collection.

OnListViewBeforeLabelEdit
Recall from Listing 7-49 that the InitializeListPage method of the MyCollectionPage module list
page registers the OnListViewBeforeLabelEdit method as an event handler for the BeforeLabelEdit
event of the ListView list view that displays the list of available items. This ListView list view fires
this event right after the user clicks the “Change identifier” link button to edit the label that displays the
identifier of the selected item and right before the label becomes editable.

base.ListView.BeforeLabelEdit +=
new LabelEditEventHandler(this.OnListViewBeforeLabelEdit);

Listing 7-64 presents the implementation of the OnListViewBeforeLabelEdit method. Replace the
declaration of the OnListViewBeforeLabelEdit method in the MyCollectionPage.cs file with the
code shown in this code listing.

247

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 247

Listing 7-64: The OnListViewBeforeLabelEdit Method of MyCollectionPage

private void OnListViewBeforeLabelEdit(object sender, LabelEditEventArgs e)
{
MyCollectionItemListViewItem item =

(MyCollectionItemListViewItem)base.ListView.Items[e.Item];

// Use application-specific validation logic here to determine whether
// label editing is allowed. If not, set the CancelEdit property of the
// LabelEditEventArgs passed into the method to true to cancel label editing
// e.CancelEdit = true;

}

As you can see, OnListViewBeforeLabelEdit first accesses the MyCollectionItemListViewItem
list view item that represents the selected item in the list of displayed items:

MyCollectionItemListViewItem item =
(MyCollectionItemListViewItem)base.ListView.Items[e.Item];

Next, you can use the MyCollectionItemListViewItem list view item to extract whatever information
is needed about the selected list view item and use the appropriate validation logic to determine
whether the end user should be allowed to perform the requested label editing operation. In this case,
this label editing operation basically changes the identifier of the selected collection item. If the valida-
tion fails, you can set the value of the CancelEdit property of the LabelEditEventArgs object passed
into the OnListViewBeforeLabelEdit method to cancel the label editing operation. To keep our dis-
cussions focused, we let the operation go through without further validation.

OnListViewAfterLabelEdit
Recall from Listing 7-49 that the InitializeListPage method of the MyCollectionPage module
list page also registers the OnListViewAfterLabelEdit method as an event handler for the
AfterLabelEdit event of the ListView control that displays the list of available collection items:

base.ListView.AfterLabelEdit +=
new LabelEditEventHandler(this.OnListViewAfterLabelEdit);

Listing 7-65 presents the implementation of the OnListViewAfterLabelEdit method. Replace the dec-
laration of the OnListViewAfterLabelEdit method in the MyCollectionPage.cs file with the code
shown in this code listing.

Listing 7-65: The OnListViewAfterLabelEdit Method

private void OnListViewAfterLabelEdit(object sender, LabelEditEventArgs e)
{
bool flag = true;
if (e.Label != null)
{
MyCollectionItemListViewItem item =

(MyCollectionItemListViewItem)base.ListView.Items[e.Item];
string oldIdentifier = item.ItemInfo.MyCollectionItemIdentifier;
string newIdentifier = e.Label.Trim();

248

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 248

Listing 7-65: (continued)

if ((oldIdentifier != newIdentifier) && (newIdentifier.Length != 0))
{
bool flag2 = false;

try
{
Cursor.Current = Cursors.WaitCursor;
flag2 = this.serviceProxy.UpdateCollectionItemIdentifier(oldIdentifier,

newIdentifier);
}

catch (Exception exception)
{
string errorMessage;
string errorText;
if (string.Equals(

ModuleServiceProxy.GetErrorInformation(exception, null,
out errorText, out errorMessage),

"A collection item with the specified identifier already exists!",
StringComparison.OrdinalIgnoreCase))

{
if (base.ShowMessage(errorText, MessageBoxButtons.YesNo,

MessageBoxIcon.Question,
MessageBoxDefaultButton.Button1) ==

DialogResult.Yes)
base.BeginInvoke(new MethodInvoker(this.Refresh));

}

else
base.DisplayErrorMessage(exception, null);

}

finally
{
Cursor.Current = Cursors.Default;

}

if (flag2)
{
item.ItemInfo.MyCollectionItemIdentifier = newIdentifier;
flag = false;

}
}

}

e.CancelEdit = flag;
base.Update();

}

Next, I walk through the implementation of OnListViewAfterLabelEdit. This method uses an internal
Boolean flag named flag that will determine whether the label editing operation should be canceled.

249

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 249

Notice that this method initializes this flag to true. In other words, this method assumes the label editing
operation should be canceled.

bool flag = true;

Next, the method accesses the MyCollectionItemListViewItem list view item that represents the item
in the list of displayed items whose identifier is being edited:

MyCollectionItemListViewItem item =
(MyCollectionItemListViewItem)base.ListView.Items[e.Item];

Next, the method stores the current identifier of this item in a local variable:

string oldIdentifier = item.ItemInfo.MyCollectionItemIdentifier;

Then, it retrieves the new identifier of this item from the editable label and stores it in a local variable:

string newIdentifier = e.Label.Trim();

If the new identifier is different from the old identifier, it invokes the UpdateCollectionItemIdentifier
method on the MyConfigSectionModuleServiceProxy proxy to change the identifier of the item in the
underlying configuration file:

flag2 = this.serviceProxy.UpdateCollectionItemIdentifier(oldIdentifier,
newIdentifier);

If the UpdateCollectionItemIdentifier method succeeds in changing the identifier of the item in the
underlying configuration file, OnListViewAfterLabelEditing updates the MyCollectionPage mod-
ule list page’s user interface. First, it assigns the new identifier to the MyCollectionItemIdentifier
property of the ItemInfo property of the MyCollectionItemListViewItem list view item that repre-
sents the item whose identifier is being edited:

item.ItemInfo.MyCollectionItemIdentifier = newIdentifier;

Second, it sets the Boolean flag to false and assigns this flag to the CancelEdit property of the
LabelEditEventArgs event data object to specify that the label editing operation should go through:

flag = false;
e.CancelEdit = flag;

Third, it calls the Update method to update the user interface of the MyCollectionPage module list page:

base.Update();

If the UpdateCollectionItemIdentifier method fails in changing the identifier of the item in the
underlying configuration file, OnListViewAfterLabelEditing invokes the GetErrorInformation
static method on the ModuleServiceProxy base class to determine whether the error was due to the
fact that the underlying configuration file already contains an item with the same identifier. If so, it pops
up a message asking the user whether to refresh the MyCollectionPage module list page with the lat-
est list of items because the chances are that someone else had already added an item with the same
name to the underlying configuration file and consequently the MyCollectionPage module list page

250

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 250

needs refreshing. If the user says yes, the method calls the Refresh method to refresh the module list
page. The user may choose not to refresh because the user may have a good reason to believe that noth-
ing had changed in the underlying configuration file.

if (string.Equals(
ModuleServiceProxy.GetErrorInformation(exception, null,

out errorText, out errorMessage),
"An item with the specified identifier already exists!",
StringComparison.OrdinalIgnoreCase))

{
if (base.ShowMessage(errorText, MessageBoxButtons.YesNo,

MessageBoxIcon.Question,
MessageBoxDefaultButton.Button1) ==

DialogResult.Yes)
base.BeginInvoke(new MethodInvoker(this.Refresh));

}

If the error is not due to the fact that the underlying configuration file contains an item with the same
identifier, the method simply displays the error message to the end user:

else
base.DisplayErrorMessage(exception, null);

OnListViewDoubleClick
Recall from Listing 7-49 that the InitializeListPage method of the MyCollectionPage module list
page registers the OnListViewDoubleClick method as an event handler for the DoubleClick event of
the ListView control that displays the list of available items. This ListView control fires this event
when the user double-clicks a displayed item to edit the item:

base.ListView.DoubleClick += new EventHandler(this.OnListViewDoubleClick);

Listing 7-66 presents the implementation of the OnListViewDoubleClick method. Replace the declara-
tion of the OnListViewDoubleClick method in the MyCollectionPage.cs file with the code shown
in this code listing.

Listing 7-66: The OnListViewDoubleClick Method

private void OnListViewDoubleClick(object sender, EventArgs e)
{
if ((this.SelectedCollectionItem != null) && !this.ReadOnly)
this.UpdateCollectionItem();

}

OnListViewDoubleClick calls the UpdateCollectionItem method if both of the following two con-
ditions are met:

❑ The user has indeed selected an item from the list of displayed items. This condition is bound to
be met because double-clicking an item also selects the item.

❑ The MyCollectionPage module list page is editable. Recall that the ReadOnly property of this
module list page reflects the value of the isLocked attribute on the <myConfigSection> con-
figuration section.

251

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 251

OnListViewKeyUp
Recall from Listing 7-49 that the InitializeListPage method registers the OnListViewKeyUp method
as an event handler for the KeyUp event of the ListView control that displays the list of available items:

base.ListView.KeyUp += new KeyEventHandler(this.OnListViewKeyUp);

Listing 7-67 presents the code for the OnListViewKeyUp method. Replace the declaration of the
OnListViewKeyUp method in the MyCollectionPage.cs file with the code shown in this code listing.

Listing 7-67: The OnListViewKeyUp Method of MyCollectionPage

private void OnListViewKeyUp(object sender, KeyEventArgs e)
{
if ((this.SelectedCollectionItem != null) && (e.KeyData == Keys.Delete))
this.DeleteCollectionItem();

}

This method calls the DeleteCollectionItem method if both of the following two conditions are met:

❑ The user has indeed selected an item to delete.

❑ The user has clicked the Delete button.

OnListViewSelectedIndexChanged
Recall from Listing 7-49 that InitializeListPage registers the OnListViewSelectedIndexChanged
method as an event handler for the SelectedIndexChanged event of the ListView control that dis-
plays the list of available items:

base.ListView.SelectedIndexChanged +=
new EventHandler(this.OnListViewSelectedIndexChanged);

Listing 7-68 presents the code for the OnListViewSelectedIndexChanged method. As you can see,
this method simply calls the Update method to update the user interface of the MyCollectionPage
module list page. Replace the declaration of the OnListViewSelectedIndexChanged method in the
MyCollectionPage.cs file with the code shown in this code listing.

Listing 7-68: The OnListViewSelectedIndexChanged Method of MyCollectionPage

private void OnListViewSelectedIndexChanged(object sender, EventArgs e)
{
base.Update();

}

Grouping
Every module list page supports a combo box named Group by that contains the list of available group-
ing criteria. When the end user selects a grouping criterion from this combo box, the module list page
groups the displayed items by the selected grouping criterion. The ModuleListPage base class comes

252

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 252

with several grouping-related members that every module list page must implement to support group-
ing. Next, I discuss these grouping-related members and walk through the MyCollectionPage module
list page’s implementation of these members.

The ModuleListPage base class exposes a read-only property of type ModuleListPageGrouping[]
named Groupings as defined in Listing 7-69. The ModuleListPage base class’s implementation of this
property returns null.

Listing 7-69: The Groupings Property of ModuleListPage

public virtual ModuleListPageGrouping[] Groupings
{
get { return null; }

}

Every module list page that needs to support grouping must override the Grouping property of the
ModuleListPage base class to instantiate and to return an array of ModuleListPageGrouping objects
where each object represents a grouping criterion. The ModuleListPage base class uses the objects in
this array to populate the Group by combo box. Listing 7-70 presents the internal implementation of the
ModuleListPageGrouping class. As you can see, the constructor of this class takes two string parame-
ters where the first parameter specifies a name for the grouping criterion and the second parameter
specifies the text that will appear in the Group by combo box.

Listing 7-70: The ModuleListPageGrouping Class

public sealed class ModuleListPageGrouping
{
private string name;
private string text;

public ModuleListPageGrouping(string name, string text)
{
if (string.IsNullOrEmpty(name))
throw new ArgumentNullException("name");

if (string.IsNullOrEmpty(text))
throw new ArgumentNullException("text");

this.name = name;
this.text = text;

}

public override bool Equals(object obj)
{
ModuleListPageGrouping grouping = obj as ModuleListPageGrouping;
if ((grouping != null) && string.Equals(grouping.Name, this.Name))
return string.Equals(grouping.Text, this.Text);

return false;
}

public override int GetHashCode()

253

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 253

254

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-70: (continued)

{
return (this.Name.GetHashCode() + this.Text.GetHashCode());

}

public override string ToString()
{
return this.Text;

}

public string Name
{
get { return this.name; }

}

public string Text
{
get { return this.text; }

}
}

As you can see from Listing 7-71, the MyCollectionPage module list page’s implementation of the
Groupings property returns an array that contains a single ModuleListPageGrouping object because
this module list page only supports grouping by Boolean property value. Also note that Listing 7-71
instantiates two ListViewGroup objects to represent the two groups in the Boolean property grouping
criterion and stores these two objects in private fields for future reference. As the name suggests, the
ListViewGroup class is used to represent a group. Note that the constructor of this class takes a single
argument that specifies the name of the group. In this case, you have two groups in the Boolean prop-
erty grouping criterion. The first group contains collection items with a Boolean property value of true.
The second group contains collection items with a Boolean property value of false.

Now replace the declaration of the Groupings property in the MyCollectionPage.cs file with the
code shown in Listing 7-71.

Listing 7-71: The Groupings Property

public override ModuleListPageGrouping[] Groupings
{
get
{
if (this.booleanPropertyGrouping == null)
{
this.booleanPropertyGrouping =

new ModuleListPageGrouping("BooleanProperty", "Boolean Property");
this.trueGroup = new ListViewGroup("True");
this.falseGroup = new ListViewGroup("False");

}
return new ModuleListPageGrouping[] { this.booleanPropertyGrouping };

}
}

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 254

The ModuleListPage base class exposes a method named Group as shown in Listing 7-72. When the
end user selects a grouping criterion from the Group by combo box, this method is automatically
invoked and the ModuleListPageGrouping representing the selected grouping criterion is automati-
cally passed into the method.

Listing 7-72: The Group Method of ModuleListPage

protected void Group(ModuleListPageGrouping grouping)
{
ListViewGroup[] groups = null;
if (grouping != null)
groups = this.GetGroups(grouping);

this.listView.BeginUpdate();

if (((grouping == null) || grouping.Equals(EmptyGrouping)) ||
((groups == null) || (groups.Length == 0)))

this.listView.ShowGroups = false;

else
{
this.listView.ShowGroups = true;
for (int i = this.listView.Groups.Count - 1; i >= 0; i--)
{
this.listView.Groups.RemoveAt(i);

}
this.listView.Groups.AddRange(groups);
this.OnGroup(grouping);

}

this.listView.EndUpdate();

this.selectedGrouping = grouping;
this.pageHeader.UpdateGroupingCommands();

}

As Listing 7-72 shows, the Group method of the ModuleListPage base class invokes another method
named GetGroups, passing in the ModuleListPageGrouping object that represents the selected group-
ing criterion. Listing 7-73 presents the ModuleListPage base class’s implementation of the GetGroups
method. As you can see, the base implementation of this method returns null.

Listing 7-73: The GetGroups Method

protected virtual ListViewGroup[] GetGroups(ModuleListPageGrouping grouping)
{
return null;

}

Every module list page that needs to support grouping must override the GetGroups method to instan-
tiate and return an array of ListViewGroup objects where each object represents a particular group in
the grouping criterion represented by the ModuleListPageGrouping object.

255

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 255

As Listing 7-74 shows, the MyCollectionPage module list page overrides the GetGroups method to
return an array of ListViewGroup objects where each object represents a particular Boolean property
group. Because there are only two Boolean property groups, that is, true and false, the array that
the GetGroups method returns contains only two ListViewGroup objects. Replace the declaration
of the GetGroups method in the MyCollectionPage.cs file with the code shown in Listing 7-74.

Listing 7-74: The Overridden GetGroups Method

protected override ListViewGroup[] GetGroups(ModuleListPageGrouping grouping)
{
if (grouping == this.booleanPropertyGrouping)
return new ListViewGroup[] { this.trueGroup, this.falseGroup };

return null;
}

As Listing 7-72 illustrates, the Group method of the ModuleListPage base class also invokes the
OnGroup method passing in the ModuleListPageGrouping object that represents the selected grouping
criterion. As you can see from Listing 7-75, the ModuleListPage base class’s implementation of the
OnGroup method simply raises an exception.

Listing 7-75: The OnGroup Method

protected virtual void OnGroup(ModuleListPageGrouping grouping)
{
throw new InvalidOperationException();

}

Every module list page that needs to support grouping must override the OnGroup method to run the
logic that performs the actual grouping of the displayed items by the selected grouping criterion.
Listing 7-76 presents the MyCollectionPage module list page’s implementation of the OnGroup method.
Now go ahead and replace the declaration of the OnGroup method in the MyCollectionPage.cs file
with the code shown in this code listing.

Listing 7-76: The Overridden OnGroup Method

protected override void OnGroup(ModuleListPageGrouping grouping)
{
if (grouping == this.booleanPropertyGrouping)
{
foreach (MyCollectionItemListViewItem item in base.ListView.Items)
{
this.SetItemGroup(item);

}
}

}

The OnGroup method iterates through the MyCollectionItemListViewItem list view items in the
Items collection of the ListView control (recall that this control displays the items) and invokes
the SetItemGroup method to place each item in its appropriate group. Listing 7-77 presents the
MyCollectionPage module list page’s implementation of the SetItemGroup method. Replace the

256

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 256

declaration of the SetItemGroup method in the MyCollectionPage.cs file with the code shown in
this code listing.

Listing 7-77: The SetItemGroup Method

private void SetItemGroup(MyCollectionItemListViewItem item)
{
if (base.SelectedGrouping == this.booleanPropertyGrouping)
{
if (item.ItemInfo.MyCollectionItemBoolProperty)
item.Group = this.trueGroup;

else
item.Group = this.falseGroup;

}
}

MyCollectionItemListViewItem inherits a property of type ListViewGroup from its base class. This
property specifies the group in which the list view item is displayed. As you can see from Listing 7-77, the
SetItemGroup method sets this property to trueGroup if the value of the Boolean property of the collec-
tion item that the list view item represents is true. Otherwise it sets this property to falseGroup. Thanks
to the grouping infrastructure, specifying the Group property of a MyCollectionItemListViewItem list
view item is all it takes to have the associated collection item displayed in the specified group.

Refreshing
As you can see from Listing 7-78, the MyCollectionPage module list page overrides the Refresh
method of its base class, and invokes a private method named GetCollectionItems to retrieve the list
of available items from the underlying configuration file and display them to the end user. Recall that
the Refresh method is automatically invoked every time the user clicks the Refresh button in the
header of the IIS7 Manager.

Listing 7-78: The Refresh Method

protected override void Refresh()
{
this.GetCollectionItems();

}

As Listing 7-79 shows, the MyCollectionPage module list page also overrides the CanRefresh
Boolean property of its base class to specify that the module list page is refreshable. Recall that only the
Refresh methods of those module pages whose CanRefresh property return true will be invoked
when the end user clicks the Refresh button in the header of the IIS7 Manager.

Listing 7-79: The CanRefresh Property

protected override bool CanRefresh
{
get{return true;}

}

257

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 257

MyCollectionItemTaskForm
Listing 7-80 presents the implementation of the MyCollectionItemTaskForm task form. Add a new
source file named MyCollectionItemTaskForm.cs to the GraphicalManagement/Client directory
and add the code shown in this code listing to this source file.

Listing 7-80: The MyCollectionItemTaskForm Task Form

using Microsoft.Web.Management.Client.Win32;
using Microsoft.Web.Management.Server;
using System.ComponentModel;
using System.Windows.Forms;
using System.Drawing;
using System;

namespace MyNamespace.GraphicalManagement.Client
{
internal sealed class MyCollectionItemTaskForm : TaskForm
{
private MyConfigSectionModuleServiceProxy serviceProxy;
private bool inModificationMode;
private string originalMyCollectionItemIdentifier;
private TextBox myCollectionItemIdentifierTextBox;
private CheckBox myCollectionItemBoolPropertyCheckBox;
private bool hasChanges;
private ManagementPanel contentPanel;
private Label myCollectionItemIdentifierLabel;
private string myCollectionItemIdentifier;
private bool myCollectionItemBoolProperty;
private bool canAccept;

public MyCollectionItemTaskForm(IServiceProvider serviceProvider,
MyConfigSectionModuleServiceProxy proxy)

: this(serviceProvider, proxy, string.Empty, false) { }

public MyCollectionItemTaskForm(IServiceProvider serviceProvider,
MyConfigSectionModuleServiceProxy proxy,
string myCollectionItemIdentifier,
bool myCollectionItemBoolProperty)

: base(serviceProvider)
{
serviceProxy = proxy;
InitializeComponent();
inModificationMode = !string.IsNullOrEmpty(myCollectionItemIdentifier);
if (inModificationMode)
{
originalMyCollectionItemIdentifier = myCollectionItemIdentifier;
myCollectionItemIdentifierTextBox.Text = myCollectionItemIdentifier;
myCollectionItemBoolPropertyCheckBox.Checked =

myCollectionItemBoolProperty;
Text = "Update collection item";

}
else

258

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 258

259

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-80: (continued)

Text = "Add collection item";

UpdateUIState();
hasChanges = false;

}

private void InitializeComponent()
{
contentPanel = new ManagementPanel();
myCollectionItemIdentifierLabel = new Label();
myCollectionItemIdentifierTextBox = new TextBox();
myCollectionItemBoolPropertyCheckBox = new CheckBox();
contentPanel.SuspendLayout();
base.SuspendLayout();
contentPanel.Controls.Add(myCollectionItemIdentifierLabel);
contentPanel.Controls.Add(myCollectionItemIdentifierTextBox);
contentPanel.Controls.Add(myCollectionItemBoolPropertyCheckBox);

contentPanel.Dock = DockStyle.Fill;
contentPanel.Location = new Point(0, 0);
contentPanel.Name = "contentPanel";
contentPanel.Size = new Size(0x114, 110);
contentPanel.TabIndex = 0;
myCollectionItemIdentifierLabel.Location = new Point(0, 0);
myCollectionItemIdentifierLabel.Name = "_nameLabel";
myCollectionItemIdentifierLabel.AutoSize = true;
myCollectionItemIdentifierLabel.TabIndex = 0;
myCollectionItemIdentifierLabel.TextAlign = ContentAlignment.MiddleLeft;
myCollectionItemIdentifierLabel.Text = "Identifier";
myCollectionItemIdentifierTextBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
myCollectionItemIdentifierTextBox.Location = new Point(0, 0x10);
myCollectionItemIdentifierTextBox.Name = "_nameTextBox";
myCollectionItemIdentifierTextBox.Size = new Size(0x114, 0x15);
myCollectionItemIdentifierTextBox.TabIndex = 1;
myCollectionItemIdentifierTextBox.TextChanged +=

new EventHandler(OnMyCollectionItemIdentifierTextBoxTextChanged);

myCollectionItemBoolPropertyCheckBox.Location = new Point(0, 0x3b);
myCollectionItemBoolPropertyCheckBox.Name = "_valueTextBox";
myCollectionItemBoolPropertyCheckBox.Text = "Boolean Value";
myCollectionItemBoolPropertyCheckBox.Size = new Size(0x114, 0x15);
myCollectionItemBoolPropertyCheckBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
myCollectionItemBoolPropertyCheckBox.CheckedChanged +=

new EventHandler(OnMyCollectionItemBoolPropertyCheckBoxChanged);
myCollectionItemBoolPropertyCheckBox.TabIndex = 3;
base.ClientSize = new Size(300, 150);
base.AutoScaleMode = AutoScaleMode.Font;
base.Name = "MyCollectionItemTaskForm";
contentPanel.ResumeLayout(false);

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 259

Listing 7-80: (continued)

contentPanel.PerformLayout();
base.SetContent(contentPanel);
base.ResumeLayout(false);

}

protected override void OnAccept()
{
myCollectionItemIdentifier = myCollectionItemIdentifierTextBox.Text.Trim();
myCollectionItemBoolProperty = myCollectionItemBoolPropertyCheckBox.Checked;
base.StartAsyncTask(new DoWorkEventHandler(OnWorkerDoWork),

new RunWorkerCompletedEventHandler(OnWorkerCompleted));
base.UpdateTaskForm();

}

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
if (this.hasChanges)
{
PropertyBag bag = new PropertyBag();
if (!this.inModificationMode)
{
bag[0] = this.myCollectionItemIdentifier;
bag[1] = (bool)this.myCollectionItemBoolProperty;

this.serviceProxy.AddCollectionItem(bag);
}

else
{
bag[0] = this.originalMyCollectionItemIdentifier;
bag[1] = this.myCollectionItemIdentifier;
bag[2] = (bool)this.myCollectionItemBoolProperty;

this.serviceProxy.UpdateCollectionItem(bag);
}

}
}

private void OnWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
base.UpdateTaskForm();
if (e.Error != null)
this.DisplayErrorMessage(e.Error, null);

else
{
base.DialogResult = DialogResult.OK;
base.Close();

}
}

260

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 260

Listing 7-80: (continued)

private void OnMyCollectionItemIdentifierTextBoxTextChanged(object sender,
EventArgs e)

{
this.UpdateUIState();

}

private void OnMyCollectionItemBoolPropertyCheckBoxChanged(object sender,
EventArgs e)

{
this.UpdateUIState();

}

private void UpdateUIState()
{
this.hasChanges = true;
this.canAccept =

!string.IsNullOrEmpty(this.myCollectionItemIdentifierTextBox.Text);
base.UpdateTaskForm();

}

protected override bool CanAccept
{
get
{
if (!base.BackgroundJobRunning)
return this.canAccept;

return false;
}

}

public string MyCollectionItemIdentifier
{
get { return this.myCollectionItemIdentifier; }

}

public bool MyCollectionItemBoolProperty
{
get { return this.myCollectionItemBoolProperty; }

}

public bool HasChanges
{
get { return this.hasChanges; }

}
}

}

The following sections present and discuss the implementation of the members of the
MyCollectionItemTaskForm task form.

261

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 261

Constructors
Listing 7-81 contains the implementation of the constructors of MyCollectionItemTaskForm.

Listing 7-81: The Constructors of MyCollectionItemTaskForm

public MyCollectionItemTaskForm(IServiceProvider serviceProvider,
MyConfigSectionModuleServiceProxy proxy)

: this(serviceProvider, proxy, string.Empty, false) { }

public MyCollectionItemTaskForm(IServiceProvider serviceProvider,
MyConfigSectionModuleServiceProxy proxy,
string myCollectionItemIdentifier,
bool myCollectionItemBoolProperty)

: base(serviceProvider)
{
serviceProxy = proxy;
InitializeComponent();
inModificationMode = !string.IsNullOrEmpty(myCollectionItemIdentifier);
if (inModificationMode)
{
originalMyCollectionItemIdentifier = myCollectionItemIdentifier;
myCollectionItemIdentifierTextBox.Text = myCollectionItemIdentifier;
myCollectionItemBoolPropertyCheckBox.Checked =

myCollectionItemBoolProperty;
Text = "Update collection item";

}
else
Text = "Add collection item";

UpdateUIState();
hasChanges = false;

}

The first constructor delegates to the second constructor, which calls the InitializeComponent
method to create the user interface of the MyCollectionItemTaskForm task form. Because the same
task form is used for both updating and adding collection items, the value of the
myCollectionItemIdentifier parameter is used to determine whether the user is trying to update or
add a collection item. If the user is updating a collection item, the constructor initializes the user inter-
face of the task form with the current values of the Boolean property and the identifier of the collection
item being updated:

myCollectionItemIdentifierTextBox.Text = myCollectionItemIdentifier;
myCollectionItemBoolPropertyCheckBox.Checked = myCollectionItemBoolProperty;

InitializeComponent
The main responsibility of the InitializeComponent method is to create the user interface of the
MyCollectionItemTaskForm task form (see Listing 7-82).

262

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 262

Listing 7-82: The InitializeComponent Method

private void InitializeComponent()
{
contentPanel = new ManagementPanel();
myCollectionItemIdentifierLabel = new Label();
myCollectionItemIdentifierTextBox = new TextBox();
myCollectionItemBoolPropertyCheckBox = new CheckBox();
contentPanel.SuspendLayout();
base.SuspendLayout();
contentPanel.Controls.Add(myCollectionItemIdentifierLabel);
contentPanel.Controls.Add(myCollectionItemIdentifierTextBox);
contentPanel.Controls.Add(myCollectionItemBoolPropertyCheckBox);

contentPanel.Dock = DockStyle.Fill;
contentPanel.Location = new Point(0, 0);
contentPanel.Name = "contentPanel";
contentPanel.Size = new Size(0x114, 110);
contentPanel.TabIndex = 0;
myCollectionItemIdentifierLabel.Location = new Point(0, 0);
myCollectionItemIdentifierLabel.Name = "_nameLabel";
myCollectionItemIdentifierLabel.AutoSize = true;
myCollectionItemIdentifierLabel.TabIndex = 0;
myCollectionItemIdentifierLabel.TextAlign = ContentAlignment.MiddleLeft;
myCollectionItemIdentifierLabel.Text = "Identifier";
myCollectionItemIdentifierTextBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
myCollectionItemIdentifierTextBox.Location = new Point(0, 0x10);
myCollectionItemIdentifierTextBox.Name = "_nameTextBox";
myCollectionItemIdentifierTextBox.Size = new Size(0x114, 0x15);
myCollectionItemIdentifierTextBox.TabIndex = 1;
myCollectionItemIdentifierTextBox.TextChanged +=

new EventHandler(OnMyCollectionItemIdentifierTextBoxTextChanged);

myCollectionItemBoolPropertyCheckBox.Location = new Point(0, 0x3b);
myCollectionItemBoolPropertyCheckBox.Name = "_valueTextBox";
myCollectionItemBoolPropertyCheckBox.Text = "Boolean Value";
myCollectionItemBoolPropertyCheckBox.Size = new Size(0x114, 0x15);
myCollectionItemBoolPropertyCheckBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
myCollectionItemBoolPropertyCheckBox.CheckedChanged +=

new EventHandler(OnMyCollectionItemBoolPropertyCheckBoxChanged);
myCollectionItemBoolPropertyCheckBox.TabIndex = 3;
base.ClientSize = new Size(300, 150);
base.AutoScaleMode = AutoScaleMode.Font;
base.Name = "MyCollectionItemTaskForm";
contentPanel.ResumeLayout(false);
contentPanel.PerformLayout();
base.SetContent(contentPanel);
base.ResumeLayout(false);

}

263

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 263

InitializeComponent uses a ManagementPanel control as the container for the entire user interface
of the task form. Figure 7-15 is an excerpt from Figure 7-1 that contains only the ManagementPanel hier-
archy. As this figure shows, the ManagementPanel is a scrollable panel control.

Figure 7-15

As Listing 7-82 shows, the InitializeComponent method first instantiates the ManagementPanel con-
trol and adds a label, textbox, and checkbox. The textbox and checkbox controls are used to display or
specify the values of the identifier and Boolean property of the associated collection item:

contentPanel = new ManagementPanel();
myCollectionItemIdentifierLabel = new Label();
myCollectionItemIdentifierTextBox = new TextBox();
myCollectionItemBoolPropertyCheckBox = new CheckBox();
contentPanel.Controls.Add(myCollectionItemIdentifierLabel);
contentPanel.Controls.Add(myCollectionItemIdentifierTextBox);
contentPanel.Controls.Add(myCollectionItemBoolPropertyCheckBox);

Finally, InitializeComponent registers the OnMyCollectionItemIdentifierTextBoxTextChanged
and OnMyCollectionItemBoolPropertyCheckBoxChanged methods as event handlers for the
TextChanged event of the textbox and CheckChanged event of the checkbox, respectively:

myCollectionItemIdentifierTextBox.TextChanged +=
new EventHandler(OnMyCollectionItemIdentifierTextBoxTextChanged);

myCollectionItemBoolPropertyCheckBox.CheckedChanged +=
new EventHandler(OnMyCollectionItemBoolPropertyCheckBoxChanged);

The following code listing presents the implementation of these two methods:

private void
OnMyCollectionItemIdentifierTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void
OnMyCollectionItemBoolPropertyCheckBoxChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

264

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 264

As you can see, these two methods simply call the UpdateUIState method to update the user interface
of the MyCollectionItemTaskForm task form.

OnAccept
Recall that MyCollectionItemTaskForm inherits from the TaskForm base class. This base class
exposes an overridable method named OnAccept that its subclasses must override to add the code
that they want to run when the user clicks the OK button of the task form. Listing 7-83 presents the
MyCollectionItemTaskForm class’s implementation of the OnAccept method.

Listing 7-83: The OnAccept Method

protected override void OnAccept()
{
myCollectionItemIdentifier = myCollectionItemIdentifierTextBox.Text.Trim();
myCollectionItemBoolProperty = myCollectionItemBoolPropertyCheckBox.Checked;
base.StartAsyncTask(new DoWorkEventHandler(OnWorkerDoWork),

new RunWorkerCompletedEventHandler(OnWorkerCompleted));
base.UpdateTaskForm();

}

OnAccept first retrieves the new values of the Boolean property and identifier of the associated collection
item from the checkbox and textbox controls and stores them in the myCollectionItemBoolProperty
and myCollectionItemIdentifier fields for future reference:

myCollectionItemIdentifier = myCollectionItemIdentifierTextBox.Text.Trim();
myCollectionItemBoolProperty = myCollectionItemBoolPropertyCheckBox.Checked;

It then calls the StartAsyncTask method, passing in DoWorkEventHandler and
RunWorkerCompletedEventHandler delegates that respectively represent the OnWorkerDoWork and
OnWorkerCompleted methods. These two delegates and the StartAsyncTask method were thoroughly
discussed in the previous chapter.

OnWorkerDoWork
Listing 7-84 demonstrates the implementation of the OnWorkerDoWork method.

Listing 7-84: The OnWorkerDoWork Method

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
if (this.hasChanges)
{
PropertyBag bag = new PropertyBag();
if (!this.inModificationMode)
{
bag[0] = this.myCollectionItemIdentifier;
bag[1] = (bool)this.myCollectionItemBoolProperty;

this.serviceProxy.AddCollectionItem(bag);

265

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 265

266

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-84: (continued)

}

else
{
bag[0] = this.originalMyCollectionItemIdentifier;
bag[1] = this.myCollectionItemIdentifier;
bag[2] = (bool)this.myCollectionItemBoolProperty;

this.serviceProxy.UpdateCollectionItem(bag);
}

}
}

This method first creates a PropertyBag, which will be used to transfer data to the back-end server:

PropertyBag bag = new PropertyBag();

It then checks whether the MyCollectionItemTaskForm task form is being used to add a new collec-
tion item. If so, it populates the PropertyBag with the values of the Boolean property and identifier of
the collection item being added, and calls the AddCollectionItem method of the proxy, passing in the
PropertyBag to add a new collection item with the specified values to the underlying configuration file:

bag[0] = this.myCollectionItemIdentifier;
bag[1] = (bool)this.myCollectionItemBoolProperty;
this.serviceProxy.AddCollectionItem(bag);

If the task form is being used to update an existing collection item, OnWorkerDoWork populates the
PropertyBag with the values of the Boolean property, original identifier, and new identifier of the col-
lection item being updated, and invokes the UpdateCollectionItem method of the proxy, passing in
the PropertyBag to update the respective collection item in the configuration file. Notice that the
PropertyBag passed into the UpdateCollectionItem must also contain the original identifier to
allow the server-side UpdateCollectionItem method to identify the collection item being updated.

bag[0] = this.originalMyCollectionItemIdentifier;
bag[1] = this.myCollectionItemIdentifier;
bag[2] = (bool)this.myCollectionItemBoolProperty;
this.serviceProxy.UpdateCollectionItem(bag);

OnWorkerCompleted
Listing 7-85 contains the code for the OnWorkerCompleted method.

Listing 7-85: The OnWorkerCompleted Method

private void OnWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
base.UpdateTaskForm();
if (e.Error != null)
this.DisplayErrorMessage(e.Error, null);

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 266

267

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-85: (continued)

else
{
base.DialogResult = DialogResult.OK;
base.Close();

}
}

OnWorkerCompleted checks whether everything went fine. If an error has occurred, it displays the error
message to the end user.

Module
The previous sections showed you how to implement the MyConfigSectionPage and
MyCollectionPage module pages. Implementing your custom module page is just the first step. Next,
you need to register your module page with the IIS7 Manager so it gets instantiated and called. The IIS7
Manager comes with a base class named Module that defines the API that you need to implement to reg-
ister your custom module pages. Next, I discuss the Module base class.

Module
As Listing 7-86 shows, the Module base class exposes three important methods as follows:

❑ Dispose: Your custom module must override this method to perform final cleanup such as
releasing the resources (if any) that your custom module is holding before it is disposed of.

❑ GetService: Your custom module should call this method to access a given service. You’ll see
an example of this in the next section.

❑ Initialize: You must override this method to register your custom module.

Listing 7-86: The Module Base Class

public abstract class Module : IServiceProvider, IDisposable
{
protected virtual void Dispose()
{
this.serviceProvider = null;
this.moduleInfo = null;

}

protected virtual object GetService(Type serviceType)
{
return this.serviceProvider.GetService(serviceType);

}

protected internal virtual void Initialize(IServiceProvider serviceProvider,
ModuleInfo moduleInfo)

{

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 267

Listing 7-86: (continued)

this.serviceProvider = serviceProvider;
this.moduleInfo = moduleInfo;

}

public ModuleInfo ModuleInfo
{
get { return this.moduleInfo; }

}

// Fields
private ModuleInfo moduleInfo;
private IServiceProvider serviceProvider;

}

MyConfigSectionModule
Listing 7-87 implements a custom module named MyConfigSectionModule that registers the
MyConfigSectionPage and MyCollectionPage module pages with the IIS7 Manager. Add a new
source file named MyConfigSectionModule.cs to the GraphicalManagement/Client directory and
add the code shown in this code listing to this source file.

Listing 7-87: The MyConfigSectionModule Module

using Microsoft.Web.Management.Server;
using Microsoft.Web.Management.Client;
using System;

namespace MyNamespace.GraphicalManagement.Client
{
class MyConfigSectionModule : Module
{
protected override void Initialize(IServiceProvider serviceProvider,

ModuleInfo moduleInfo)
{
base.Initialize(serviceProvider, moduleInfo);
IControlPanel panel1 = (IControlPanel)GetService(typeof(IControlPanel));
ModulePageInfo info1 =

new ModulePageInfo(this, typeof(MyConfigSectionPage),
"MyConfigSection", "Displays MyConfigSection page");

panel1.RegisterPage(info1);
ModulePageInfo info2 =

new ModulePageInfo(this, typeof(MyCollectionPage),
"Collection page", "Collection page");

panel1.RegisterPage(info2);
}

}
}

268

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 268

MyConfigSectionModule overrides the Initialize method of the Module base class. It first calls the
Initialize method of the base class to allow the base class to do its own initialization as shown in
Listing 7-87. Next, it calls the GetService method of the Module base class, passing in the Type object
that represents the IControlPanel interface to access the control panel service. This service exposes a
method named RegisterPage that you can use to register your module page.

The RegisterPage method takes the ModulePageInfo object that represents the module page being
registered. The ModulePageInfo object encapsulates the complete information about the module
page that it represents and exposes this information through its properties as thoroughly discussed in
Chapter 6.

As Listing 7-87 shows, the Initialize method instantiates the ModulePageInfo object that represents
the MyConfigSectionPage module page, and passes this object into the RegisterPage method of the
control panel service to register the page:

ModulePageInfo info1 =
new ModulePageInfo(this, typeof(MyConfigSectionPage),

"MyConfigSection", "Displays MyConfigSection page");
panel1.RegisterPage(info1);

Initialize does the same thing to register the MyCollectionPage module page:

ModulePageInfo info2 =
new ModulePageInfo(this, typeof(MyCollectionPage),

"Collection page", "Collection page");
panel1.RegisterPage(info2);

Server-Side Managed Code
As mentioned earlier, extending the IIS7 Manager requires writing two sets of code: client- and server-
side code. So far, we’ve only covered the client-side code. This section shows you how to implement the
necessary server-side code to enable the back-end server to communicate with your module pages, task
forms, wizard forms, and so on.

Take these steps to write the server-side code:

1. Implement a custom module service.

2. Implement a custom module provider to register your custom module and custom module
service. Recall that a custom module is a class that inherits the Module base class and is used to
register a custom module page as discussed in the previous section.

3. Compile your custom module provider into a strongly-named assembly and add the assembly
to the Global Assembly Cache (GAC).

4. Register your custom module provider with the administration.config file located in the
following directory on your machine:

%windir%\system32\inetsrv\config

269

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 269

Module Service
A custom module service is a class that inherits from the ModuleService base class and exposes methods
that interact with the underlying configuration file to retrieve, add, delete, or update configuration settings.
Listing 7-88 presents the members of a custom module service named MyConfigSectionModuleService,
which like any other module service extends the ModuleService base class. Add a new source file named
MyConfigSectionModuleService.cs to the Server subdirectory of the GraphicalManagement direc-
tory of the MyConfigSection project and add the code shown in Listing 7-88 to this source file.

Listing 7-88: The MyConfigSectionModuleService Server-Side Class

using Microsoft.Web.Management.Server;
using System.Collections;
using System;
using MyNamespace.ImperativeManagement;

namespace MyNamespace.GraphicalManagement.Server
{
class MyConfigSectionModuleService : ModuleService
{
private MyConfigSection GetMyConfigSectionSection()
{
if (base.ManagementUnit.Configuration != null)
{
MyConfigSection section1 =

(MyConfigSection)base.ManagementUnit.Configuration.GetSection(
"system.webServer/myConfigSection",
typeof(MyConfigSection));

if (section1 == null)
base.RaiseException("MyConfigSectionConfigurationError");

return section1;
}

base.RaiseException("MyConfigSectionConfigurationError");
return null;

}

[ModuleServiceMethod]
public PropertyBag GetSettings()
{
PropertyBag bag1 = new PropertyBag();
MyConfigSection section1 = this.GetMyConfigSectionSection();
bag1[0] = section1.MyConfigSectionBoolProperty;
bag1[1] = (int)section1.MyConfigSectionEnumProperty;
bag1[2] = (TimeSpan)section1.MyNonCollection.MyNonCollectionTimeSpanProperty;
bag1[3] = section1.IsLocked;
return bag1;

}

[ModuleServiceMethod]
public void UpdateSettings(PropertyBag updatedSettings)
{
if (updatedSettings == null)

270

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 270

271

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-88: (continued)

throw new ArgumentNullException("updatedSettings");

MyConfigSection section1 = this.GetMyConfigSectionSection();
IEnumerator enumerator1 = updatedSettings.ModifiedKeys.GetEnumerator();
try
{
while (enumerator1.MoveNext())
{
switch (((int)enumerator1.Current))
{
case 0:
section1.MyConfigSectionBoolProperty = (bool)updatedSettings[0];
break;

case 1:
section1.MyConfigSectionEnumProperty =

(MyConfigSectionEnum)updatedSettings[1];
break;

case 2:
section1.MyNonCollection.MyNonCollectionTimeSpanProperty =

(TimeSpan)updatedSettings[2];
break;

case 3:
section1.MyCollection.MyCollectionIntProperty =

(int)updatedSettings[3];
break;

}
}

}

finally
{
IDisposable disposable1 = enumerator1 as IDisposable;
if (disposable1 != null)
disposable1.Dispose();

}
base.ManagementUnit.Update();

}

[ModuleServiceMethod]
public PropertyBag GetCollectionItems()
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
ArrayList list = new ArrayList();
PropertyBag bag;
foreach (MyCollectionItem item in section1.MyCollection)
{
bag = new PropertyBag();
bag[0] = item.MyCollectionItemIdentifier;
bag[1] = item.MyCollectionItemBoolProperty;
list.Add(bag);

}

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 271

Listing 7-88: (continued)

PropertyBag bag2 = new PropertyBag();
bag2[0] = list;
bag2[1] = section1.IsLocked;
return bag2;

}

[ModuleServiceMethod]
public void AddCollectionItem(PropertyBag bag)
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
string myCollectionItemIdentifier = (string)bag[0];
bool myCollectionItemBoolValue = (bool)bag[1];

if (ItemExists(section1.MyCollection, myCollectionItemIdentifier))
base.RaiseException(

"An item with the specified identifier already exists!");

section1.MyCollection.Add(myCollectionItemIdentifier,
myCollectionItemBoolValue);

base.ManagementUnit.Update();
}

[ModuleServiceMethod]
public void DeleteCollectionItem(PropertyBag bag)
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
string myCollectionItemIdentifier = (string)bag[0];
if (!ItemExists(section1.MyCollection, myCollectionItemIdentifier))
base.RaiseException(

"The item with the specified identifier does not exist!");

section1.MyCollection.Remove(
section1.MyCollection[myCollectionItemIdentifier]);

base.ManagementUnit.Update();
}

[ModuleServiceMethod]
public void UpdateCollectionItem(PropertyBag bag)
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
string oldIdentifier = (string)bag[0];
string newIdentifier = (string)bag[1];
bool boolValue = (bool)bag[2];

if (!this.ItemExists(section1.MyCollection, oldIdentifier))
base.RaiseException("Item with the specified identifier does not exist!");

if (this.ItemExists(section1.MyCollection, newIdentifier))
base.RaiseException(

"An item with the specified identifier already exists!");

272

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 272

Listing 7-88: (continued)

MyCollectionItem item = section1.MyCollection[oldIdentifier];
item.MyCollectionItemIdentifier = newIdentifier;
item.MyCollectionItemBoolProperty = boolValue;
base.ManagementUnit.Update();

}

[ModuleServiceMethod(PassThrough = true)]
public bool UpdateCollectionItemIdentifier(string oldIdentifier,

string newIdentifier)
{
if (string.IsNullOrEmpty(oldIdentifier))
throw new ArgumentNullException("Old identifier is required!");

if (string.IsNullOrEmpty(newIdentifier))
throw new ArgumentNullException("New identifier is required!");

MyConfigSection section1 = this.GetMyConfigSectionSection();

if (!this.ItemExists(section1.MyCollection, oldIdentifier))
base.RaiseException("Item with the specified identifier does not exist!");

if (this.ItemExists(section1.MyCollection, newIdentifier))
base.RaiseException(

"An item with the specified identifier already exists!");

MyCollectionItem item = section1.MyCollection[oldIdentifier];
item.MyCollectionItemIdentifier = newIdentifier;
base.ManagementUnit.Update();
return true;

}

private bool ItemExists(MyCollection collection, string identifier)
{
if (collection != null)
{
for (int i = 0; i < collection.Count; i++)
{
if (string.Equals(collection[i].MyCollectionItemIdentifier, identifier,

StringComparison.OrdinalIgnoreCase))
return true;

}
}
return false;

}
}

}

Note that all methods of the MyConfigSectionModuleService module service are marked with the
ModuleServiceMethodAttribute metadata attribute, except for the GetMyConfigSectionSection
method. Only those methods of a custom module service marked with this metadata attribute are acces-
sible from the proxy. The following sections present and discuss the implementation of the methods of
the MyConfigSectionModuleService module service.

273

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 273

GetMyConfigSectionSection
The GetMyConfigSectionSection method’s main responsibility is to return the MyConfigSection
object that represents the <myConfigSection> configuration section (see Listing 7-89).

Listing 7-89: The GetMyConfigSectionSection Method

private MyConfigSection GetMyConfigSectionSection()
{
if (base.ManagementUnit.Configuration != null)
{
MyConfigSection section1 =

(MyConfigSection)base.ManagementUnit.Configuration.GetSection(
"system.webServer/myConfigSection", typeof(MyConfigSection));

if (section1 == null)
base.RaiseException("MyConfigSectionConfigurationError");

return section1;
}

base.RaiseException("MyConfigSectionConfigurationError");
return null;

}

The ModuleService base class exposes an important property of type ManagementUnit named
ManagementUnit, which encapsulates the logic that determines the configuration hierarchy level at
which the current user is working, and the configuration file from which the configuration settings are
read and into which the configuration settings are stored. Therefore, the GetMyConfigSectionSection
method doesn’t need to worry about what the current configuration hierarchy level and configuration
file are.

The ManagementUnit class exposes a property of type ManagementConfiguration named
Configuration that features a method named GetSection. As the name implies, this method
returns the ConfigurationSection object that represents a configuration section with the specified
name and type. The GetSection method takes two arguments. The first argument is the fully quali -
fied name of the configuration section being accessed, including its complete group hierarchy. The sec-
ond argument is the Type object that represents the type of the class that represents the configuration
section. The GetSection method under the hood uses .NET reflection and this Type object to dynami-
cally instantiate an instance of the specified configuration section class and populates it with associated
configuration settings.

In our case, the MyConfigSection class represents the <myConfigSection> configuration section,
which means that the GetSection method will automatically return an instance of this class populated
with the required configuration settings:

MyConfigSection section1 =
(MyConfigSection)base.ManagementUnit.Configuration.GetSection(

"system.webServer/myConfigSection",
typeof(MyConfigSection));

274

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 274

GetSettings
Listing 7-90 contains the implementation of the GetSettings method.

Listing 7-90: The GetSettings Method

[ModuleServiceMethod]
public PropertyBag GetSettings()
{
PropertyBag bag1 = new PropertyBag();
MyConfigSection section1 = this.GetMyConfigSectionSection();
bag1[0] = section1.MyConfigSectionBoolProperty;
bag1[1] = (int)section1.MyConfigSectionEnumProperty;
bag1[2] = (TimeSpan)section1.MyNonCollection.MyNonCollectionTimeSpanProperty;
bag1[3] = section1.IsLocked;
return bag1;

}

GetSettings first creates a PropertyBag object:

PropertyBag bag1 = new PropertyBag();

Next, it calls the GetMyConfigSectionSection method discussed in the previous section to return the
MyConfigSection object that represents the <myConfigSection> configuration section:

MyConfigSection section1 = this.GetMyConfigSectionSection();

As discussed in the previous chapters, the MyConfigSection class exposes the configuration settings of
the <myConfigSection> configuration section as strongly-typed properties. GetSettings stores the
values of these properties in the PropertyBag object and returns the object to the client:

bag1[0] = section1.MyConfigSectionBoolProperty;
bag1[1] = (int)section1.MyConfigSectionEnumProperty;
bag1[2] = (TimeSpan)section1.MyNonCollection.MyNonCollectionTimeSpanProperty;
bag1[3] = section1.IsLocked;

UpdateSettings
Listing 7-91 presents the code for the UpdateSettings method.

Listing 7-91: The UpdateSettings Method

[ModuleServiceMethod]
public void UpdateSettings(PropertyBag updatedSettings)
{
if (updatedSettings == null)
throw new ArgumentNullException("updatedSettings");

MyConfigSection section1 = this.GetMyConfigSectionSection();
IEnumerator enumerator1 = updatedSettings.ModifiedKeys.GetEnumerator();
try
{
while (enumerator1.MoveNext())

275

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 275

276

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-91: (continued)

{
switch (((int)enumerator1.Current))
{
case 0:
section1.MyConfigSectionBoolProperty = (bool)updatedSettings[0];
break;

case 1:
section1.MyConfigSectionEnumProperty =

(MyConfigSectionEnum)updatedSettings[1];
break;

case 2:
section1.MyNonCollection.MyNonCollectionTimeSpanProperty =

(TimeSpan)updatedSettings[2];
break;

case 3:
section1.MyCollection.MyCollectionIntProperty = (int)updatedSettings[3];
break;

}
}

}

finally
{
IDisposable disposable1 = enumerator1 as IDisposable;
if (disposable1 != null)
disposable1.Dispose();

}

base.ManagementUnit.Update();
}

UpdateSettings first calls the GetMyConfigSectionSection method to access the MyConfigSection
object that contains the configuration settings of the <myConfigSection> configuration section:

MyConfigSection section1 = this.GetMyConfigSectionSection();

Next, UpdateSettings calls the GetEnumerator method of the ModifiedKeys property of the
PropertyBag object that contains the updated configuration settings. Recall that the PropertyBag class
exposes a property of type IDictionary named ModifiedKeys, which contains those indexes of the
PropertyBag whose associated values have changed. The GetEnumerator method returns an
IEnumerator object that you can use to iterate through these indexes in a generic fashion:

IEnumerator enumerator1 = updatedSettings.ModifiedKeys.GetEnumerator();

UpdateSettings iterates through these indexes, retrieves the associated values from the PropertyBag,
and assigns them to the respective properties of the MyConfigSection object. Finally, UpdateSettings
calls the Update method of the ManagementUnit to commit the change to the underlying configura-
tion file.

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 276

GetCollectionItems
The main responsibility of the GetCollectionItems method is to retrieve the values of the
myCollectionItemBoolAttr and myCollectionItemIdentifier attributes of all collection items
and return them to the client (see Listing 7-92).

Listing 7-92: The GetCollectionItems Method

[ModuleServiceMethod]
public PropertyBag GetCollectionItems()
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
ArrayList list = new ArrayList();
PropertyBag bag;
foreach (MyCollectionItem item in section1.MyCollection)
{
bag = new PropertyBag();
bag[0] = item.MyCollectionItemIdentifier;
bag[1] = item.MyCollectionItemBoolProperty;
list.Add(bag);

}

PropertyBag bag2 = new PropertyBag();
bag2[0] = list;
bag2[1] = section1.IsLocked;
return bag2;

}

The first order of business is to access the MyConfigSection object that provides programmatic access
to the <myConfigSection> configuration section:

MyConfigSection section1 = this.GetMyConfigSectionSection();

Next, GetCollectionItems creates an ArrayList:

ArrayList list = new ArrayList();

Recall from the previous chapters that the MyConfigSection class exposes a collection property named
MyCollection that contains one MyCollectionItem object for each collection item. GetCollectionItems
iterates through these MyCollectionItem objects and takes the following actions for each enumerated
object:

1. Creates a PropertyBag:

bag = new PropertyBag();

2. Populates the PropertyBag with the values of the myCollectionItemBoolAttr and
myCollectionItemIdentifier attributes of the collection item. Recall from the previous
chapters that the MyCollectionItem class exposes these attributes as strongly-typed properties
named MyCollectionItemIdentifier and MyCollectionItemBoolProperty:

bag[0] = item.MyCollectionItemIdentifier;
bag[1] = item.MyCollectionItemBoolProperty;

277

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 277

3. Adds the PropertyBag object to the ArrayList:

list.Add(bag);

Next, GetCollectionItems creates a PropertyBag and stores the ArrayList into it:

PropertyBag bag2 = new PropertyBag();
bag2[0] = list;

Finally, it stores the value of the isLocked attribute of the <myConfigSection> section into this
PropertyBag and returns the PropertyBag to its caller:

bag2[1] = section1.IsLocked;
return bag2;

AddCollectionItem
The AddCollectionItem method adds a new collection item with the specified
myCollectionItemBoolAttr and myCollectionItemIdentifier attribute values (see Listing 7-93).

Listing 7-93: The AddCollectionItem Method

[ModuleServiceMethod]
public void AddCollectionItem(PropertyBag bag)
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
string myCollectionItemIdentifier = (string)bag[0];
bool myCollectionItemBoolValue = (bool)bag[1];

if (ItemExists(section1.MyCollection, myCollectionItemIdentifier))
base.RaiseException("An item with the specified identifier already exists!");

section1.MyCollection.Add(myCollectionItemIdentifier, myCollectionItemBoolValue);
base.ManagementUnit.Update();

}

AddCollectionItem first accesses the MyConfigSection object as usual:

MyConfigSection section1 = this.GetMyConfigSectionSection();

Next, it retrieves the values of the myCollectionItemBoolAttr and myCollectionItemIdentifier
attributes from the PropertyBag that it has received from the client:

string myCollectionItemIdentifier = (string)bag[0];
bool myCollectionItemBoolValue = (bool)bag[1];

Then, it invokes another method named ItemExists to determine whether the MyCollection collec-
tion property of the MyConfigSection object contains an item with a specified identifier. If so, it raises
an exception:

if (ItemExists(section1.MyCollection, myCollectionItemIdentifier))
base.RaiseException("An item with the specified identifier already exists!");

278

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 278

Next, it passes the values of the myCollectionItemBoolAttr and myCollectionItemIdentifier
attributes into the Add method of the MyCollection property of the MyConfigSection object. Recall
from the previous chapters that the Add method of the MyCollection class creates a new
MyCollectionItem object with the specified MyCollectionItemBoolProperty and
MyCollectionItemIdentifier properties, and adds this object to the MyCollection collection:

section1.MyCollection.Add(myCollectionItemIdentifier, myCollectionItemBoolValue);

Finally, AddCollectionItem calls the Update method of the ManagementUnit to commit the changes
to the underlying configuration file:

base.ManagementUnit.Update();

DeleteCollectionItem
As Listing 7-94 shows, DeleteCollectionItem retrieves the value of the
myCollectionItemIdentifier attribute of the collection item being deleted from the PropertyBag
that it received from the client, and passes that value into the Remove method.

Listing 7-94: The DeleteCollectionItem Method

[ModuleServiceMethod]
public void DeleteCollectionItem(PropertyBag bag)
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
string myCollectionItemIdentifier = (string)bag[0];
if (!ItemExists(section1.MyCollection, myCollectionItemIdentifier))
base.RaiseException("The item with the specified identifier does not exist!");

section1.MyCollection.Remove(section1.MyCollection[myCollectionItemIdentifier]);
base.ManagementUnit.Update();

}

UpdateCollectionItem
Listing 7-95 presents the implementation of the UpdateCollectionItem method.

Listing 7-95: The UpdateCollectionItem Method

[ModuleServiceMethod]
public void UpdateCollectionItem(PropertyBag bag)
{
MyConfigSection section1 = this.GetMyConfigSectionSection();
string oldIdentifier = (string)bag[0];
string newIdentifier = (string)bag[1];
bool boolValue = (bool)bag[2];

if (!this.ItemExists(section1.MyCollection, oldIdentifier))
base.RaiseException("Item with the specified identifier does not exist!");

if (this.ItemExists(section1.MyCollection, newIdentifier))
base.RaiseException("An item with the specified identifier already exists!");

279

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 279

280

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-95: (continued)

MyCollectionItem item = section1.MyCollection[oldIdentifier];
item.MyCollectionItemIdentifier = newIdentifier;
item.MyCollectionItemBoolProperty = boolValue;
base.ManagementUnit.Update();

}

UpdateCollectionItem accesses the MyConfigSection object as usual:

MyConfigSection section1 = this.GetMyConfigSectionSection();

Next, it retrieves the old and new identifiers and the Boolean value of the collection item being updated
from the PropertyBag that it has received from the client:

string oldIdentifier = (string)bag[0];
string newIdentifier = (string)bag[1];
bool boolValue = (bool)bag[2];

Next, it raises an exception if the MyCollection collection of the MyConfigSection object does not
contain a MyCollectionItem with the old identifier:

if (!this.ItemExists(section1.MyCollection, oldIdentifier))
base.RaiseException("Item with the specified identifier does not exist!");

Then, it raises an exception if the MyCollection collection already contains a MyCollectionItem with
the new identifier:

if (this.ItemExists(section1.MyCollection, newIdentifier))
base.RaiseException("An item with the specified identifier already exists!");

Next, it uses the old identifier as an index into the MyCollection collection to return a reference to the
MyCollectionItem with the old identifier. This MyCollectionItem object represents the collection
item being updated:

MyCollectionItem item = section1.MyCollection[oldIdentifier];

Then, it assigns the new identifier and Boolean value to the MyCollectionItemIdentifier and
MyCollectionItemBoolProperty properties of this MyCollectionItem object. Recall that these two
properties map to the myCollectionItemIdentifier and myCollectionItemBoolAttr attributes of
the collection item being updated:

item.MyCollectionItemIdentifier = newIdentifier;
item.MyCollectionItemBoolProperty = boolValue;

Finally, it invokes the Update method to commit the changes to the underlying configuration file:

base.ManagementUnit.Update();

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 280

281

Chapter 7: Extending the Integrated Graphical Management System

Module Provider
The previous sections showed you how to implement a custom module service and a custom module.
Recall that the proxy invokes the methods of the custom module service to interact with the underlying
configuration file. The custom module, on the other hand, is used to register a custom module page with
the IIS7 Manager. This raises the following question: Who registers the custom module service and cus-
tom module? For example, in our case, who registers the MyConfigSectionModuleService custom
module service and the MyConfigSectionModule module?

The answer is a direct or indirect subclass of the ModuleProvider base class. In other words, you have
to write a custom module provider that directly or indirectly inherits from the ModuleProvider base
class to register your custom module service and custom module. This custom module provider in our
case is a class named MyConfigSectionModuleProvider.

The main responsibility of the MyConfigSectionModuleProvider custom module provider is to regis-
ter the MyConfigSectionModuleService and MyConfigSectionModule as shown in Listing 7-96.
MyConfigSectionModuleProvider inherits from ConfiguationModuleProvider, which is a subclass
of the ModuleProvider base class. As mentioned, you can derive your custom module provider from
any subclass of the ModuleProvider base class.

Listing 7-96: The MyConfigSectionModuleProvider Custom Module Provider

using Microsoft.Web.Management.Server;
using System;

namespace MyNamespace.GraphicalManagement.Server
{
class MyConfigSectionModuleProvider : ConfigurationModuleProvider
{
public override ModuleDefinition GetModuleDefinition(

IManagementContext context)
{
return new ModuleDefinition(base.Name,

typeof(Client.MyConfigSectionModule).AssemblyQualifiedName);
}

public override bool SupportsScope(ManagementScope scope)
{
return true;

}

protected sealed override string ConfigurationSectionName
{
get { return "system.webServer/myConfigSection"; }

}

public override string FriendlyName
{
get { return "myConfigSection"; }

}

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 281

Listing 7-96: (continued)

public override Type ServiceType
{
get { return typeof(MyConfigSectionModuleService); }

}
}

}

MyConfigSectionModuleProvider overrides the following members of the
ConfigurationModuleProvider class:

❑ GetModuleDefinition: The IIS7 and ASP.NET 3.5 integrated infrastructure comes with a class
named ModuleDefintion. As the name implies, this class represents or defines a module. Your
custom module provider’s implementation of the GetModuleDefintion method must call the
ModuleDefinition constructor, passing in the following parameters:

❑ The name of the custom module provider, for example,
“MyConfigSectionModuleProvider.”

❑ The assembly qualified name of the type of the custom module being registered,
which consists of five different parts: the fully qualified name of the type of the custom
module provider including its namespace containment hierarchy (for example,
Client.MyConfigSectionModule), assembly name, assembly version, assembly cul-
ture, and assembly public key token. The Type class exposes a method named
AssemblyQualfiedName that returns this five-part information.

return new ModuleDefinition(base.Name,
typeof(Client.MyConfigSectionModule).AssemblyQualifiedName);

❑ As you can see, you register your custom module (for example, MyConfigSectionModule) by
overriding the GetModuleDefinition method as just described.

❑ SupportsScope: This property determines the supported configuration hierarchy level.
Listing 7-96 returns true to signal that it supports all levels.

❑ ConfigurationSectionName: This property specifies the fully qualified name of configuration
section including its complete group hierarchy. Listing 7-96 returns
"system.webServer/myConfigSection".

❑ ServiceType: This property returns the Type object that represents the custom module service
being registered. Listing 7-96 returns typeof(MyConfigSectionModuleService). As you can
see, you register your custom module service (for example, MyConfigSectionModuleService)
by overriding the ServiceType property as just described.

282

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 282

Deployment
The last two steps of our recipe for implementing the server-side code are as follows:

❑ Compile the MyConfigSectionModuleProvider custom module provider into a strongly-
named assembly and load this assembly into the GAC. This is necessary because the IIS7
picks up assemblies from the GAC. It won’t pick up your assembly if it’s anywhere other
than the GAC.

❑ Register the MyConfigSectionModuleProvider custom module provider with the adminis-
tration.config file.

Because only strongly-named assemblies can be added to the GAC, you need to compile
MyConfigSectionModuleProvider into a strongly-named assembly. Next, I show you how to config-
ure Visual Studio to generate a strongly-named assembly. Right-click the MyConfigSection project
in the Solution Explorer panel and select the Properties option from the popup menu to launch the
Properties dialog. Switch to the Signing tab in this dialog, toggle on the “Sign the assembly” checkbox,
open the “Choose a strong name key file” combo box, and select New… as shown in Figure 7-16. This
will launch the dialog shown in Figure 7-17.

Figure 7-16

Enter MyConfigSectionKey.snk in the Key file name textbox, toggle off the “Protect my key file with a
password” checkbox, and click OK. This will automatically generate a private and a public key, store
them in a key file named MyConfigSectionKey.snk, and add the key file to your project. When you
build the project, Visual Studio will automatically sign the assembly with this private key.

283

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 283

Figure 7-17

Now configure Visual Studio to automatically add the compiled assembly to the Global Assembly Cache
(GAC). Select Build Events as shown in Figure 7-18. Scroll down to the “Post-build event command line”
textbox and enter the following command line:

"c:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\gacutil.exe" /if
"$(TargetPath)"

If the gacutil.exe tool is located in a different folder in your machine, you need to use the path to that
folder. Visual Studio automatically runs whatever script you enter in the “Post-build event command
line” textbox after it compiles the assembly. This command line uses the gacutil.exe tool to add the com-
piled assembly to the GAC automatically. The alternative to this automatic scheme is to manually add
the assembly to GAC.

Figure 7-18

284

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 284

Another neat thing you can do is to have Visual Studio automatically run the IIS7 Manager every time
you run your program so you can see the effects of your code changes immediately without having to
run the IIS7 Manager manually to test your code. Switch to the Debug tab as shown in Figure 7-19, tog-
gle on the “Start external program” checkbox, and enter the following command line:

C:\Windows\System32\inetsrv\InetMgr.exe

Make sure you save everything.

Figure 7-19

The last step of the recipe for implementing the server-side code is to register the
MyConfigSectionModuleProvider module provider with the administration.config file. Open
this file and add the boldfaced portions of Listing 7-97 to the <moduleProviders> and <modules> sec-
tions of this file. You must replace the value of the PublicKeyToken parameter shown in Listing 7-97
with a different value as discussed later in this section.

It’s important that you add entries to both sections. If you don’t add the entry to the <modules> sec-
tions, you will only be able to set the configuration settings for your custom configuration section from
the machine configuration hierarchy level. In other words, you won’t be able to do it in the site or appli-
cation level.

Listing 7-97: The administration.config File

<configuration>
<moduleProviders>
<add name="MyConfigSectionModuleProvider"
type="MyNamespace.Server.MyConfigSectionModuleProvider, MyConfigSection,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=ce416d19f343c56f" />
. . .

</moduleProviders>

<location path=".">

285

Chapter 7: Extending the Integrated Graphical Management System

(Continued)

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 285

286

Chapter 7: Extending the Integrated Graphical Management System

Listing 7-97: (continued)

<modules>
<add name="MyConfigSectionModuleProvider"/>
. . .

</modules>
</location>

</configuration>

Note that the <add> element in the <moduleProviders> section features two attributes named name
and type. The name attribute contains the friendly name of your custom module provider. You can use
any name you want as long as it’s unique; that is, no other module provider in the <moduleProviders>
section has the same name. The only restriction is that the name attribute for the <add> element in the
<modules> section must match the name attribute used in the <moduleProviders> section. The type
attribute consists of a comma-separated list of five items. The first item is the fully qualified name of the type
of your custom module provider, which is MyNamespace.Server.MyConfigSectionModuleProvider in
our case. The last four items specify the assembly that contains the MyConfigSectionModuleProvider.
Note that the assembly information includes the assembly public key token. To access the public key
token of the assembly, launch the Windows Explorer and navigate to the assembly directory where you
can view the contents of the GAC. Right-click the MyConfigSection.dll assembly and select the
Properties option to launch the Properties dialog shown in Figure 7-20. Copy the public key token
shown in this dialog and paste the value into the administration.config file.

Figure 7-20

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 286

Summary
Extending the IIS7 and ASP.NET 3.5 integrated graphical management system requires writing two sets
of managed code: client- and server-side code. I presented a recipe for writing the client-side managed
code and a recipe for writing the server-side managed code. Then, I used these recipes to extend the IIS7
and ASP.NET 3.5 integrated graphical management system to add graphical management support for
the MyConfigSection configuration section to allow the clients of this configuration section to view
and to edit this configuration section directly from the IIS7 Manager.

As should be clear by now, the configuration section is the unit of extensibility in the IIS7 and ASP.NET
integrated configuration system. The feature modules that make up the IIS7 and ASP.NET integrated
request processing pipeline are normally associated with configuration sections from which they can be
configured. The next chapter shows you how to extend the IIS7 and ASP.NET integrated request pro-
cessing pipeline to implement and plug in fully configurable custom module features to add support for
custom request processing capabilities.

287

Chapter 7: Extending the Integrated Graphical Management System

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 287

52539c07.qxd:WroxPro 9/17/07 6:56 PM Page 288

Extending the
Integrated Request

Processing Pipeline

This chapter shows you how to implement and how to plug configurable managed handlers, han-
dler factories, and modules into the IIS 7 and ASP.NET integrated request processing pipeline to
extend this integrated pipeline to add support for custom configurable request processing capabil-
ities. I present the discussions in the context of several practical examples that you can use in your
own Web applications.

Extending the Integrated Pipeline
through Managed Code

One of the great architectural advantages of the new IIS 7 and ASP.NET integrated request pro-
cessing pipeline is its extensibility through managed code. In general, there are three main ways to
extend the IIS 7 and ASP.NET integrated request processing pipeline through managed code: you
can write a managed module, handler, or handler factory and plug it into the IIS 7 and ASP.NET
integrated request processing pipeline to extend the pipeline to add support for new request pro-
cessing capabilities.

A managed handler is an ASP.NET object responsible for handling or processing requests for
ASP.NET resources with particular file extensions. For example, the managed handler that
processes requests for an ASP.NET page (a resource with file extension .aspx) is an instance of a
class that directly or indirectly derives from the ASP.NET Page class.

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 289

The ASP.NET parser automatically parses the requested ASP.NET page into a dynamically generated
class that inherits from the ASP.NET Page class. ASP.NET then dynamically compiles this dynami-
cally generated class into an assembly, loads the assembly into the application domain that contains the
current ASP.NET application, instantiates an instance of this compiled class, and hands the request
over to the instance for processing. This instance is responsible for generating the HTML markup and
client-side code that is sent back to the browser as the server response. In other words, the instance is the
managed handler that handles the request for the requested ASP.NET page.

A managed module, on the other hand, is an ASP.NET object responsible for pre-processing or
post-processing ASP.NET requests. For example, ASP.NET authentication modules such as
FormsAuthenticationModule help to establish the identity of the requester before the request is
handed over to the managed handler for processing. As you can see, a managed module does not process
or handle the request. Instead it pre-processes the request before it is processed by the handler, or post-
processes the request after it is processed by the handler and before the response is sent back to the client.

As a result, the same module may pre-process or post-process requests for resources with different file
extensions. As a matter of fact, IIS 7 allows you to use a managed module to pre-process or post-process
requests for both ASP.NET and non-ASP.NET contents even though requests for ASP.NET contents are
handled by managed handlers and requests for non-ASP.NET contents are handled by unmanaged han-
dlers. In other words, a managed module can pre-process and post-process a request regardless of
whether the request is handled by a managed or unmanaged handler.

A managed handler factory is an ASP.NET object responsible for instantiating and initializing the han-
dler responsible for processing requests for resources with particular file extensions. For example, the
PageHandlerFactory is the managed handler factory responsible for instantiating and initializing the
handler responsible for processing requests for ASP.NET pages.

As a matter of fact, the PageHandlerFactory handler factory contains the logic that: a) parses the
requested ASP.NET page into a dynamically generated class that derives from the ASP.NET Page class,
b) compiles this dynamically generated class into an assembly, c) loads this assembly into the application
domain that contains the current ASP.NET application, and d) instantiates this complied class.

The rest of this chapter uses practical examples to show you how to implement your own custom man-
aged module, handler, and handler factories and how to plug them into the IIS 7 and ASP.NET inte-
grated request processing pipeline to extend this pipeline to add support for custom request processing
capabilities.

Managed Handlers
All managed handlers implement an ASP.NET interface named IHttpHandler as defined in Listing 8-1.

Listing 8-1: The IHttpHandler Interface

public interface IHttpHandler
{
void ProcessRequest(HttpContext context);
bool IsReusable { get; }

}

290

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 290

This interface exposes the following members:

❑ ProcessRequest: As the name suggests, this method is responsible for processing the current
request and generating the markup text that is sent back to the requester. Note that this method
takes a single argument of type HttpContext, which refers to the current HttpContext object.
(I discuss the HttpContext class shortly.) Your custom HTTP handler’s implementation of the
ProcessRequest method must include whatever logic you need to generate the appropriate
markup text, which is then sent to the requester. The nature of this markup text depends on the
type of ASP.NET resource. For example, the ProcessRequest method of the handler that
processes a request for an ASP.NET page generates the HTML markup and client-side code that
represents the page. The ProcessRequest method of the handler that processes a request for
an ASP.NET Web service (with the file extension .asmx), on the other hand, generates a SOAP
response message, which is then sent back to the requester. In this chapter, you develop a man-
aged handler whose ProcessRequest method will generate an RSS document.

❑ IsReusable: As the name suggests, this read-only property returns a Boolean value that speci-
fies whether the same handler can be used for processing different requests for the same
ASP.NET resource. Your implementation of this property should normally return false.

As the name implies, the current HttpContext object defines the context within which the current request is
pre-processed, processed, and post-processed. The current HttpContext object springs into life when the
current request arrives in ASP.NET and is disposed of when the server response is sent back to the requester.
In other words, the current HttpContext object lives as long as the current request. As such, anything that
you store in the current HttpContext object will be disposed of at the end of the current request.

The current HttpContext object exposes properties that reference the well-known ASP.NET objects such
as Request, Response, Server, and so on. Therefore, you can use the current HttpContext object to
access these ASP.NET objects from the ProcessRequest method of your custom handler. Recall that
ASP.NET passes a reference to the current HttpContext object into the ProcessRequest method of
your custom handler when it invokes this method.

Developing Custom Managed Handlers
In this section, I present and discuss the implementation of a custom managed handler named
RssHandler, which will process the requests for resources with the file extension .rss. Really Simple
Syndication (RSS) is a format for syndicating news (or other frequently updated content). Before diving
into the implementation of RssHandler, I briefly describe the RSS 2.0 format. Listing 8-2 shows an
example of an RSS document.

Listing 8-2: An Example of an RSS Document

<?xml version=”1.0” encoding=”utf-8”?>
<rss version=”2.0”>
<channel>
<title>New Articles On localhost</title>
<link>http://localhost/RssHandlerCh8</link>
<description>The list of newly published articles on localhost</description>
<item>
<title>What’s new in ASP.NET?</title>
<description>Describes the new ASP.NET features</description>

291

Chapter 8: Extending the Integrated Request Processing Pipeline

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 291

292

Chapter 8: Extending the Integrated Request Processing Pipeline

Listing 8-2: (continued)

<link>http://localhost/RssHandlerCh8/Smith.aspx</link>
</item>
<item>
<title>XML Programming</title>
<description>Reviews .NET 2.0 XML programming features</description>
<link>http://localhost/RssHandlerCh8/Carey.aspx</link>

</item>
<item>
<title>XSLT in ASP.NET Applications</title>
<description>Shows how to use XSLT in your ASP.NET applications</description>
<link>http://localhost/RssHandlerCh8/Smith.aspx</link>

</item>
</channel>

</rss>

As you can see, RSS is an XML document with a document element named <rss>, which has a manda-
tory attribute named version. I cover only version 2.0 here. The <rss> document element has a single
child element named <channel>, which has three required elements named <title>, <link>, and
<description>. The <channel> element may also contain zero or more <item> elements. Listing 8-2
shows three child elements of the <item> element: <title>, <description>, and <link>.

To generate RSS for your application, you could use a data-bound control such as Repeater to generate
the RSS document. The problem with this approach is that every time the user accesses the document, the
request goes through the typical page life cycle even though the RSS document doesn’t contain any
HTML markup text. To avoid the overhead of normal ASP.NET request processing, this section imple-
ments a custom HTTP handler named RssHandler to replace the normal page handler.

The RssHandler generates the required RSS document from a database table named Articles with
data fields named Title, Abstract, and AuthorName (see Figure 8-1). Each record of the Articles
table stores the title, abstract, and author name for a particular article. As you’ll see shortly, each record
of the Articles table maps into a particular <item> XML child element of the <channel> XML ele-
ment of the RSS document; the <title>, <description>, and <link> subelements of the <item>
element display the values of the Title and Abstract data fields and the formatted value of the
AuthorName data field of the associated data record, as shown in Figure 8-2.

Figure 8-1

Figure 8-2

Control

ScrollableControl

Panel

ManagementPanel

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 292

293

Chapter 8: Extending the Integrated Request Processing Pipeline

Now launch Visual Studio. Add a blank solution named ProIIS7AspNetIntegProgCh8 and
add a new Class Library project named RssHandlerProj to this solution. Right-click RssHandlerProj
in the Solution Explorer and select the Properties option. Switch to the Application tab and enter
ProIIS7AspNetIntegProgCh8 into the “Assembly name” and “Default namespace” textboxes and save
the changes. Add references to the System.Configuration.dll and System.Web.dll assemblies to
the RssHandlerProj project.

Use the approach discussed in Chapter 7 to configure Visual Studio to generate a strongly-named assem-
bly for the RssHandlerProj project and to have Visual Studio automatically deploy this assembly to the
Global Assembly Cache (GAC). Another alternative is to use Windows Explorer to manually add your
strongly-named assembly to GAC.

Listing 8-3 presents the implementation of the RssHandler HTTP handler. Now add a new source file
named RssHandler.cs to the RssHandlerProj Class Library project and add the code shown in this
code listing to this source file.

Listing 8-3: The RssHandler HTTP Handler

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Data.SqlClient;
using System.IO;
using System.Collections;

namespace ProIIS7AspNetIntegProgCh8
{
public class RssHandler : IHttpHandler
{
string channelTitle;
string channelLink;
string channelDescription;
string itemTitleField;
string itemDescriptionField;
string itemLinkField;
string itemLinkFormatString;
string connectionStringName;
string commandText;
CommandType commandType;

public RssHandler()
{
channelTitle = “New Articles On localhost”;
channelLink = “http://localhost/RssHandlerCh8”;
channelDescription = “The list of newly published articles on localhost”;
itemTitleField = “Title”;
itemDescriptionField = “Abstract”;
itemLinkField = “AuthorName”;
itemLinkFormatString = “http://localhost/ RssHandlerCh8/{0}.aspx”;
connectionStringName = “MyConnectionString”;
commandText = “Select * From Articles”;

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 293

Listing 8-3: (continued)

commandType = CommandType.Text;
}

bool IHttpHandler.IsReusable
{
get { return false; }

}

SqlDataReader GetDataReader()
{
SqlConnection con = new SqlConnection();
ConnectionStringSettings settings =

ConfigurationManager.ConnectionStrings[connectionStringName];
con.ConnectionString = settings.ConnectionString;
SqlCommand com = new SqlCommand();
com.Connection = con;
com.CommandText = commandText;
com.CommandType = commandType;
con.Open();
return com.ExecuteReader(CommandBehavior.CloseConnection);

}

public void LoadRss(Stream stream)
{
SqlDataReader reader = GetDataReader();

ArrayList items = new ArrayList();
Item item;
while (reader.Read())
{
item = new Item();
item.Title = (string)reader[itemTitleField];
item.Link = (string)reader[itemLinkField];
item.Description = (string)reader[itemDescriptionField];
item.LinkFormatString = itemLinkFormatString;
items.Add(item);

}
reader.Close();

Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);
}

void IHttpHandler.ProcessRequest(HttpContext context)
{
context.Response.ContentType = “text/xml”;
LoadRss(context.Response.OutputStream);

}
}

}

294

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 294

I discuss the implementation of the members of the RssHandler HTTP handler in the following sec-
tions. However, before diving into the implementations of these members, I present the implementations
of two classes named Channel and Item that the implementation of the RssHandler HTTP handler
uses. The RssHandler HTTP handler’s implementation uses an instance of the Channel class to repre-
sent the channel information. The following code fragment contains the code for this class. Add a new
source file named Channel.cs to the RssHandlerProj Class Library project and add the code shown
here to this source file:

namespace ProIIS7AspNetIntegProgCh8
{
public class Channel
{
private string title;
private string description;
private string link;

public string Title
{
get { return title; }
set { title = value; }

}

public string Description
{
get { return description; }
set { description = value; }

}

public string Link
{
get { return link; }
set { link = value; }

}
}

}

The RssHandler HTTP handler also uses an instance of the Item class to represent each RSS item. The
following code listing contains the implementation of this class. Add a new source file named Item.cs
to the RssHandlerProj Class Library project and add the code shown here:

namespace ProIIS7AspNetIntegProgCh8
{
public class Item
{
private string title;
private string description;
private string link;
private string linkFormatString;

public string Title
{
get { return title; }
set { title = value; }

295

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 295

}

public string Description
{
get { return description; }
set { description = value; }

}

public string Link
{
get { return link; }
set { link = value; }

}

public string LinkFormatString
{
get { return linkFormatString; }
set { linkFormatString = value; }

}
}

}

IsReusable
The RssHandler HTTP handler, like any other ASP.NET HTTP handler, implements the IHttpHandler
interface. The RssHandler HTTP handler’s implementation of the IsReusable read-only property sim-
ply returns false to specify that the same handler must not be used to handle different requests for the
resources with the .rss extension:

bool IHttpHandler.IsReusable
{
get { return false; }

}

Constructor
Note that the constructor of RssHandler simply initializes the private fields of the handler:

❑ channelTitle: This private field specifies the text that goes within the opening and closing
tags of the title element.

❑ channelLink: This private field specifies the link that goes within the opening and closing tags
of the link element.

❑ channelDescription: This private field specifies the text that goes within the opening and
closing tags of the description element.

❑ itemTitleField: This private field specifies the name of the database field whose values are
displayed within the opening and closing tags of the <title> elements.

❑ itemDescriptionField: This private field specifies the name of the database field whose val-
ues are displayed within the opening and closing tags of the <description> elements.

❑ itemLinkField: This private field specifies the name of the database field whose values are
displayed within the opening and closing tags of the <link> elements.

296

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 296

❑ itemLinkFormatString: This private field specifies the string format that will be used to for-
mat the values of the database field given by the itemLinkField before they’re displayed
within the opening and closing tags of the <link> elements. For example, the itemLinkField
in the following code fragment is set to the database field named AuthorName and the
itemLinkFormatString is set to the format string that uses the value of the AuthorName data-
base field as the name of the ASP.NET page that contains the information about the specified
author.

itemLinkField = “AuthorName”;
itemLinkFormatString = “http://localhost/WebSite23/{0}.aspx”;

❑ connectionStringName: This private field specifies the value of the name attribute of the
<add> subelement of the <connectionStrings> section of the web.config file whose
connectionString attribute contains the actual connection string. Here is an example:

<configuration>
<connectionStrings>
<add name=”MyConnectionString” providerName=”System.Data.SqlClient”
connectionString=”data source=serverName;Initial Catalog=Providers;

integrated security=SSPI”/>
</connectionStrings>

</configuration>

Connection strings are some of the most important resources of your application and you have to take
all the necessary precautions to ensure that hackers do not get a hold of your connection strings. Keep in
mind that a connection string contains the complete information to connect to your database. Imagine
how much damage hackers can cause if they get a hold of your connection strings. To avoid such secu-
rity problems, the web.config file comes with a section named <connectionStrings> where you
can store your connection strings under arbitrary friendly names. Your pages will then include only the
friendly names as opposed to the connection strings themselves. Putting your connection strings in the
web.config file provides two benefits. First, the ASP.NET Framework rejects the request directly
made for downloading the web.config file. Second, the ASP.NET Framework allows you to encrypt
and electronically sign selected sections of the web.config file such as <connectionStrings>.
Therefore, even if the hackers somehow manage to download the web.config file, they will not be able
to read the content of the <connectionStrings> section without the required keys.

❑ commandText: This private field specifies the SQL Select statement or stored procedure that
selects the required records from the underlying database table.

❑ commandType: This private field specifies whether the commandText private field contains the
actual SQL Select statement or a stored procedure.

ProcessRequest
The following excerpt from Listing 8-3 presents the RssHandler’s implementation of the
ProcessRequest method of the IHttpHandler interface:

void IHttpHandler.ProcessRequest(HttpContext context)
{
context.Response.ContentType = “text/xml”;
LoadRss(context.Response.OutputStream);

}

297

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 297

As you can see, the ProcessRequest method first uses the HttpContext object passed into it to access
the ASP.NET Response object. Recall that the ASP.NET Response object represents the current HTTP
response and exposes properties that map into the response parameters. The Response object exposes a
property named ContentType that maps into the Content-Type HTTP header of the server response.
The ProcessRequest method sets the value of this property to “text/xml” to signal the client that the
response contains an XML document. Keep in mind that the RSS document is an XML document:

context.Response.ContentType = “text/xml”;

Next, the ProcessRequest method invokes a method named LoadRss, passing in a reference to the
response output stream. As you’ll see in the next section, LoadRss generates the RSS document and
writes the document into the response output stream.

LoadRss(context.Response.OutputStream);

LoadRss
Listing 8-4 presents the implementation of the LoadRss method.

Listing 8-4: The LoadRss Method

public void LoadRss(Stream stream)
{
SqlDataReader reader = GetDataReader();

ArrayList items = new ArrayList();
Item item;
while (reader.Read())
{
item = new Item();
item.Title = (string)reader[itemTitleField];
item.Link = (string)reader[itemLinkField];
item.Description = (string)reader[itemDescriptionField];
item.LinkFormatString = itemLinkFormatString;
items.Add(item);

}
reader.Close();

Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);
}

As you can see from Listing 8-4, LoadRss begins by calling a method named GetDataReader to return a
SqlDataReader that contains the data records. Keep in mind that each data record contains information
about a particular RSS item.

SqlDataReader reader = GetDataReader();

298

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 298

Next, it instantiates an ArrayList that will be populated with the Item objects, each an instance of the
Item class, which exposes four properties named Title, Link, Description, and LinkFormatString:

ArrayList items = new ArrayList();

Then, LoadRss iterates through the data records in the SqlDataReader and performs these tasks for
each enumerated data records:

1. Creates an Item object:

item = new Item();

2. Stores the values of the data fields whose names are given by the itemTitleField,
itemLinkField, and itemDescriptionField private fields in the Title, Link, and
Description properties of the Item object:

item.Title = (string)reader[itemTitleField];
item.Link = (string)reader[itemLinkField];
item.Description = (string)reader[itemDescriptionField];

3. Adds the Item object to the ArrayList:

items.Add(item);

Next, LoadRss creates a Channel object and populates it with the channel-related values:

Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

Finally, LoadRss invokes the GenerateRss static method on a helper class named RssHelper, passing
in the Channel object, an array that contains the Item objects, and the reference to the response output
stream. As you’ll see later in this chapter, the GenerateRss method uses the channel information stored
in the Channel object and the item information stored in the Item array to generate the RSS document
and writes this document into the response output stream.

RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);

GetDataReader
As Listing 8-3 shows, GetDataReader uses ADO.NET to connect to the underlying database to retrieve
the required data. This method returns a SqlDataReader that streams out the retrieved data.

GenerateRss
The GenerateRss static method is a helper method that generates the actual RSS document. This
method takes three parameters. The first parameter refers to the Channel object that contains the chan-
nel information, the second parameter is an array of Item objects that each contain the information
about a particular RSS item, and the last parameter refers to the response output stream. The main
responsibility of this method is to generate the RSS document and to write this document into the
response output stream. Listing 8-5 presents the implementation of this method. Now add a new source
file named RssHelper.cs to the RssHandlerProj Class Library project and add the code shown in this
code listing to this source file.

299

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 299

Listing 8-5: The GenerateRss Method of the RssHelper Class

using System;
using System.Configuration;
using System.Collections.Specialized;
using System.IO;
using System.Xml;

namespace ProIIS7AspNetIntegProgCh8
{
public class RssHelper
{
public static void GenerateRss(Channel channel, Item[] items, Stream stream)
{
XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

using (XmlWriter writer = XmlWriter.Create(stream,settings))
{
writer.WriteStartDocument();
writer.WriteStartElement(“rss”);
writer.WriteAttributeString(“version”, “2.0”);
writer.WriteStartElement(“channel”);
writer.WriteElementString(“title”, channel.Title);
writer.WriteElementString(“link”, channel.Link);
writer.WriteElementString(“description”, channel.Description);
foreach (Item item in items)
{
writer.WriteStartElement(“item”);
writer.WriteElementString(“title”, item.Title);
writer.WriteElementString(“description”, item.Description);
writer.WriteElementString(“link”,

string.Format(item.LinkFormatString, item.Link));
writer.WriteEndElement();

}
writer.WriteEndElement();
writer.WriteEndElement();
writer.WriteEndDocument();

}
}

}
}

As Listing 8-5 shows, this method begins by instantiating an XmlWriterSettings object, and setting its
Indent property to request the XmlWriter to indent the RSS document:

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

Next, it instantiates the XmlWriter that will be used to write the RSS document into the response output
stream:

using (XmlWriter writer = XmlWriter.Create(stream, settings))

300

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 300

The XmlWriter class implements the IDisposable interface, which exposes a single method named
Dispose. The using construct automatically invokes the Dispose method of the specified object
when the object goes out of scope. The Dispose method of the XmlWriter internally calls the Close
method on the XmlWriter to close the writer. As you can see, the using construct saves you from
having to explicitly invoke the Close method. This also avoids a common bug where the developer for-
gets to invoke the Close method to close the writer. The same argument applies to XmlReader.
Therefore it is highly recommended that you instantiate and use XmlWriter and XmlReader within
the context of a using construct.

Next, the GenerateRss method invokes the WriteStartDocument method on the XmlWriter to mark
the beginning of the RSS document and to write the XML declaration into the response output stream:

writer.WriteStartDocument();

Then, it calls the WriteStartElement method on the XmlWriter to write the opening tag of the rss
document element (<rss>) into the response output stream:

writer.WriteStartElement(“rss”);

Next, it calls the WriteAttributeString method on the XmlWriter to write the version attribute and
its value on the opening tag of the rss document element (<rss version=”2.0”>) into the response
output stream:

writer.WriteAttributeString(“version”, “2.0”);

Then, it calls the WriteStartElement method on the XmlWriter to write out the opening tag of the
channel child element (<channel>):

writer.WriteStartElement(“channel”);

Next, it calls the WriteElementString method to write the title child element of the channel ele-
ment and its content (<title>...</title>) into the response output stream:

writer.WriteElementString(“title”, channel.Title);

Then, it invokes the WriteElementString method to write the link child element and its content
(<link>…</link>) into the response output stream:

writer.WriteElementString(“link”, channel.Link);

Next, it calls the WriteElementString method once again to write out the description child element
and its content (<description>...</description>):

writer.WriteElementString(“description”, channel.Description);

Then, it iterates through the Item objects in the items collection and performs these tasks for each enu-
merated Item object:

1. Invokes the WriteStartElement method to write out the opening tag of the item child ele-
ment (<item>):

writer.WriteStartElement(“item”);

301

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 301

2. Calls the WriteElementString method to write out the title child element and its content
(<title>...</title>):

writer.WriteElementString(“title”, item.Title);

3. Invokes the WriteElementString once again to write out the description child element and
its content (<description>...</description>):

writer.WriteElementString(“description”, item.Description);

4. Calls the WriteElementString once more to write out the link child element and its content
(<link>...</link>). Note that it uses the Format method, passing in the format string and
link to format the link before it writes it into the stream:

writer.WriteElementString(“link”,
string.Format(item.LinkFormatString, item.Link));

5. Invokes the WriteEndElement to write out the closing tag of the item child element
(</item>):

writer.WriteEndElement();

Next, it invokes the WriteEndElement method twice to write out the closing tags of the channel and
rss elements, that is, (</channel> and </rss>):

writer.WriteEndElement();
writer.WriteEndElement();

Finally, it invokes the WriteEndDocument method to mark the end of the RSS document:

writer.WriteEndDocument();

As you can see, the XmlWriter writes XML in streaming fashion. This is in contrast to the DOM and the
XPathNavigator random-access XML APIs.

Plugging Custom Managed Handlers into the Integrated
Request Processing Pipeline

The previous section showed you how to implement your own custom managed handler. This section
shows you how to plug your custom managed handlers into the IIS 7 and ASP.NET integrated request
processing pipeline to extend the pipeline to add support for custom requesting processing capabilities.
You’ll plug your RssHandler HTTP handler into the IIS 7 and ASP.NET integrated request processing
pipeline to enable this pipeline to generate and to send an RSS document in response to a request for a
resource with the file extension .rss.

Take these steps to plug your custom HTTP handler into the IIS 7 and ASP.NET integrated request pro-
cessing pipeline:

1. Choose the level at which you want to register your custom HTTP handler:

❑ The IIS 7 Web server level: Register your custom HTTP handler with the IIS 7 Web
server level if you want all Web sites running on your server to use your custom HTTP
handler.

302

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 302

❑ A specific ASP.NET Web site, application, or virtual directory level: Register your cus-
tom HTTP handler with a particular ASP.NET Web site, application, or virtual directory
if you want that particular Web site, application, or virtual directory to use your custom
HTTP handler.

2. Compile your custom HTTP handler into an assembly. How you compile your HTTP handler
depends on the level at which you want to register it:

❑ If you want to register your custom HTTP handler at the IIS 7 Web server level, you
must compile your HTTP handler into a strongly-named assembly and deploy it to the
Global Assembly Cache (GAC) because IIS 7 only picks up assemblies deployed to the
GAC. It does not pick up assemblies deployed anywhere else such as the bin directory
of a particular Web site or Web application.

❑ If you want to register your custom HTTP handler at a particular ASP.NET Web site,
application, or virtual directory level, you have several compilation options. One option
is to compile your HTTP handler into a strongly-named assembly and deploy this
assembly to the Global Assembly Cache (GAC). Another option is to add the source
files of your HTTP handler to the App_Code directory of the Web site or Web applica-
tion with which you want to register your HTTP handler, and have the ASP.NET compi-
lation infrastructure automatically compile your HTTP handler into a dynamic
assembly. Yet another option is to manually compile your HTTP handler into an assem-
bly and add this assembly to the bin directory of the Web site or Web application with
which you want to register your HTTP handler.

3. Add a reference to the assembly containing your custom HTTP handler to the ASP.NET Web site
or Web application with which you want to register your custom HTTP handler. Obviously, this
step applies only if you want to register your custom HTTP handler with a particular ASP.NET
Web site or Web application.

Because the IIS 7 Web server expects all the referenced assemblies to be in the GAC, there is no
need to take extra steps to add a reference to the assembly containing your custom HTTP han-
dler if you want to register your custom HTTP handler with the IIS 7 Web server.

4. Register your custom HTTP handler with the IIS 7 Web server or the ASP.NET Web site or Web
application of interest. You have several different registration options:

❑ Declarative registration: Declarative registration allows you to register your HTTP han-
dler directly from a configuration file.

❑ Graphical registration: Graphical registration allows you to register your HTTP handler
directly from the IIS 7 Manager.

❑ Imperative registration: Imperative registration allows you to register your HTTP han-
dler directly from managed code.

Next, you use this recipe to plug the RssHandler HTTP handler into the IIS 7 and ASP.NET integrated
request processing pipeline. The first order of business is to decide the level at which you want to regis-
ter the RssHandler HTTP handler. First, I cover the IIS 7 Web server–level registration.

The next order of business is to decide how you want to compile the RssHandler HTTP handler. You’ve
already taken care of this step because you’ve configured Visual Studio to compile the RssHandler
HTTP handler into a strongly-named assembly and to deploy this assembly to the GAC. The next step of

303

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 303

the recipe requires you to add a reference to this assembly. Obviously this step does not apply to the case
at hand because you want to register the RssHandler HTTP handler with the IIS 7 Web server.

The last step of the recipe is where you do the actual registration. I cover all three declarative, graphical,
and imperative registration options. The declarative registration allows you to register the RssHandler
HTTP handler directly from a configuration file. This configuration file in this case is the
applicationHost.config file because you’re registering the RssHandler HTTP handler at the IIS 7
Web server level. Open this file in your favorite editor and add the boldfaced portion of Listing 8-6 to
this file. Don’t forget to set the PublicKeyToken attribute to the actual value of the public key token of
the assembly that contains the RssHandler HTTP handler. Chapter 7 showed you how to access the
public key token of an assembly.

Listing 8-6: The Portion of the applicationHost.config File That Registers RssHandler

<configuration>
<system.webServer>
<handlers>
<add name=”Ch8_RssHandler” path=”*.rss” verb=”*”
type=”ProIIS7AspNetIntegProgCh8.RssHandler, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=369d834a77” preCondition=”integratedMode” />
</handlers>

</system.webServer>
</configuration>

As you can see, you must add an <add> child element to the handlers section of the
<system.webServer> group and set the following attributes on this <add> child element to register
your custom HTTP handler:

❑ Set the path attribute to the file extension that your HTTP handler supports. Use a wildcard
character (*) to specify that this handler supports requests for all resources with the specified
file extension. In this case, you’ve set the path attribute to *.rss to specify that this handler
processes requests for all resources with the file extension .rss.

❑ Set the name attribute to the friendly name of your HTTP handler. You can choose any friendly
name you want as long as it is unique, that is, as long as no other handler has the same friendly
name. The friendly name of your handler is used to locate and access your handler among other
handlers in the handlers subsection of the system.webServer section. In this case, you’ve
used Ch8_RssHandler as the friendly name of your RssHandler HTTP handler.

❑ Set the verb attribute to a comma-separated list of HTTP verbs that your HTTP handler sup-
ports. Use a wildcard character if your handler supports all types of HTTP verbs.

❑ Set the type attribute to a comma-separated list of up to five parts. Only the first part is manda-
tory, and must contain the fully qualified name of the type of the handler, including its complete
namespace containment hierarchy. The last four parts must specify the assembly that contains
the type, including the assembly’s name, version, culture, and public key token.

❑ Set the preCondition attribute to integratedMode if you want your handler to be used only
when IIS 7 is running in integrated mode.

Next, I show you how to register the RssHandler HTTP handler directly from the IIS 7 Manager.
Launch the IIS 7 Manager and select the Web server node in the Connections pane. You should see the
result shown in Figure 8-3.

304

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 304

Figure 8-3

Note that the workspace in Figure 8-3 contains an item named Handler Mappings. Either double-click
this item or select this item and click the Open Feature link in the task panel to navigate to the Handler
Mappings module page shown in Figure 8-4.

Figure 8-4

305

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 305

The Handler Mappings module page allows you to register a new handler for handling or processing
requests for a specific file extension. Now click the Add Managed Handler link in the task panel associ-
ated with this module page to launch the Add Managed Handler task form shown in Figure 8-5.

Figure 8-5

The Add Managed Handler task form contains a combo box labeled Type that displays the list
of all HTTP handlers in all assemblies deployed to the Global Assembly Cache (GAC). As Figure 8-6
shows, this combo box also contains the RssHandler HTTP handler. This is because when you
build the RssHandlerProj Class Library project, Visual Studio automatically deploys the
ProIIS7AspNetIntegProgCh8 assembly, which contains your RssHandler HTTP handler,
to the GAC.

Figure 8-6

Now enter *.rss in the “Request path” textbox, select ProIIS 7AspNetIntegProgCh8.RssHandler from the
Type combo box, enter Ch8_RssHandler as the friendly name of the RssHandler HTTP handler in the
“Name” textbox, as shown in Figure 8-7, and click OK. The callback for this button under the hood uses
the appropriate proxy to add the boldfaced portion of Listing 8-6 to the applicationHost.config file.

306

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 306

Figure 8-7

As Figure 8-8 shows, after you click OK on the Add Managed Handler task form to commit the changes
to the underlying configuration file, the Handler Mappings module page is automatically updated to
display the RssHandler HTTP handler.

Figure 8-8

When you click the Add Managed Handler link button in the task form associated with the Handler
Mappings module page shown in Figure 8-4 to launch the Add Managed Handler task form shown in
Figure 8-5, the OnLoad method of this task form under the hood invokes the appropriate method of the
underlying proxy to download the list of available managed handlers from the server. Listing 8-7 pres-
ents a simplified version of the logic that the server-side code uses to retrieve the list of available man-
aged handlers.

307

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 307

Listing 8-7: A Simplified Version of the Server-Side Logic That Retrieves the List of
Managed Handlers

public virtual string[] GetManagedHandlers()
{
ArrayList managedHandlers = new ArrayList();
ICollection assemblyNames = Gac.GetAssembliesInGAC();
foreach (string assemblyName in assemblyNames)
{
Assembly assembly = Assembly.Load(assemblyName);
Type[] types = assembly.GetExportedTypes();
for (int i = 0; i < types.Length; i++)
{
if (typeof(IHttpHandler).IsAssignableFrom(types[i]) &&

type.IsClass && !type.IsAbstract)
managedHandlers.Add(type.FullName);

}
}

return managedHandlers.ToArray();
}

As Listing 8-7 shows, this logic first instantiates an ArrayList, which will be populated with the fully
qualified names of available managed handlers:

ArrayList managedHandlers = new ArrayList();

Then, it invokes a static method named GetAssembliesInGac on an internal class named Gac to
retrieve the list of assemblies in the Global Assembly Cache (GAC):

ICollection assemblyNames = Gac.GetAssembliesInGAC();

Next, it iterates through this list and takes these steps for each enumerated assembly name:

1. Invokes a static method named Load on a .NET class named Assembly passing in the enumer-
ated assembly name. This method returns an Assembly object, which represents the assembly
with the specified name.

Assembly assembly = Assembly.Load(assemblyName);

2. Invokes the GetExportedTypes method on this Assembly object. This method returns a collec-
tion of Type objects that represent the public types defined in this assembly, which are visible
outside the assembly.

Type[] types = assembly.GetExportedTypes();

3. Searches through the collection of Type objects returned from the GetExportedTypes method
for those types that meet all the following conditions:

❑ They implement the IHttpHandler interface.

❑ They are classes.

❑ They are not abstract classes.

308

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 308

and adds the fully-qualified names of these types to the managedHandlers ArrayList.

if (typeof(IHttpHandler).IsAssignableFrom(types[i]) && type.IsClass &&
!type.IsAbstract)

managedHandlers.Add(type.FullName);

4. Finally, it loads the content of the managedHandlers ArrayList into an array and returns the
array to its caller. In other words, the Add Managed Handler task form receives an array, which
contains the fully qualified names of available managed HTTP handlers, from the server and
displays them in the Type combo box.

So far, I’ve discussed two different ways to register the custom RssHandler HTTP handler with the IIS 7
Web server: declarative through the configuration file, and graphical through the IIS 7 Manager. The third
way to register a custom HTTP handler with the IIS 7 Web server is through managed code as follows.

Add a new Console Application named RssHandlerConsoleApplication to the
ProIIS7AspNetIntegProgCh8 solution. Add the code shown in Listing 8-8 to the Program.cs file.
Keep in mind that Visual Studio automatically adds this file to the console application.

Listing 8-8: The Content of the Program.cs File

using System;
using Microsoft.Web.Administration;

namespace RssHandlerConsoleApplication
{
class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();
ConfigurationSection handlersSection =

appHostConfig.GetSection(“system.webServer/handlers”);

ConfigurationElementCollection handlers = handlersSection.GetCollection();

ConfigurationElement rssHandler = handlers.CreateElement(“add”);
rssHandler.SetAttributeValue(“name”, “Ch8_RssHandler”);
rssHandler.SetAttributeValue(“path”, “*.rss”);
rssHandler.SetAttributeValue(“verb”, “*”);
rssHandler.SetAttributeValue(“type”, “ProIIS7AspNetIntegProgCh8.RssHandler”);
rssHandler.SetAttributeValue(“preCondition”, “integratedMode”);
handlers.Add(rssHandler);
mgr.CommitChanges();

}
}

}

Run the RssHandlerConsoleApplication project and open the applicationHost.config file in
your favorite editor. You should see the boldfaced portion shown in Listing 8-6, which registers your
RssHandler HTTP handler with the IIS 7 Web server. Next, I walk you through the implementation of
the Main method shown in Listing 8-8.

309

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 309

This method basically uses the IIS 7 and ASP.NET integrated imperative management API to register the
RssHandler HTTP handler directly from managed code. As you can see, this method begins by instanti-
ating a ServerManager instance, which is always the first step when you’re using the IIS 7 and
ASP.NET integrated imperative management API:

ServerManager mgr = new ServerManager();

Next, it calls the GetApplicationHostConfiguration method on the ServerManager instance to
load the content of the applicationHost.config file into a Configuration instance:

Configuration appHostConfig = mgr.GetApplicationHostConfiguration();

Then, it invokes the GetSection method on this Configuration instance to return a reference to the
ConfigurationSection instance that provides imperative access to the <handlers> configuration sec-
tion of the <system.webServer> configuration section group:

ConfigurationSection handlersSection =
appHostConfig.GetSection(“system.webServer/handlers”);

Next, it invokes the GetCollection method on this ConfigurationSection instance to return a refer-
ence to the ConfigurationElementCollection collection that contains the <add> elements, which
register handlers with IIS 7:

ConfigurationElementCollection handlers = handlersSection.GetCollection();

Then, it calls the CreateElement method on this collection to create a new ConfigurationElement
instance that will represent the new <add> element, which will register the RssHandler HTTP handler
with IIS 7:

ConfigurationElement rssHandler = handlers.CreateElement(“add”);

Next, it invokes the SetAttributeValue method five times to set the values of the name, path, verb,
type, and preCondition attributes on this <add> element to “Ch8_RssHandler”, “*.rss”, “*”,
“ProIIS7AspNetIntegProgCh8.RssHandler”, and “integratedMode”, respectively:

rssHandler.SetAttributeValue(“name”, “Ch8_RssHandler”);
rssHandler.SetAttributeValue(“path”, “*.rss”);
rssHandler.SetAttributeValue(“verb”, “*”);
rssHandler.SetAttributeValue(“type”, “ProIIS7AspNetIntegProgCh8.RssHandler”);
rssHandler.SetAttributeValue(“preCondition”, “integratedMode”);

Then, it adds this ConfigurationElement instance to the ConfigurationElementCollection
collection:

handlers.Add(rssHandler);

Finally, it invokes the CommitChanges method on the ServerManager instance to commit the changes
to the underlying applicationHost.config file:

mgr.CommitChanges();

310

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 310

Keep in mind that you’ve been following the four-step recipe to plug the RssHandler HTTP handler
into the IIS 7 and ASP.NET integrated request processing pipeline. As discussed, this involves deciding
whether you want to register your HTTP handler at the IIS 7 Web server level or a particular ASP.NET
Web site, Web application, or virtual directory level. So far, I’ve covered the case involving handler regis-
tration at the IIS 7 Web server level. Next, I discuss the case involving handler registration at a particular
ASP.NET Web site, Web application, or virtual directory level.

First, you need to unregister the RssHandler HTTP handler with the IIS 7 Web server. Keep in mind that
if you register your HTTP handler with IIS 7, you don’t need to repeat the registration for the Web sites or
Web applications running on your server because they all inherit the HTTP handler from the server. For
the next step of this exercise you need to first unregister the RssHandler HTTP handler with IIS 7.

Now add a new Web application named RssHandlerCh8 to the ProIIS7AspNetIntegProg solution.
Next, you’ll follow the four-step recipe to plug the RssHandler HTTP handler into the IIS 7 and
ASP.NET integrated request processing pipeline, but this time around you will register your
RssHandler HTTP handler with the RssHandlerCh8 application.

You’re already done with the first step of the recipe because you’ve decided you want to register the
RssHandler HTTP handler with the RssHandlerCh8 application as opposed to IIS 7. You’re already
done with the second step of the recipe as well because you’ve configured Visual Studio to compile the
RssHandler into a strongly-named assembly and to deploy this assembly to the GAC.

The third step of the recipe requires you to add a reference to the assembly containing your RssHandler
HTTP handler to the ASP.NET Web application with which you want to register your handler. This
application in this case is the RssHandlerCh8 application. Adding a reference simply adds a new entry
to the <assemblies> collection XML element of the <compilation> configuration section of the
web.config configuration file of this application as shown in the following code:

<configuration>
<system.web>
<compilation debug=”true”>
<assemblies>
<add assembly=”ProIIS7AspNetIntegProgCh8, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=369d834a770f1f59”/>
. . .

</assemblies>
</compilation>

</system.web>
</configuration>

The fourth step of the recipe requires you to register your RssHandler HTTP handler with the
RssHandlerCh8 application. Recall that when you registered the RssHandler HTTP handler with IIS 7, I
discussed three approaches to do this: declarative through the configuration file, graphical through the IIS 7
Manager, and imperative through the managed code. The same three approaches are applicable when
you’re registering your custom HTTP handler with a particular ASP.NET Web site or Web application.

First, I cover the declarative approach. You still have to add the boldfaced portion of Listing 8-6 to the
configuration file as you did when you registered the RssHandler HTTP handler with IIS 7. The only
difference is that when you’re registering your RssHandler HTTP handler with the RssHandlerCh8

311

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 311

application, you should add this boldfaced portion to the web.config file of this application as opposed
to the applicationHost.config file.

Next, I cover the graphical approach. You still have to go through pretty much the same steps as you did
when you registered the RssHandler HTTP handler with IIS 7. The main difference is the starting point
of this registration process. To graphically register the RssHandler HTTP handler with IIS 7, you had to
first select the server node from the Connections pane to view the module page (see Figure 8-3), which
contains the Handler Mappings item. To graphically register the RssHandler HTTP handler with the
RssHandlerCh8 application, on the other hand, you have to first select the RssHandlerCh8 application
node from the Connections pane to view the module page (see Figure 8-9), which contains the Handler
Mappings item.

Figure 8-9

When you double-click the Handler Mappings item, the IIS 7 Manager navigates to the Handler
Mappings module page shown in Figure 8-10.

Now if you click the Add Managed Handler link in the task panel associated with this Handler
Mappings module page, this module page will launch the Add Managed Handler task form shown in
Figure 8-11. Now compare the list of managed handlers shown in the Type combo box in Figure 8-6 with
the list of managed handlers shown in the Type combo box in Figure 8-11. Note that they are not the
same. This is because the combo box shown in Figure 8-6 displays the managed handlers in the assem-
blies deployed to the GAC, whereas the combo box shown in Figure 8-11 displays managed handlers in
the assemblies referenced by the RssHandlerCh8 application. The assemblies referenced by the
RssHandlerCh8 application are the assemblies registered with the <assemblies> Collection XML ele-
ment of the <compilation> configuration section of the web.config file of this application and the
higher-level configuration files.

312

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 312

Figure 8-10

Figure 8-11

Listing 8-9 shows how to use the imperative approach to register the RssHandler HTTP handler with
the RssHandlerCh8 application.

Listing 8-9: The Revised Content of the Program.cs File

using System;
using Microsoft.Web.Administration;

namespace RssHandlerConsoleApplication
{

313

Chapter 8: Extending the Integrated Request Processing Pipeline

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 313

314

Chapter 8: Extending the Integrated Request Processing Pipeline

Listing 8-9: (continued)

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig =

mgr.GetWebConfiguration(“Default Web Site”,”/RssHandlerCh8”);
ConfigurationSection handlersSection =

appHostConfig.GetSection(“system.webServer/handlers”);

ConfigurationElementCollection handlers = handlersSection.GetCollection();

ConfigurationElement rssHandler = handlers.CreateElement(“add”);
rssHandler.SetAttributeValue(“name”, “Ch8_RssHandler”);
rssHandler.SetAttributeValue(“path”, “*.rss”);
rssHandler.SetAttributeValue(“verb”, “*”);
rssHandler.SetAttributeValue(“type”, “ProIIS7AspNetIntegProgCh8.RssHandler”);
rssHandler.SetAttributeValue(“preCondition”, “integratedMode”);
handlers.Add(rssHandler);
mgr.CommitChanges();

}
}

}

Using the RssHandler HTTP Handler
Add a text file with the extension .rss to the RssHandlerCh8 application. This file does not have
to contain anything because the RssHandler will intercept the request and process the request with
no regard to the content of this file. You also need to create a new database named ArticlesDB that
contains a table named Articles as shown in Figure 8-1 and add the boldfaced portion of the
following listing to the <connectionStrings> section of the web.config file of the RssHandlerCh8
application:

<configuration>
<connectionStrings>
<add name=”MyConnectionString”
connectionString=”Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\

ArticlesDB.mdf;Integrated Security=True;User Instance=false”/>
</connectionStrings>

</configuration>

Now access this RSS file from your browser. You should see the result shown in Figure 8-12.

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 314

Figure 8-12

Managed Modules
All managed modules implement the ASP.NET IHttpModule interface, as defined in Listing 8-10. This
interface exposes the following methods:

❑ Init: This method takes an instance of a class named HttpApplication, which represents
the current ASP.NET application. I discuss HttpApplication shortly. Your custom module’s
implementation of this method must register one or more event handlers for one or more events
of the HttpApplication object passed into it as its argument.

❑ Dispose: This method takes no arguments and returns no value. Your custom module’s imple-
mentation of this method must perform its final cleanup such as releasing the resources that it is
holding (if any) before your module is disposed of.

Listing 8-10: The IHttpModule Interface

public interface IHttpModule
{
void Dispose();
void Init(HttpApplication app);

}

315

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 315

ASP.NET uses a pool of HttpApplication objects for processing requests for a specified ASP.NET appli-
cation. This allows ASP.NET to process multiple requests simultaneously to improve the throughput of an
application. When a request for a resource belonging to an ASP.NET application arrives, ASP.NET picks
an HttpApplication object from the pool and assigns the object to the task of processing the request. If
the pool does not contain any HttpApplication objects, or if all the HttpApplication objects of the
pool are busy processing other requests, ASP.NET automatically instantiates and initializes a new
HttpApplication object to process the current request. Keep in mind that a given HttpApplication
object cannot process more than one request at a time. One great thing about the pool is that when an
HttpApplication object is done with processing a request, it is returned back to the pool for another
request. Such reuse of HttpApplication objects reduces the overhead of instantiating and initializing
new HttpApplication objects.

As an HttpApplication object is processing a request, it fires these events in the specified order:

1. BeginRequest: The HttpApplication object raises the BeginRequest event when it begins
processing the current request. A managed module can register an event handler for this event
to perform tasks that must be performed at the beginning of the request. For example, this is a
good place for a managed module to perform URL rewriting.

2. AuthenticateRequest: The HttpApplication object raises the AuthenticateRequest
event to allow authentication managed modules to authenticate the current request.

3. PostAuthenticateRequest: The HttpApplication object fires the
PostAuthenticateRequest event after the request is authenticated. A managed module can
register an event handler for this event to perform tasks that must be performed after the cur-
rent request is authenticated.

4. AuthorizeRequest: The HttpApplication object fires the AuthorizeRequest event to allow
authorization managed modules to authorize the current request.

5. PostAuthorizeRequest: The HttpApplication object fires the PostAuthorizeRequest
event after the request is authorized. A managed module can register an event handler for this
event to perform tasks that must be performed after the current request is authorized.

6. ResolveRequestCache: The HttpApplication object fires the ResolveRequestCache event
to allow caching managed modules to service the current request from the cache, bypassing the
execution of the current HTTP handler and consequently improving the performance of the
application.

7. PostResolveRequestCache: The HttpApplication object fires the PostResolveRequestCache
event after caching managed modules service the current request from the cache, bypassing the
execution of the current HTTP handler.

8. MapRequestHandler: The HttpApplication object fires the MapRequestHandler event right
before the handler responsible for processing the current request is specified and assigned to the
Handler property of the current HttpContext object.

9. PostMapRequestHandler: The HttpApplication object fires the PostMapRequestHandler
event after the managed handler responsible for handling the current request is instantiated and
assigned to the Handler property of the current HttpContext object.

10. AcquireRequestState: The HttpApplication object fires the AcquireRequestState event
to allow the state managed modules to acquire the request state from the underlying data store.

316

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:56 PM Page 316

11. PostAcquireRequestState: The HttpApplication object fires the
PostAcquireRequestState event after the request state is acquired.

12. PreRequestHandlerExecute: The HttpApplication object fires the
PreRequestHandlerExecute event before the execution of the managed handler responsible
for handling the current request begins. A managed module can register an event handler for
this event to perform tasks that must be performed right before the managed handler is exe-
cuted, that is, right before the ProcessRequest method of the managed handler is invoked.
Recall that every managed handler implements the ProcessRequest method of the
IHttpHandler interface.

13. PostRequestHandlerExecute: The HttpApplication object fires the
PostRequestHandlerExecute event after the execution of the managed handler responsible
for handling the current request completes, that is, after the ProcessRequest method of the
managed handler returns.

14. ReleaseRequestState: The HttpApplication object fires the ReleaseRequestState event
to allow state managed modules to release or store the request state into the underlying data
store.

15. PostReleaseRequestState: The HttpApplication object fires the
PostReleaseRequestState event right after the request state is stored into the underlying
data store to allow the interested managed modules and application code to run logic that must
be run after the request state is saved.

16. UpdateRequestCache: The HttpApplication object fires the UpdateRequestCache event to
allow caching managed modules to cache the current response.

17. PostUpdateRequestCache: The HttpApplication object fires the PostUpdateRequestCache
event after the current response is cached

18. LogRequest: The HttpApplication object fires the LogRequest event to allow interested
managed modules and application code to log the request data. The HttpApplication object
fires this event only when the current application pool is running in integrated mode.

19. PostLogRequest: The HttpApplication object fires the PostLogRequest event after all
interested managed modules and application code have logged the request data. The
HttpApplication object fires this event only when the current application pool is running in
the integrated mode.

20. EndRequest: The HttpApplication object fires the EndRequest event right after the current
request is completely processed.

21. PreSendRequestHeaders: The HttpApplication object fires the PreSendRequestHeaders
event before the HTTP headers are sent to the client.

22. PreSendRequestContent: The HttpApplication object fires the PreSendRequestContent
event before the content is sent to the client.

The HttpApplication object also raises an event named Error. The main difference between this event
and other events is that this event can occur any time during the processing of the current request. Your
HTTP module can register an event handler for the Error event to log any diagnostic data that will help
understand why the error occurred.

317

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 317

Developing Custom Managed Modules
This section implements a managed module named UrlRewriterModule that will extend the IIS 7 and
ASP.NET integrated request processing pipeline to add support for a feature known as URL rewriting.
URL rewriting allows users to access a page using a URL other than the actual URL of the page. In other
words, URL rewriting allows you to virtualize the URLs of your Web application’s pages. URL rewriting
especially comes to the rescue in the following two situations:

❑ Restructuring a Web application normally requires the administrator to move some of the exist-
ing pages to different URLs. This causes problems for users who have bookmarked your pages,
or are used to the old URLs. URL rewriting allows you to transparently map the old URLs to
new ones, giving the users the illusion that they are still accessing the old URLs.

❑ Most Web applications use query strings to transfer data from one page to another. This leads
into URLs that are very hard for users to remember and to use.

The UrlRewriterModule managed module will allow users to use memorable URLs to access your
Web application pages. The main responsibility of this managed module is to map and to rewrite these
memorable URLs to the actual URLs that your application expects.

Suppose you have a Web application that allows users to access the articles written by a particular
author. Typically, these kinds of applications pass the author’s name or id as part of the URL to the page
that displays the list of the articles written by the author. Call this page Articles.aspx. Therefore, the
URL for accessing the articles written by an author named Smith will look something like this:

http://localhost/Articles/Articles.aspx?AuthorName=Smith

Such a URL is not memorable and causes all kinds of usability issues. You’ll make life easier on the visi-
tors of your site if you allow them to use the following URL to access the same information:

http://localhost/Articles/Smith.aspx

This is a much more memorable and usable URL than the previous one. Behind the scenes, the
UrlRewriterModule managed module transparently rewrites the URL that the user enters
(http://localhost/Articles/Smith.aspx) back to the actual URL (http://localhost/
Articles/Articles.aspx?AuthorName=Smith) that your application expects.

There are two important things about managed modules that you should keep in mind:

❑ A managed module is a component that responds to one or more events of the HttpApplication
object, which represents the current ASP.NET application. Therefore, every managed module must
register one or more event handlers for one or more events of the current HttpApplication
object. The managed module executes its logic in the event handlers that it registers for the events
of the HttpApplication object. For example, the FormsAuthenticationModule managed mod-
ule registers an event handler for the AuthenticateRequest event, where it runs the logic that
determines whether the current user is authenticated and that redirects unauthenticated users to
the configured login page for authentication.

❑ An event handler registered by a managed module must execute the logic it is designed for and
update the current HttpContext object accordingly. In other words, the current HttpContext
object is passed from one module to another as the HttpApplication object fires its events and
invokes the event handlers that the managed modules have registered for these events.

318

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 318

Because the HttpApplication object fires its events in the order specified earlier in this chapter, the man-
aged modules that register event handlers for later events see the changes made to the HttpContext
object by managed modules that register event handlers for earlier events. In other words, if a managed
module that registers event handlers for earlier events changes the values of one or more properties of
the current HttpContext object, the managed modules that register event handlers for later events are
forced to use the new values of these properties of the current HttpContext object.

Therefore, when you’re deciding for which events of the HttpApplication object your custom man-
aged module must register its event handlers, you must take into account the effects that the changes
made to the HttpContext object will have on later managed modules.

As discussed earlier, the UrlRewriterModule managed module’s main job is to rewrite the memorable
URL that the end user enters in the browser’s address bar to the actual URL that your application
expects. Obviously, rewriting the URL will affect those managed modules that execute after the
UrlRewriterModule module rewrites the URL, if the logic they execute uses the URL.

Here is an example. Suppose the UrlRewriterModule managed module registers its event handler
for the BeginRequest or AuthenticateRequest event of the HttpApplication object. Because the
FormsAuthenticationModule managed module executes its logic when the AuthenticateRequest
event is fired, the FormsAuthenticationModule managed module will only see the rewritten URL. To
see what impact rewriting the URL will have on the FormsAuthenticationModule module, we need to
study how this module operates. This module first checks whether the current requester is authenti-
cated. If not, it redirects the user to the specified login page. After the user successfully logs in to the sys-
tem, the user is redirected back to the originally requested URL, which is the rewritten version of the
URL. This means that the user will still see the rewritten URL in the browser’s address bar instead of the
memorable one.

You can easily fix this problem by having the UrlRewriterModule managed module register its event
handler for the AuthorizeRequest event instead of the BeginRequest or AuthenticateRequest
event. This will allow the FormsAuthenticationModule module to see the original memorable URL
that the user entered in the browser’s address bar. Therefore, when the user is redirected back to the
original requested URL after going through the authentication process, the user’s browser’s address bar
will still show the memorable URL.

However, the authentication modules such as the FormsAuthenticationModule module are
not the only managed modules that rely on the request URL; the authorization modules such as
FileAuthorizationModule do as well. The FileAuthorizationModule module executes when the
HttpApplication fires its AuthorizeRequest event. This means that this authorization module will
perform its authorization on the original memorable URL instead of the actual URL as it should. Keep in
mind that the FileAuthorizationModule module is used when Windows authentication is enabled.

Therefore, if your application is not using any form of authentication and authorization, your
UrlRewriterModule managed module can register its event handler for any of the BeginRequest,
AuthenticateRequest, or AuthorizeRequest events. If your application is using Forms authentica-
tion, your UrlRewriterModule module must register its event handler for the AuthorizeRequest
event. If your application is using Windows authentication, your UrlRewriterModule module must
register its event handler for the BeginRequest or AuthenticateRequest event.

The point I’m trying to get across here is that it may matter to other later HTTP modules what your
custom module does. You should consider this when you’re choosing an event to register an event han-
dler for.

319

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 319

Add a new Class Library project named UrlWriterProj to the ProIIS7AspNetIntegProgCh8 solu-
tion. Right-click this project in Solution Explorer and select Properties from the popup menu to launch
the Properties dialog. Switch to the Application tab in this dialog and enter ProIIS7AspNetIntegProgCh8_1
into the “Assembly name” and “Default namespace” textboxes. Next, follow the steps discussed in
Chapter 7 to configure Visual Studio to compile the UrlWriterProj Class Library project into a
strongly-named assembly and to deploy this assembly to the GAC after each build. Finally, add a
reference to the System.Web.dll assembly to the UrlWriterProj Class Library project.

Listing 8-11 presents the implementation of the UrlRewriterModule HTTP module. Add a new source
file named UrlRewriterModule.cs to the UrlRewriterProj project and add the code shown in this
code listing to this source file.

Listing 8-11: The UrlRewriterModule HTTP Module

using System;
using System.Web;
using System.Text.RegularExpressions;

namespace ProIIS7AspNetIntegProgCh8_1
{
public class UrlRewriterModule: IHttpModule
{
void IHttpModule.Init(HttpApplication app)
{
app.BeginRequest += new EventHandler(App_BeginRequest);

}

void App_BeginRequest(object sender, EventArgs e)
{
HttpApplication app = sender as HttpApplication;
HttpContext context = app.Context;

Regex regex = new Regex(@”Articles/(.*)\.aspx”, RegexOptions.IgnoreCase);
Match match = regex.Match(context.Request.Path);

if (match.Success)
{
string newPath =

regex.Replace(context.Request.Path, @”Articles.aspx?AuthorName=$1”);
context.RewritePath(newPath);

}
}

void IHttpModule.Dispose() { }
}

}

The UrlRewriterModule HTTP module, like any other HTTP module, implements the IHttpModule
interface. As Listing 8-10 shows, this interface exposes two methods named Init and Dispose. The
Dispose method is where your custom HTTP module must release the resources it is holding. This
method is automatically called before your module is removed from the pipeline of modules. Because
UrlRewriterModule doesn’t hold on to any resources, the Dispose method of this module doesn’t con-

320

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 320

tain any code. Keep in mind that your custom HTTP module must implement both the Init and
Dispose methods even if its implementation of the Dispose method does not do anything.

The Init method of UrlRewriterModule registers a method named App_BeginRequest as an event
handler for the BeginRequest event of the HttpApplication object to rewrite the URL right at the
beginning of the request:

app.BeginRequest += new EventHandler(App_BeginRequest);

As discussed, the HttpApplication object raises the BeginRequest event and automatically calls the
App_BeginRequest method. This method casts its sender argument to HttpApplication. Recall that
the sender argument refers to the object that raised the event, which is the HttpApplication object in
this case.

HttpApplication app = sender as HttpApplication;

The method then uses the Context property of the HttpApplication object to access the HttpContext
object. Recall that the HttpContext object contains the complete information about the request and
response and exposes this information in the form of convenient managed objects such as Request,
Response, and so on.

HttpContext context = app.Context;

The method then creates an instance of the Regex class:

Regex regex = new Regex(@”Articles/(.*)\.aspx”, RegexOptions.IgnoreCase);

The argument passed into the constructor of the Regex class is the regular expression pattern to match.

The method then calls the Match method of the Regex instance and passes in the URL of the requested
resource. This is the memorable URL that the end user uses, which is http://localhost/Articles/
Smith.aspx in this example. You can use the Path property of the Request object to access this
URL. The Match method of the Regex instance searches this URL for a substring that matches the
“Articles/(.*)\.aspx” regular expression pattern. For example, this regular expression pattern will
pick the Articles/Smith.aspx substring from the http://localhost/Articles/Smith.aspx URL.

Match match = regex.Match(context.Request.Path);

If the Regex instance finds a substring of the URL that matches the “Articles/(.*)\.aspx” regular
expression pattern, it calls the Replace method of the Regex instance to replace the substring with
“Articles.aspx?AuthorName=$1”.

string newPath =regex.Replace(context.Request.Path,@”Articles.aspx?AuthorName=$1”);

Finally, the App_BeginRequest method calls the Rewrite method of the HttpContext object to rewrite
the URL:

context.RewritePath(newPath);

321

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 321

Plugging Custom Managed Modules into the Integrated
Request Processing Pipeline

The previous section showed you how to implement your own custom managed module. This section shows
you how to plug your custom managed modules into the IIS 7 and ASP.NET integrated request processing
pipeline to extend the pipeline to add support for custom requesting processing capabilities. You’ll plug your
UrlRewriterModule HTTP handler into the IIS 7 and ASP.NET integrated request processing pipeline to
enable this pipeline to rewrite the user’s memorable URLs to the actual URLs that your application expects.

Take these steps to plug your custom HTTP module into the IIS 7 and ASP.NET integrated request pro-
cessing pipeline:

1. Use the same criteria discussed for HTTP handlers to determine whether to register your cus-
tom HTTP module with the IIS 7 Web server or a particular Web site, Web application, or virtual
directory.

2. Use the same criteria discussed for HTTP handlers to determine how to compile your custom
HTTP module into an assembly.

3. Add a reference to this assembly to the ASP.NET Web site or Web application with which you
want to register your custom HTTP module.

4. Use one of the following registration procedures to register your custom HTTP module with the
IIS 7 Web server or the desired ASP.NET Web site, Web application, or virtual directory:

❑ Declaratively from a configuration file

❑ Graphically from the IIS 7 Manager

❑ Imperatively from managed code

Next, you use this recipe to plug the UrlRewriterModule HTTP module into the IIS 7 and ASP.NET inte-
grated request processing pipeline. The first step of the recipe requires you to decide whether you want to
register your UrlRewriterModule HTTP module with the IIS 7 Web server or a particular Web site, Web
application, or virtual directory. I cover both cases beginning with the IIS 7 Web server. You’re already done
with the second step of the recipe because you’ve configured Visual Studio to compile UrlRewriterModule
HTTP module into a strongly-named assembly and to deploy this assembly to the GAC.

Next, you use these declarative, graphical, and imperative approaches to register UrlRewriterModule
HTTP module beginning with the declarative approach, which involves adding the boldfaced portion of
Listing 8-12 to the appropriate configuration file. This configuration file in this case is applicationHost
.config because you’re registering your UrlRewriterModule HTTP module with the IIS 7 Web server.

Listing 8-12: The Portion of the applicationHost.config File That Registers the
UrlRewriterModule HTTP Module

<configuration>
<location path=”” overrideMode=”Allow”>
<system.webServer>
<modules>
<add name=”MyUrlRewriterModule”
type=”ProIIS7AspNetIntegProgCh8_1.UrlRewriterModule”
preCondition=”managedHandler” />

</modules>

322

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 322

Listing 8-12: (continued)

</system.webServer>
</location>

</configuration>

Note that Listing 8-12 uses an <add> element to add your UrlRewriterModule to the <modules> sec-
tion of the <system.webServer> section group. As you can see, the <add> element exposes an attribute
named name, which is set to the friendly name of the HTTP module being registered. In this case, you’re
using MyUrlRewriterModule as the friendly name. The <add> element also exposes an attribute named
type, which specifies the necessary type information about the module being registered. This type infor-
mation consists of up to five different pieces of information, but only the first piece, which specifies the
fully qualified named of the type, is required.

Also note that the <add> element features an attribute named preCondition. Set the preCondition attrib-
ute to managedHandler if you want your module to be used only for requests made for ASP.NET resources.
These are the requests that are handled by managed HTTP handlers. As you can see, by simply setting the
value of this attribute you can have the IIS 7 and ASP.NET integrated request processing pipeline use your
HTTP module for requests made for both ASP.NET and non-ASP.NET resources. This is a departure from
the earlier versions of IIS, where managed HTTP modules could only participate in processing requests
made for ASP.NET resources. This means that you can now use the UrlRewriterModule HTTP module to
perform URL rewriting not only for ASP.NET resources, but also for non-ASP.NET resources such as classic
ASP pages.

Next, you use the graphical approach to register the UrlRewriterModule HTTP module from the IIS 7
Manager. Launch the IIS 7 Manager as usual and select the Web server node in the Connections pane
because you want to register your module with the IIS 7 Web server. You should see the result shown in
Figure 8-13.

Figure 8-13 323

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 323

Double-click the Modules item shown in the IIS 7 Manager’s workspace (see Figure 8-13) or select this
item and click the Open Feature link in the task panel to navigate to the Modules module list page (see
Figure 8-14).

Figure 8-14

Note that the Modules module list page displays the list of both managed and native modules registered
with the IIS 7 Web server. If you click the Add Managed Module link in the task panel (see Figure 8-14),
it will launch the Add Managed Module task form shown in Figure 8-15.

Figure 8-15

324

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 324

The Add Managed Module task form contains the following GUI elements:

❑ A textbox labeled Name where you must enter a friendly name for the HTTP module being reg-
istered, which is UrlRewriterModule in this case.

❑ A combo box labeled Type, which displays the list of HTTP modules in assemblies deployed to
the GAC. As Figure 8-16 shows, this combo box also contains the UrlRewriterModule HTTP
module. This shouldn’t come as a surprise because you configured Visual Studio to deploy the
assembly containing UrlRewriterModule to the GAC.

❑ A checkbox that you can toggle on to specify that the HTTP module being registered must only
participate in processing requests made for ASP.NET resources, which are requests handled by
managed HTTP handlers.

Figure 8-16

Next, use MyUrlRewriterModule as the friendly name. Select ProIIS7AspNetIntegProgCh8_1
.UrlRewriterModule from the Type combo box, check the checkbox to specify that you want the
UrlRewriterModule HTTP module to participate in processing only requests made for ASP.NET
resources, and click the OK button (see Figure 8-17). The callback for this button under the hood uses the
appropriate proxy to add the boldfaced portion of Listing 8-12 to the applicationHost.config file.

Figure 8-17

Note that the list of modules that the Modules module list page displays is automatically updated to
include the newly registered UrlRewriterModule HTTP module (see Figure 8-18).

325

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 325

Figure 8-18

Next, I take you under the hood to show you how the Type combo box of the Add Managed Module
task form displays the list of available HTTP modules, including the UrlRewriterModule module.
This task form, like any other task form, inherits a method named OnLoad, which is automatically
invoked when the task form is loaded. The Add Managed Module task form’s implementation of this
method uses the appropriate proxy to invoke the appropriate server-side method to download the list
of available HTTP modules.

Listing 8-13 presents a simplified version of this server-side method. Note that this code listing is very
similar to Listing 8-7 with one major difference. This time around the IsAssignableFrom method is
invoked on the IHttpModule interface to determine whether the specified type implements this inter-
face. Recall that all HTTP modules implement this interface.

Listing 8-13: A Simplified Version of the Server-Side Logic That Retrieves the List of
Managed HTTP modules

public virtual string[] GetManagedHandlers()
{
ArrayList managedModules = new ArrayList();
ICollection assemblyNames = Gac.GetAssembliesInGAC();
foreach (string assemblyName in assemblyNames)
{
Assembly assembly = Assembly.Load(assemblyName);
Type[] types = assembly.GetExportedTypes();
for (int i = 0; i < types.Length; i++)

326

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 326

327

Chapter 8: Extending the Integrated Request Processing Pipeline

Listing 8-13: (continued)

{
if (typeof(IHttpModule).IsAssignableFrom(types[i]) &&

type.IsClass && !type.IsAbstract)
managedModules.Add(type.FullName);

}
}

return managedModules.ToArray();
}

As you can see, the Add Managed Module task form basically receives an array, which contains the fully
qualified names of available managed HTTP modules, from the server and displays them in the Type
combo box.

So far, you’ve seen two different approaches to register an HTTP module with the IIS 7 Web server. Next,
I discuss the third approach where you learn how to use managed code to register the
UrlRewriterModule HTTP module with the IIS 7 Web server.

Now go ahead and add a new Console Application named UrlRewriterModuleConsoleApplication
to the ProIIS7AspNetIntegProgCh8 solution and add the code shown in Listing 8-14 to the
Program.cs file.

Listing 8-14: The Content of the Program.cs File

using System;
using Microsoft.Web.Administration;

namespace UrlRewriterModuleConsoleApplication
{
class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();
ConfigurationSection modulesSection =

appHostConfig.GetSection(“system.webServer/modules”);

ConfigurationElementCollection modules = modulesSection.GetCollection();

ConfigurationElement urlRewriterModule = modules.CreateElement(“add”);
urlRewriterModule.SetAttributeValue(“name”, “MyUrlRewriterModule”);
urlRewriterModule.SetAttributeValue(“type”,

“ProIIS7AspNetIntegProgCh8_1.UrlRewriterModule”);
urlRewriterModule.SetAttributeValue(“preCondition”, “managedHandler”);
modules.Add(urlRewriterModule);
mgr.CommitChanges();

}
}

}

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 327

Next run the UrlRewriterModuleConsoleApplication application. This will automatically add the
boldfaced portion of Listing 8-12 to the applicationHost.config file. As you can see, the Main
method shown in Listing 8-14 performs this task. First, it instantiates a SeverManager instance as usual:

ServerManager mgr = new ServerManager();

Next, it loads the content of the applicationHost.config file into a Configuration instance:

Configuration appHostConfig = mgr.GetApplicationHostConfiguration();

Then, it accesses the ConfigurationSection instance that represents the <modules> configuration
section:

ConfigurationSection modulesSection =
appHostConfig.GetSection(“system.webServer/modules”);

Next, it accesses the ConfigurationElementCollection instance that represents the collection con-
taining the registered modules:

ConfigurationElementCollection modules = modulesSection.GetCollection();

Then, it instantiates a ConfigurationElement that represents an <add> element, which will be used to
register the UrlRewriterModule HTTP module:

ConfigurationElement urlRewriterModule = modules.CreateElement(“add”);

Next, it invokes the SetAttributeValue method on this ConfigurationElement to specify
MyUrlRewriterModule as the friendly name of your UrlRewriterModule HTTP module:

urlRewriterModule.SetAttributeValue(“name”, “MyUrlRewriterModule”);

Then, it calls the SetAttributeValue method once again to specify
ProIIS7AspNetIntegProgCh8_1.UrlRewriterModule as the fully qualified name of the type of the
UrlRewriterModule HTTP module:

urlRewriterModule.SetAttributeValue(“type”,
“ProIIS7AspNetIntegProgCh8_1.UrlRewriterModule”);

Next, it invokes the SetAttributeValue once more to specify that your UrlManagedModule HTTP
module can only be used to process requests made for ASP.NET resources:

urlRewriterModule.SetAttributeValue(“preCondition”, “managedHandler”);

Then, it adds the newly instantiated ConfigurationElement instance to the
ConfigurationElementCollection instance and invokes CommitChanges to add your
UrlManagedModule HTTP module to the underlying applicationHost.config file:

modules.Add(urlRewriterModule);
mgr.CommitChanges();

328

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 328

So far, you’ve learned how to use the four-step recipe to plug your UrlRewriterModule HTTP module
into the IIS 7 and ASP.NET integrated pipeline where you registered your module with the IIS 7 Web
server. Next, I show you how to use the four-step recipe to plug your module into the integrated pipeline,
but this time around you will register your module with a Web site, Web application, or virtual directory.

Because registering an HTTP module with IIS 7 makes the module available to all Web sites and Web appli-
cations running on the server, and because the previous exercise has registered the UrlRewriterModule
HTTP module with IIS 7, you need to unregister the module before you move on to the next exercise.
To do so, you need to go back to the Modules module list page shown in Figure 8-18, select
MyUrlRewriterModule, which is the friendly name of UrlRewriterModule, from the list, and click
the Remove link button in the task form associated with the Modules module list page.

Because you want to register the UrlRewriterModule HTTP module with a Web application, first you
need to create a sample Web application. Add a new Web application named UrlRewriterModuleCh8
to the ProIIS7AspNetIntegProg solution. Your goal is to use the four-step recipe to register your
UrlRewriterModule HTTP module with the UrlRewriterModuleCh8 Web application. Obviously you
don’t have to worry about the first step. The second step is also taken care of because you’ve already
configured Visual Studio to compile your UrlRewriterModule HTTP module.

According to the third step of the recipe, you need to add a reference to the assembly containing the
UrlRewriterModule HTTP module to the UrlRewriterModuleCh8 Web application. Adding this ref-
erence will simply add the boldfaced portion of the following listing to the web.config configuration
file of the UrlRewriterModuleCh8 Web application:

<configuration>
<system.web>
<compilation debug=”true”>
<assemblies>
<add assembly=”ProIIS7AspNetIntegProgCh8_1, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=369d834a770f1f59”/>
. . .

</assemblies>
</compilation>

</system.web>
</configuration>

According to the fourth step of the four-step recipe, you need to use one of the declarative,
graphical, or imperative approaches to register the UrlRewriterModule HTTP module with the
UrlRewriterModuleCh8 Web application. I discuss all these three approaches, starting with the declar-
ative approach.

This declarative approach is very similar to the declarative approach you used to register the
UrlRewriterModule HTTP module with IIS 7 in that you still have to add the boldfaced portion
of Listing 8-12 to the configuration file as you did before. The only difference is that when you’re regis-
tering the UrlRewriterModule HTTP module with the UrlRewriterModuleCh8 application, you
should add this boldfaced portion to the web.config file of this application as opposed to the
applicationHost.config file.

Next, I show you how to use graphical approach to register your UrlRewriterModule HTTP module
with the UrlRewriterModuleCh8 Web application from the IIS 7 Manager. First, you need to select the
UrlRewriterModuleCh8 node from the Connections pane to view this application’s home page as
shown in Figure 8-19.

329

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 329

Next, you need to either double-click the Modules item shown in Figure 8-19 or select this item and click
the Open Features link button in the task panel to navigate to the Modules module list page shown in
Figure 8-20. This module list page displays the list of both managed and native modules available to the
UrlRewriterModuleCh8 Web applications. Because you haven’t registered any modules, managed or
native, with this Web application, you may be wondering where all the modules shown in Modules
module list page (see Figure 8-20) come from. The answer to this question lies in the hierarchical nature
of the IIS 7 and ASP.NET integrated configuration system. Thanks to the hierarchical characteristic of
this configuration system, lower-level configurations inherit configuration settings from the higher-level
configurations.

Figure 8-19

Figure 8-20

330

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 330

Next, click the Add Managed Module link in the task panel associated with the Modules module list
page shown in Figure 8-20 to launch the Add Managed Module task form shown in Figure 8-21. If you
compare the content of the Type combo box of this task form with the content of the Type combo box of
the task form shown in Figure 8-16, you’ll notice that they’re not the same. The difference lies in the fact
that these two Type combo boxes get their contents from different sources. The Type combo box in
Figure 8-21 gets its content from assemblies that the UrlRewriterModuleCh8 Web application refer-
ences, whereas the Type combo box in Figure 8-22 gets its content from assemblies in the GAC. Because
the UrlRewriterModuleCh8 Web application references some of the GAC assemblies, these two Type
combo boxes share some HTTP modules.

Figure 8-21

Listing 8-15 shows how to use the imperative approach to register your UrlRewriterModule HTTP
module with the UrlRewriterModuleCh8 application.

Listing 8-15: The Revised Content of the Program.cs File

using System;
using Microsoft.Web.Administration;

namespace UrRewriterModuleConsoleApplication
{
class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig =

mgr.GetWebConfiguration(“Default Web Site”, “/UrlRewriterModuleCh8”);
ConfigurationSection modulesSection =

appHostConfig.GetSection(“system.webServer/modules”);

ConfigurationElementCollection modules = modulesSection.GetCollection();

ConfigurationElement urlRewriterModule = modules.CreateElement(“add”);
urlRewriterModule.SetAttributeValue(“name”, “MyUrlRewriterModule”);
urlRewriterModule.SetAttributeValue(“type”,

“ProIIS7AspNetIntegProgCh8_1.UrlRewriterModule”);

331

Chapter 8: Extending the Integrated Request Processing Pipeline

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 331

Listing 8-15: (continued)

urlRewriterModule.SetAttributeValue(“preCondition”, “managedHandler”);
modules.Add(urlRewriterModule);
mgr.CommitChanges();

}
}

}

Using the UrlRewriterModule HTTP Module
Add a new Web Form named Articles.aspx to the UrlRewriterModuleCh8 application and add the
code shown in Listing 8-16 to this Web Form.

Listing 8-16: The Articles.aspx Page

<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
string GetAuthorLatestArticle(string authorName)
{
return “This is ” + authorName + “’s article!”;

}

void Page_Load(object sender, EventArgs e)
{
string authorName = Request.QueryString[“AuthorName”];
ArticleContentLabel.Text = GetAuthorLatestArticle(authorName);

}
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1” runat=”server”>
<title>Untitled Page</title>

</head>
<body>
<form id=”form1” runat=”server”>
<asp:Label runat=”server” ID=”ArticleContentLabel” />

</form>
</body>
</html>

As you can see, Articles.aspx is a very simple page that consists of a Label control named
ArticleContentLabel that displays the content of the latest article written by a specified author. The
Page_Load method simply extracts the name of the author from the query string and passes it into the
GetAuthorLatestArticle method to retrieve the author’s latest article. The GetAuthorLatestArticle
method includes the logic that queries the underlying data store for the latest article written by the specified
author. To keep our discussions focused, the GetAuthorLatestArticle method hard-codes and returns a
simple string that contains the name of the author.

332

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 332

Now enter the following URL into the address bar of your browser and press Enter:

http://localhost/UrlRewriterModuleCh8/Articles/Smith.aspx

You should see the result shown in Figure 8-22.

Figure 8-22

Managed Handler Factories
All managed handler factories implement an ASP.NET interface named IHttpHandlerFactory as
defined in Listing 8-17.

Listing 8-17: The IHttpHandlerFactory Interface

public interface IHttpHandlerFactory
{
IHttpHandler GetHandler(HttpContext context, string requestType,

string url, string pathTranslated);

void ReleaseHandler(IHttpHandler handler);
}

As you can see, this interface exposes the following members:

❑ GetHandler: As the name suggests, this method is responsible for instantiating and returning
the managed handler that knows how to handle or process the current request. For example, the
PageHandlerFactory handler factory’s implementation of the GetHandler method of the
IHttpHandlerFactory interface contains the logic that:

❑ Parses the requested ASP.NET page into a dynamically generated class, which inherits
from the ASP.NET Page class.

❑ Compiles this class into an assembly.

❑ Loads this assembly into the application domain that contains the current ASP.NET
applications.

❑ Instantiates and returns an instance of this compiled class. As discussed earlier, this
instance is the managed handler that knows how to process the current request.

333

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 333

❑ The WebServiceHandlerFactory handler factory’s implementation of the GetHandler
method of the IHttpHandlerFactory interface, on the other hand, contains the logic that
instantiates and returns the managed handler that knows how to process the current request.

❑ As Listing 8-17 shows, the GetHandler method takes four arguments as follows:

❑ context: References the current HttpContext object.

❑ requestType: Specifies the HTTP verb (POST or GET) used to make the current
request.

❑ url: Specifies the virtual path of the requested resource.

❑ pathTranslated: Specifies the physical path of the requested resource.

❑ ReleaseHandler: As Listing 8-17 shows, the ReleaseHandler method takes an argument of
type IHttpHandler. When ASP.NET invokes the ReleaseHandler method of a managed han-
dler factory, it passes the managed handler instance that the GetHandler method returns as an
argument into the ReleaseHandler method. This allows the managed handler factory to reuse
the same handler for the next request if the factory chooses to do so.

Developing Custom Managed Handler Factories
Each managed handler factory is specifically designed to create a specific type of managed handler. For
example, the PageHandlerFactory handler factory is specifically designed to instantiate and return a
managed handler that inherits from the ASP.NET Page class, that is, a managed handler that knows how
to process requests for resources with the file extension .aspx.

This section develops a custom managed handler factory named UrlRewriterHandlerFactory and
plugs this handler factory into the IIS 7 and ASP.NET integrated request processing pipeline to add sup-
port for URL rewriting. As you can see, the IIS 7 and ASP.NET integrated request processing pipeline can
be extended in two different ways to add support for URL rewriting. The previous sections discussed
the first approach where this was done through a managed module named UrlRewriterModule. This
section discusses the second approach where this is done through a managed handler factory named
UrlRewriterHandlerFactory.

Now add a new Class Library project named UrlRewriterHandlerFactoryProj to the
ProIIS7AspNetIntegProgCh8 solution. Right-click this project in Solution Explorer and select
Properties from the popup menu to launch the Properties dialog. Switch to the Application tab and enter
ProIIS7AspNetIntegProgCh8_2 into the “Assembly name” and “Default namespace” textboxes. Next,
follow the steps discussed in Chapter 7 to configure Visual Studio to compile this project into a strongly-
named assembly and to deploy this assembly to the Global Assembly Cache (GAC) after each build.
Finally, add a reference to the System.Web.dll assembly to this project.

UrlRewriterHandlerFactory, like any other HTTP handler factory, implements the
IHttpHandlerFactory interface defined in Listing 8-17. Listing 8-18 contains the implementation of
UrlRewriterHandlerFactory. Add a new source file named UrlRewriterHandlerFactory.cs to
the UrlRewriterHandlerFactoryProj project and add the code shown in this code listing to this
source file.

334

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 334

Listing 8-18: The UrlRewriterHandlerFactory HTTP Handler Factory

using System.Web;
using System.Web.UI;
using System.Text.RegularExpressions;

namespace ProIIS7AspNetIntegProgCh8_2
{
public class UrlRewriterHandlerFactory: IHttpHandlerFactory
{
IHttpHandler IHttpHandlerFactory.GetHandler(HttpContext context,

string requestType, string url, string pathTranslated)
{
Regex regex =

new Regex(@”/Articles/(.*)\.aspx”, RegexOptions.IgnoreCase);
Match match = regex.Match(url);
string newPath = string.Empty;

if (match.Success)
{
newPath = regex.Replace(url, @”Articles.aspx?AuthorName=$1”);
context.RewritePath(newPath);

}

return PageParser.GetCompiledPageInstance(url,
context.Server.MapPath(“Articles.aspx”), context);

}

void IHttpHandlerFactory.ReleaseHandler(IHttpHandler handler) {}
}

}

Note that the implementation of the GetHandler method of UrlRewriterHandlerFactory is the same
as the App_BeginRequest method, except for the last line:

PageParser.GetCompiledPageInstance(url,
context.Server.MapPath(“Articles.aspx”), context);

To help you understand the role of this line of code, you need to understand what type of managed han-
dler the GetHandler method of UrlRewriterHandlerFactory is supposed to return. Recall that the
main responsibility of the GetHandler method of a handler factory is to return a reference to an instance
of a managed handler that knows how to process the current request.

Because the current request is a request for an .aspx file, the GetHandler method of
UrlRewriterHandlerFactory must return an instance of the managed handler that knows how to
process requests for resources with the file extension .aspx. As discussed earlier, such a managed handler
is a dynamically generated class that inherits from the ASP.NET Page class. The ASP.NET Framework
comes with a class named PageParser that exposes a static method named GetCompiledPageInstance
that contains the logic that instantiates and returns an instance of the managed handler that knows how to
process requests for resources with the file extension .aspx. As a matter of fact, the GetHandler method
of the PageHandlerFactory handler factory uses the GetCompiledPageInstance static method under
the hood to instantiate the required managed handler.

335

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 335

Plugging Custom Managed Handler Factories into the
Integrated Request Processing Pipeline

The previous section showed you how to implement your own custom managed handler factory.
Plugging a managed handler factory into the IIS 7 and ASP.NET integrated request processing pipeline
is just like plugging a managed handler into this integrated pipeline. Therefore, all the same approaches
discussed earlier in this chapter for plugging managed handlers into this integrated pipeline equally
apply to managed handler factories.

Extending the Integrated Pipeline with
Configurable Managed Components

The previous sections of this chapter showed you how to implement your own custom managed mod-
ule, handler, and handler factory and how to plug them into the IIS 7 and ASP.NET integrated request
processing pipeline to extend this pipeline to add support for new request processing capabilities, such
as rewriting URLs and generating RSS documents.

The most important characteristic of a managed module, handler, or handler factory is its configurability.
As a matter of fact, the configurability of the managed modules, handlers, and handler factories, which
make up the IIS 7 and ASP.NET integrated request processing pipeline, is the corner-stone of the entire
IIS 7 and ASP.NET integrated architecture, including its integrated request processing pipeline, inte-
grated configuration system, integrated imperative management system, and integrated graphical man-
agement system.

The rest of this chapter and the next chapter walk you through practical examples where you will learn
specific techniques for developing configurable managed modules, handlers, and handler factories. As
you’ll see, the configurability of these managed modules, handlers, and handler factories will allow you
to extend:

❑ The IIS 7 and ASP.NET integrated configuration system to add support for new configuration
sections for these configurable managed modules, handlers, and handler factories. This will
allow clients to configure these managed modules, handlers, and handler factories directly from
configuration files.

❑ The IIS 7 and ASP.NET integrated imperative management system to add imperative manage-
ment support for these configurable managed modules, handlers, or handler factories. This will
allow clients to configure these managed modules, handlers, or handler factories from managed
code in a strongly-typed fashion, where they can benefit from the Visual Studio IntelliSense sup-
port, the compiler type-checking capabilities, and the well-known object-oriented programming
benefits.

❑ The IIS 7 and ASP.NET integrated graphical management system to add graphical management
support for these configurable managed modules, handlers, or handler factories. This will allow
clients to configure these managed modules, handlers, or handler factories from the IIS 7 Manager.

The rest of this chapter focuses on the configurability of managed modules and handler factories and
leaves the discussion of the configurability of managed handlers to the next chapter, where it is covered
in the context of the IIS 7 and ASP.NET integrated providers extensibility model.

336

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 336

The current implementations of the UrlRewriterModule managed module and
UrlRewriterHandlerFactory managed handler factory suffer from two fundamental problems. First,
as Listings 8-11 and 8-18 show, the current implementations of this managed module and handler fac-
tory hard-code the following two important pieces of information:

❑ The regular expression that defines the pattern that the Regex object looks for in the memo-
rable URL:

Regex regex = new Regex(@”Articles/(.*)\.aspx”, RegexOptions.IgnoreCase);

❑ The regular expression that defines the replacement string:

string newPath = regex.Replace(context.Request.Path,
@”Articles.aspx?AuthorName=$1”);

Second, the current implementations of the UrlRewriterModule managed module and
UrlRewriterHandlerFactory managed handler factory support only one pair of regular expressions.

In the remainder of this chapter, I present and discuss a new version of the UrlRewriterModule
managed module that does not hard-code these two regular expressions. Instead it allows clients to
specify them in the configuration files. The new version will also allow clients to specify an unlimited
number of pairs of regular expressions. The first regular expression instructs the Regex object what pat-
tern to look for in the memorable URL, and the second provides the Replace method of the Regex
object with the required replacement string. Because the implementation of the new version of the
UrlRewriterHandlerFactory handler factory is very similar to the implementation of the new version
of the UrlRewriterModule managed module, I cover only the implementation of the new version of
the UrlRewriterModule managed module.

The first order of business is to use the IIS 7 and ASP.NET integrated declarative schema extension
markup language to extend the IIS 7 and ASP.NET integrated configuration system to add support for a
new configuration section named urlRewriter.

Configuration Suppor t for the URL
Rewriting Managed Module

Chapter 5 presented a six-step recipe for extending the IIS 7 and ASP.NET integrated configuration sys-
tem to add support for a new configuration section as follows:

1. Write down a representative example of the configuration section including all its XML ele-
ments and attributes.

2. Identify the following portions of the configuration section:

❑ The Containing XML element, and the names, data types, and default values of its
attributes

❑ The Non-collection XML elements, and the names, data types, and default values of
their attributes

337

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 337

❑ The Collection XML elements, and the names, data types, and default values of their
attributes

❑ The child elements of each Collection element that perform the add, remove, and clear
operations, and the names, data types, and default values of their attributes

3. Create a new XML file in the following directory on your machine:

%WINDIR%\system32\inetsrv\config\schema

4. Decide on the section group hierarchy where you want to add your configuration section.

5. Use the IIS 7 and ASP.NET integrated declarative schema extension markup language to imple-
ment the schema that defines the XML elements and attributes that make up your custom con-
figuration section. Store this schema in the XML file you created in step 3.

6. Register your custom configuration section with the <configSections> section of the
applicationHost.config file.

Next, you use this recipe to extend the IIS 7 and ASP.NET integrated configuration system to add sup-
port for your urlRewriter configuration section. Following this recipe, first you need to write down a
representative example of your urlRewriter configuration section as shown in Listing 8-19.

Listing 8-19: The <urlRewriter> Configuration Section

<urlRewriter>
<urlRewriterRules>
<clear/>
<add patternToMatch=”Articles/(.*)\.aspx”
replacement=”Articles.aspx?AuthorName=$1” />
<remove patternToMatch=”” />

</urlRewriterRules>
</urlRewriter>

The second step requires you to identify different parts of your configuration section. The
<urlRewriter> configuration section contains a Collection element named <urlRewriterRules>.
This Collection element contains one or more <add> child elements that exposes a string attribute
named patternToMatch and a string attribute named replacement. The client of your
UrlRewriterModule uses an <add> element to add a new URL rewriter rule to the collection of
URL rewriter rules. The patternToMatch attribute contains the regular expression pattern to match,
whereas the replacement attribute contains the replacement string that will be passed into the
Replace method of the underlying Regex object as discussed earlier.

Following the third step of the recipe, add an XML file named URLREWRITER_schema.xml to the schema
directory on your machine. Next, you need to decide on the section group hierarchy to which you want
to add the <urlRewriter> configuration section. In this case, add the configuration section to the
<system.webServer> section group.

Next, you need to use the IIS 7 and ASP.NET integrated declarative schema extension markup language
to implement the schema for the urlRewriter configuration section and store this schema in the URL-
REWRITER_schema.xml file.

Listing 8-20 presents the content of the URLREWRITER_schema.xml file.

338

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 338

Listing 8-20: The Content of the URLREWRITER_schema.xml File

<configSchema>
<sectionSchema name=”system.webServer/urlRewriter”>
<element name=”urlRewriterRules”>
<collection addElement=”add” clearElement=”clear” removeElement=”remove” >
<attribute name=”patternToMatch” type=”string” isUniqueKey=”true” />
<attribute name=”replacement” type=”string” />

</collection>
</element>

</sectionSchema>
</configSchema>

Listing 8-20 uses a <sectionSchema> element to define the Containing XML element of the
urlRewriter configuration section. Note that the name attribute of the <sectionSchema> element is
set to the fully qualified name of the configuration section, including its complete section group hierar-
chy, that is, system.webServer/urlRewriter.

<sectionSchema name=”system.webServer/urlRewriter”>

Next Listing 8-20 uses an <element> element with the name attribute value of “urlRewriterRules” to
define the <urlRewriterRules> Collection element of the <urlRewriter> configuration section:

<element name=”urlRewriterRules”>

This <element> element contains a <collection> child element because it represents a Collection ele-
ment. As you can see from Listing 8-20, the addElement, removeElement, and clearElement attrib-
utes of this <collection> element define the <add>, <remove>, and <clear> child elements of the
<urlRewriterRules> Collection element. Recall that these three child elements respectively add a URL
rewriter rule to, remove a URL rewriter rule from, and clear all URL rewriter rules from the collection of
URL rewriter rules that the <urlRewriterRules> Collection element represents.

The <collection> element features two child <attribute> elements that define the patternToMatch
and replacement attributes of the <add> child element of the <urlRewriterRules> Collection element.
Note that the isUniqueKey attribute on the <attribute> element that defines the patternToMatch
attribute is set to true to specify the patternToMatch attribute as the key attribute. This key attribute
uniquely identifies one URL rewriter rule among other URL rewriter rules. This key is necessary because
it will allow the <urlRewriter> configuration section in a lower-level configuration file to use the
<remove> element to remove a URL rewriter rule with a specified pattern to match.

Finally, you need to register the <urlRewriter> configuration section with the <configSections> of
the applicationHost.config file as shown in Listing 8-21.

Listing 8-21: Registering the <urlRewriter> Configuration Section

<configSections>
<sectionGroup name=”system.webServer”>
<section name=”urlRewriter” allowDefinition=”Everywhere”
overrideModeDefault=”Allow” />

</sectionGroup>
. . .

</configSections>

339

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 339

Because the <urlRewriter> configuration section belongs to the <system.webServer> section group,
Listing 8-21 registers this configuration section in the <sectionGroup> element with the name attribute
value of “system.webServer”. Note that Listing 8-21 uses a <section> element to register the
urlRewriter custom configuration section and sets the values of the attributes of this <section> ele-
ment as follows:

❑ Sets the name attribute to the name of the configuration section being registered, which is
urlRewriter in this case.

❑ Sets the allowDefinition attribute to Everywhere to allow the <urlRewriter> configura-
tion section to be used in configuration files at all configuration hierarchy levels, that is, server,
site, application, and virtual directory levels.

❑ Sets the overrideModeDefault attribute to Allow to allow lower-level configuration files to
override the configuration settings specified in the <urlRewriter> configuration section of the
applicationHost.config file.

Imperative Management Suppor t for the
URL Rewriting Managed Module

In this section, you extend the IIS 7 and ASP.NET integrated imperative management system with new
managed classes to add imperative management support for the urlRewriter configuration section.
This will allow page developers to program against this urlRewriter configuration section in a
strongly-typed fashion, where they can benefit from the Visual Studio IntelliSense support for strongly-
typed objects and properties, compiler type-checking support for strongly-typed objects and properties,
and the well-known object-oriented programming benefits. I discuss these new managed classes in the
following sections.

Before diving into the implementation of these managed classes, you need to set up the Visual Studio
project that will contain these classes and the rest of the managed classes discussed in the rest of this chap-
ter. Add a new Class Library project named UrlRewriterProj2 to the ProIIS7AspNetIntegProgCh8
solution. Add a reference to the Microsoft.Web.Administration.dll assembly. Follow the steps dis-
cussed in Chapter 7 to configure Visual Studio to:

❑ Compile the UrlRewriterProj2 into a strongly-named assembly.

❑ Automatically add this assembly to the Global Assembly Cache (GAC).

❑ Automatically launch the IIS 7 Manager every time the UrlRewriterProj2 is built.

Right-click UrlRewriterProj2 in the Solution Explorer and select Properties to launch the
Properties dialog shown in Figure 8-23. Select the Application tab in this dialog and specify
UrlRewriter and UrlRewriting as the Assembly name and Default namespace. Don’t forget to use
the File ➪ SaveAll option to save these changes.

Add a new directory named ImperativeManagement to the UrlRewriterProj2 project. This directory
will contain all the imperative management classes.

340

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 340

Figure 8-23

UrlRewriterRule
In this section, I design a class named UrlRewriterRule whose instances represent the URL rewriter
rules in the collection that the <urlRewriterRules> element represents. Listing 8-22 presents the
implementation of the UrlRewriterRule class. Now add a new source file named
UrlRewriterRule.cs to the ImperativeManagement directory and add the code shown in this code
listing to this source file.

Listing 8-22: The UrlRewriterRule Class

using Microsoft.Web.Administration;

namespace UrlRewriting.ImperativeManagement
{
public class UrlRewriterRule : ConfigurationElement
{
public string PatternToMatch
{
get { return (string)base[“patternToMatch”]; }
set { base[“patternToMatch”] = value; }

}

public string Replacement
{
get { return (string)base[“replacement”]; }
set { base[“replacement”] = value; }

}
}

}

341

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 341

The UrlRewriterRule class inherits from the ConfigurationElement base class and exposes the
patternToMatch and replacement attributes of the <add> element as strongly-typed properties
named PatternToMatch and Replacement, respectively.

UrlRewriterRules
Listing 8-23 presents a collection class named UrlRewriterRules that represents the
<urlRewriterRules> Collection element. Add a new source file named UrlRewriterRules.cs to the
ImperativeMangement directory and add the code shown in this code listing to this source file.

Listing 8-23: The UrlRewriterRules Class

using System;
using Microsoft.Web.Administration;

namespace UrlRewriting.ImperativeManagement
{
public class UrlRewriterRules :

ConfigurationElementCollectionBase<UrlRewriterRule>
{
public UrlRewriterRule Add(string patternToMatch, string replacement)
{
UrlRewriterRule urlRewriterRule = base.CreateElement();
urlRewriterRule.PatternToMatch = patternToMatch;
urlRewriterRule.Replacement = replacement;
base.Add(urlRewriterRule);
return urlRewriterRule;

}

protected override UrlRewriterRule CreateNewElement(string elementTagName)
{
return new UrlRewriterRule();

}

public new UrlRewriterRule this[string patternToMatch]
{
get
{
for (int i = 0; i < base.Count; i++)
{
if (string.Equals(base[i].PatternToMatch,

patternToMatch, StringComparison.OrdinalIgnoreCase))
return base[i];

}
return null;

}
}

}
}

342

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 342

The UrlRewriterRules class, like any other collection class in the IIS 7 and ASP.NET integrated imper-
ative management system, inherits from the ConfigurationElementCollectionBase generic class
and performs the following tasks:

❑ Exposes an indexer that returns the UrlRewriterRule object with the specified
PatternToMatch property value:

public new UrlRewriterRule this[string patternToMatch]
{
get
{
for (int i = 0; i < base.Count; i++)
{
if (string.Equals(base[i].PatternToMatch,

patternToMatch, StringComparison.OrdinalIgnoreCase))
return base[i];

}
return null;

}
}

❑ Exposes an Add method that creates a UrlRewriterRule object with the specified
PatternToMatch and Replacement property values and adds the object to the collection:

public UrlRewriterRule Add(string patternToMatch, string replacement)
{
UrlRewriterRule urlRewriterRule = base.CreateElement();
urlRewriterRule.PatternToMatch = patternToMatch;
urlRewriterRule.Replacement = replacement;
base.Add(urlRewriterRule);
return urlRewriterRule;

}

❑ Overrides the CreateNewElement method of its base class to instantiate and to return a
UrlRewriterRule object:

protected override UrlRewriterRule CreateNewElement(string elementTagName)
{
return new UrlRewriterRule();

}

UrlRewriterSection
The UrlRewriterSection class represents the outermost element of the configuration section, that is,
the <urlRewriter> element, as presented in Listing 8-24. Now add a new source file named
UrlRewriterSection.cs to the ImperativeManagement directory and add the code shown in this
code listing to this source file.

Listing 8-24: The UrlRewriterSection Class

using Microsoft.Web.Administration;

namespace UrlRewriting.ImperativeManagement

343

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 343

Listing 8-24: (continued)

{
public class UrlRewriterSection : ConfigurationSection
{
private UrlRewriterRules urlRewriterRules;
public UrlRewriterRules UrlRewriterRules
{
get
{
if (urlRewriterRules == null)
{
urlRewriterRules =

(UrlRewriterRules)base.GetCollection(“UrlRewriterRules”,
typeof(UrlRewriterRules));

}
return urlRewriterRules;

}
}

}
}

The UrlRewriterSection class, like any other configuration section in the IIS 7 and ASP.NET inte-
grated imperative management system, inherits from the ConfigurationSection base class. As you
can see from Listing 8-24, this class exposes a property of type UrlRewriterRules named
UrlRewriterRules that references the UrlRewriterRules object that represents the
<urlRewriterRules> Collection element of the configuration section.

Testing the Managed Classes
The previous sections extended the IIS 7 and ASP.NET integrated imperative management system to add
support for new imperative management classes that represent your configuration section and its con-
stituent elements and attributes. Now it’s time to put these classes to test. Launch Visual Studio, add a new
console application named UrlRewriterConsoleApplication to the ProIIS7AspNetIntegProgCh8
solution, add a reference to the Microsoft.Web.Administration.dll assembly to this console applica-
tion, and add the code shown in Listing 8-25 to the Program.cs file. You also need to add a reference to the
UrlRewriterProj2 project, which contains your new imperative management classes.

Listing 8-25: The Program.cs File for Testing the New Managed Classes

using Microsoft.Web.Administration;
using UrlRewriting.ImperativeManagement;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();
UrlRewriterSection urlRewriterSection =

(UrlRewriterSection)appHostConfig.GetSection(

344

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 344

Listing 8-25: (continued)

“system.webServer/urlRewriter”,
typeof(UrlRewriterSection));

urlRewriterSection.UrlRewriterRules.Add(@”Articles/(.*)\.aspx”,
@”Articles.aspx?AuthorName=$1”);

mgr.CommitChanges();
}

}

Run the program and open the applicationHost.config file in your favorite editor. The result should
look like the following:

<configuration>
<system.webServer>
<urlRewriter>
<urlRewriterRules>
<add patternToMatch=”Articles/(.*)\.aspx”

replacement=”Articles.aspx?AuthorName=$1” />
</urlRewriterRules>

</urlRewriter>
</system.webServer>

</configuration>

Now let’s dissect Listing 8-25. The listing begins by creating a ServerManager object and calls its
GetApplicationHostConfiguration method to load the applicationHost.config file into a
Configuration object:

ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetApplicationHostConfiguration();

Next, it calls the GetSection method to return the UrlRewriterSection object that provides pro-
grammatic access to the <urlRewriter> configuration section in a strongly-typed manner. Note that the
Type object representing the type of the UrlRewriterSection class is passed into the GetSection
method. Under the hood, this method uses .NET reflection and this type information to dynamically
generate an instance of the UrlRewriterSection class.

UrlRewriterSection urlRewriterSection =
(UrlRewriterSection)appHostConfig.GetSection(

“system.webServer/urlRewriter”,
typeof(UrlRewriterSection));

Finally, it accesses the UrlRewriterRules property of the UrlRewriterSection object and adds a
new UrlRewriterRule object to the collection. These operations are all performed in a strongly-typed
manner:

urlRewriterSection.UrlRewriterRules.Add(@”Articles/(.*)\.aspx”,
@”Articles.aspx?AuthorName=$1”);

mgr.CommitChanges();

345

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 345

Graphical Management Suppor t for the
URL Rewriter Managed Module

In this section, you extend the IIS 7 and ASP.NET integrated graphical management system to add
graphical management support for the urlRewriter configuration section. This will allow you to con-
figure the URL rewriter managed module from the IIS 7 Manager.

As discussed earlier, you have to write two sets of managed code to extend the IIS 7 Manager: client-side
managed code and server-side managed code. Go ahead and add a new directory named
GraphicalManagement to the UrlRewriterProj2 project. Then add two subdirectories named Client
and Server to the GraphicalManagement directory. The Client and Server directories will respec-
tively contain the client-side and server-side managed code.

Client-Side Managed Code
The client-side managed code is the code that you have to implement to extend the user interface of the
IIS 7 Manager to add user interface support for your URL rewriter module. Before diving into the details
of the implementation of this client-side managed code, let’s see what this user interface looks like in
action. As Figure 8-24 shows, the Web server home page includes a new item named UrlRewriterPage.

Figure 8-24

346

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 346

When the end user double-clicks this item or alternatively clicks the Open Feature link on the Actions
panel, the IIS 7 Manager navigates to a module page named Url Rewriter Page as shown in Figure 8-25.

Figure 8-25

As you can see, this module page consists of a list of two columns. The first column displays the patterns
to match and the second column displays their associated replacement strings.

Notice that the Actions panel contains a link named “Add URL rewriter rule.” When the user clicks this
link, the task form named UrlRewriterRuleTaskForm pops up, as shown in Figure 8-26.

Figure 8-26

This task form allows the user to specify the pattern to match and the replacement string for the
URL rewriter rule being added. As Figure 8-27 shows, when the end user selects an item from the
list, the Actions panel displays two new links named “Update URL rewriter rule” and “Delete URL
rewriter rule.”

347

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 347

Figure 8-27

The user clicks the “Delete URL rewriter rule” link to delete the selected URL rewriter rule, and the
“Update URL rewriter rule” link to launch the task form shown in Figure 8-28. This task form allows
the user to modify the pattern to match and the replacement string of the selected URL rewriter rule. The
user can also launch this task form by double-clicking the selected URL rewriter rule.

Figure 8-28

Communications with the Back-End Server
As the previous discussions show, you need to implement a module page named UrlRewriterPage
and a task form named UrlRewriterRuleTaskForm. Obviously, the UrlRewriterPage module
page and the UrlRewriterRuleTaskForm task form need to communicate with the back-end server.
Let’s study the details of these communications.

First, I discuss the communication scenarios between the back-end server and the UrlRewriterPage
module page. When the end user clicks the UrlRewriterPage item in the middle panel of Figure 8-24
and navigates to the UrlRewriterPage module page shown in Figure 8-25, this module page must
invoke the appropriate method of a server-side class to retrieve the URL rewriter rules and the value

348

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 348

of the isLocked attribute on the <urlRewriter> configuration section. As you’ll see later, in this case
the server-side class is a class named UrlRewriterModuleService that exposes a method named
GetUrlRewriterSettings that returns the available URL rewriter rules and the isLocked attribute
value. Recall that the isLocked attribute of a configuration section specifies whether the configuration
section is locked down and consequently its settings cannot be overridden. The UrlRewriterPage
module page must disable its editing capabilities if the GetUrlRewriterSettings method of the
server-side UrlRewriterModuleService returns true as the value of the isLocked attribute.

The other communication scenario involving the UrlRewriterPage module page is when the user
selects a URL rewriter rule from the list shown in Figure 8-25 and clicks the “Delete URL rewriter rule”
link in the task panel. In this case, the UrlRewriterPage module page must call the appropriate
method of the server-side UrlRewriterModuleService class to delete the selected URL rewriter rule
from the underlying configuration file. In this case, the server-side UrlRewriterModuleService class
exposes a method named DeleteUrlRewriterRule that takes the value of the patternToMatch attrib-
ute as its argument and deletes the associated URL rewriter rule from the configuration file.

Next, I discuss the communications between the back-end UrlRewriterModuleService server-side class
and the UrlRewriterRuleTaskForm task form. There are two communication scenarios involving this
task form. The first occurs when the end user clicks the “Add URL rewriter rule” link in the task panel in
Figure 8-25 and launches the task form shown in Figure 8-26 to add a new URL rewriter rule. After the end
user specifies the values of the patternToMatch and replacement attributes of the new URL rewriter
rule and clicks the OK button on the UrlRewriterRuleTaskForm task form shown in Figure 8-26, this
task form must call the appropriate method of the server-side UrlRewriterModuleService class to add a
new URL rewriter rule with the specified attribute values to the underlying configuration file. In this case,
the server-side UrlRewriterModuleService class features a method named AddUrlRewriterRule that
takes these attribute values and adds the new URL rewriter rule.

The second communication scenario involving the UrlRewriterRuleTaskForm task form occurs when the
end user selects an item from the list shown in Figure 8-27 and launches this task form (see Figure 8-28) to
update the current values of the patternToMatch and replacement attributes of the selected URL rewriter
rule. When the end user is done with editing and clicks the OK button, the UrlRewriterRuleTaskForm
task form must call the appropriate method of the UrlRewriterModuleService server-side class to update
the attribute values of the selected URL rewriter rule in the configuration file. In this case, the server-side
class exposes a method named UpdateUrlRewriterRule that takes the new attribute values and updates
the underlying attributes.

The IIS 7 Manager architecture encapsulates the logic that deals with the details of the communications
with the back-end server-side class into a standard client-side base class named ModuleServiceProxy.
The methods and properties of this base class define the API that the UrlRewriterPage module page
and UrlRewriterRuleTaskForm task form can use to indirectly communicate with the back-end
UrlRewriterModuleService class and invoke its methods without getting involved in the dirty little
communication details. All you have to do is to implement a client-side class known as a proxy that
inherits from the ModuleServiceProxy base class and exposes methods with the same signatures as
the methods of the back-end server-side UrlRewriterModuleService class. The implementation of
these methods of this client-side class must use the Invoke method of the ModuleServiceProxy base
class to invoke the associated methods of the server-side class. This proxy class in this case is a class named
UrlRewriterModuleServiceProxy, as shown in Listing 8-26. Now add a new source file named
UrlRewriterModuleServiceProxy.cs to the Client subdirectory of the GraphicalManagement
directory and add the code shown in this code listing to the source file. You also need to add a reference

349

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 349

to the Micrsoft.Web.Management.dll assembly to the UrlRewriterProj2 Class Library project. This
assembly is located in the following directory on your machine:

%windir%\System32\inetsvc

Listing 8-26: The UrlRewriterModuleServiceProxy Class

using Microsoft.Web.Management.Client;
using Microsoft.Web.Management.Server;

namespace UrlRewriting.GraphicalManagement.Client
{
public class UrlRewriterModuleServiceProxy : ModuleServiceProxy
{
public PropertyBag GetUrlRewriterSettings()
{
return (PropertyBag)base.Invoke(“GetUrlRewriterSettings”, new object[0]);

}

public void UpdateUrlRewriterRule(PropertyBag urlRewriterRuleToUpdate)
{
base.Invoke(“UpdateUrlRewriterRule”,

new object[] { urlRewriterRuleToUpdate });
}

public void DeleteUrlRewriterRule(PropertyBag urlRewriterRuleToDelete)
{
base.Invoke(“DeleteUrlRewriterRule”,

new object[] { urlRewriterRuleToDelete });
}

public void AddUrlRewriterRule(PropertyBag urlRewriterRuleToAdd)
{
base.Invoke(“AddUrlRewriterRule”, new object[] { urlRewriterRuleToAdd });

}
}

}

Note that each method of your UrlRewriterModuleServiceProxy custom proxy class meets the fol-
lowing two important requirements:

❑ It has the same signature as the corresponding server-side method. Recall that the signature of a
method includes its name, return type, and its parameter types. As you’ll see later, the server-
side UrlRewriterModuleService class exposes the methods shown in Listing 8-27. If you
compare this code listing with Listing 8-26 you’ll notice that the
UrlRewriterModuleServiceProxy proxy class exposes methods with the same signatures as
the server-side UrlRewriterModuleService class.

❑ It calls the Invoke method of the ModuleServiceProxy base class and passes the following
two parameters into it:

❑ The name of the corresponding server-side method.

350

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 350

❑ An array of objects where each object contains the value of a particular parameter of the
corresponding server-side method. The objects in this array must be in the same order
as their corresponding parameters.

For example, the UpdateUrlRewriterRule method of the UrlRewriterModuleServiceProxy proxy
class (see Figure 8-26) calls the Invoke method of the ModuleServiceProxy base class and passes the
following two parameters into it:

❑ The string value “UpdateUrlRewriterRule”, which is the name of the corresponding server-
side method (see Listing 8-27)

❑ An array that contains a single object of type PropertyBag, which is the value of the parameter
of the UpdateUrlRewriterRule server-side method (see Listing 8-18)

public void UpdateUrlRewriterRule(PropertyBag urlRewriterRuleToUpdate)
{
base.Invoke(“UpdateUrlRewriterRule”, new object[] {urlRewriterRuleToUpdate});

}

Listing 8-27: The UrlRewriterModuleService Server-Side Class

public class UrlRewriterModuleService: ModuleService
{
[ModuleServiceMethod]
public PropertyBag GetUrlRewriterSettings();

[ModuleServiceMethod]
public void AddUrlRewriterRule(PropertyBag urlRewriterRuleToAdd);

[ModuleServiceMethod]
public void DeleteUrlRewriterRule(PropertyBag urlRewriterRuleToDelete);

[ModuleServiceMethod]
public void UpdateUrlRewriterRule(PropertyBag urlRewriterRuleToUpdate);

}

As Listings 8-26 and 8-27 show, the client-side UrlRewriterModuleServiceProxy proxy class and the
server-side UrlRewriterModuleService class use a PropertyBag object to exchange data. For exam-
ple, the AddUrlRewriterRule method of the UrlRewriterModuleServiceProxy proxy class sends
the values of the patternToMatch and replacement attributes of the new URL rewriter rule through a
PropertyBag object.

UrlRewriterPage
As discussed, when the end user clicks the UrlRewriterPage item shown in Figure 8-24, the IIS 7
Manager uses the navigation service to navigate to the UrlRewriterPage module page. Listing 8-28
presents the implementation of the UrlRewriterPage class. I walk through this implementation
in the following sections. Now add a new source file named UrlRewriterPage.cs to the
GraphicalManagement/Client directory and add the code shown in Listing 8-28 to this source file.
You also need to add a reference to the System.Windows.Forms.dll assembly to the
UrlRewriterProj2 Class Library project.

351

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 351

Listing 8-28: The UrlRewriterPage Class

using Microsoft.Web.Management.Client.Win32;
using Microsoft.Web.Management.Server;
using Microsoft.Web.Management.Client;
using System.Windows.Forms;
using System.ComponentModel;
using System;
using System.Collections;

namespace UrlRewriting.GraphicalManagement.Client
{
public class UrlRewriterPage : ModuleListPage
{
private ColumnHeader replacementColumnHeader;
private ColumnHeader patternToMatchColumnHeader;
private UrlRewriterModuleServiceProxy serviceProxy;
private bool errorGetUrlRewriterSettings;
private PropertyBag bag;
private bool readOnly;

protected override void InitializeListPage()
{
patternToMatchColumnHeader = new ColumnHeader();
patternToMatchColumnHeader.Text = “Pattern To Match”;
patternToMatchColumnHeader.Width = 90;
replacementColumnHeader = new ColumnHeader();
replacementColumnHeader.Text = “Replacement String”;
replacementColumnHeader.Width = 90;
base.ListView.Columns.Clear();
base.ListView.Columns.AddRange(

new ColumnHeader[] { patternToMatchColumnHeader,
replacementColumnHeader });

base.ListView.LabelEdit = false;
base.ListView.MultiSelect = false;
base.ListView.SelectedIndexChanged +=

new EventHandler(OnListViewSelectedIndexChanged);
base.ListView.DoubleClick += new EventHandler(OnListViewDoubleClick);
base.ListView.KeyUp += new KeyEventHandler(OnListViewKeyUp);

}

private void OnListViewDoubleClick(object sender, EventArgs e)
{
if ((this.SelectedUrlRewriterRule!= null) && !this.ReadOnly)
this.UpdateUrlRewriterRule();

}

private void OnListViewKeyUp(object sender, KeyEventArgs e)
{
if ((this.SelectedUrlRewriterRule != null) && (e.KeyData == Keys.Delete))
this.DeleteUrlRewriterRule();

}

private void OnListViewSelectedIndexChanged(object sender, EventArgs e)

352

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 352

353

Chapter 8: Extending the Integrated Request Processing Pipeline

Listing 8-28: (continued)

{
base.Update();

}

protected override void OnActivated(bool initialActivation)
{
base.OnActivated(initialActivation);
if (initialActivation)
{
this.serviceProxy = (UrlRewriterModuleServiceProxy)base.CreateProxy(

typeof(UrlRewriterModuleServiceProxy));
this.GetUrlRewriterSettings();

}
}

private void GetUrlRewriterSettings()
{
base.StartAsyncTask(“Getting URL rewriter settings”,

new DoWorkEventHandler(this.OnWorkerGetUrlRewriterSettings),
new RunWorkerCompletedEventHandler(

this.OnWorkerGetUrlRewriterSettingsCompleted));
}

private void OnWorkerGetUrlRewriterSettings(object sender, DoWorkEventArgs e)
{
e.Result = this.serviceProxy.GetUrlRewriterSettings();

}

protected override bool ReadOnly
{
get
{
return this.readOnly;

}
}

private void OnWorkerGetUrlRewriterSettingsCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
base.ListView.BeginUpdate();
try
{
if (e.Result != null)
{
base.ListView.Items.Clear();
this.bag = (PropertyBag)e.Result;
ArrayList list1 = (ArrayList)this.bag[0];
this.readOnly = (bool)this.bag[1];

if (list1 != null)
{
for (int num1 = 0; num1 < list1.Count; num1++)

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 353

Listing 8-28: (continued)

{
UrlRewriterRuleInfo info1 =

new UrlRewriterRuleInfo((PropertyBag)list1[num1]);
this.AddItem(info1, false);

}
}
this.errorGetUrlRewriterSettings = false;

}
}

catch (Exception exception1)
{
base.StopProgress();
base.DisplayErrorMessage(exception1.Message,

“GetUrlRewriterSettingsCompleted”);
this.errorGetUrlRewriterSettings = true;
return;

}

finally
{
base.ListView.EndUpdate();

}
}

private void AddItem(UrlRewriterRuleInfo urlRewriterRuleInfo, bool isSelected)
{
UrlRewriterRuleListViewItem item1 =

new UrlRewriterRuleListViewItem(urlRewriterRuleInfo);
base.ListView.Items.Add(item1);

if (isSelected)
{
item1.Selected = true;
item1.Focused = true;
base.ListView.EnsureVisible(base.ListView.Items.IndexOf(item1));

}
}

private PageTaskList taskList;
protected override TaskListCollection Tasks
{
get
{
if (this.taskList == null)
this.taskList = new PageTaskList(this);

TaskListCollection collection1 = base.Tasks;
collection1.Add(this.taskList);
return collection1;

}
}

354

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 354

355

Chapter 8: Extending the Integrated Request Processing Pipeline

Listing 8-28: (continued)

private void AddUrlRewriterRule()
{
using (UrlRewriterRuleTaskForm form1 =

new UrlRewriterRuleTaskForm(base.Module, this.serviceProxy))
{
if (base.ShowDialog(form1) == DialogResult.OK)
{
PropertyBag bag1 = new PropertyBag();
bag1[0] = form1.PatternToMatch;
bag1[1] = form1.Replacement;
this.AddItem(new UrlRewriterRuleInfo(bag1), true);

}
}

}

private void DeleteUrlRewriterRule()
{
UrlRewriterRuleListViewItem item1 = this.SelectedUrlRewriterRule;
if (item1 != null)
{
DialogResult result1 = base.ShowMessage(

“Do you really want to delete this URL rewriter rule?”,
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button1,
“Removed”);

if (result1 == DialogResult.Yes)
{
try
{
Cursor.Current = Cursors.WaitCursor;
PropertyBag bag = new PropertyBag();
bag[0] = item1.UrlRewriterRuleInfo.PatternToMatch;
this.serviceProxy.DeleteUrlRewriterRule(bag);
base.ListView.Items.Remove(item1);

}
catch (Exception exception1)
{
base.DisplayErrorMessage(exception1, null);
return;

}
finally
{
Cursor.Current = Cursors.Default;

}
}

}
}

private void UpdateUrlRewriterRule()
{
UrlRewriterRuleListViewItem item1 = this.SelectedUrlRewriterRule;

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 355

Listing 8-28: (continued)

if (item1 != null)
{
UrlRewriterRuleInfo info1 = item1.UrlRewriterRuleInfo;
using (UrlRewriterRuleTaskForm form1 =

new UrlRewriterRuleTaskForm(base.Module, this.serviceProxy,
info1.PatternToMatch,
info1.Replacement))

{
if ((base.ShowDialog(form1) == DialogResult.OK) && form1.HasChanges)
{
info1.PatternToMatch = form1.PatternToMatch;
info1.Replacement = form1.Replacement;
this.ReplaceItem(item1, info1);

}
}

}
}

private void ReplaceItem(UrlRewriterRuleListViewItem item,
UrlRewriterRuleInfo urlRewriterRuleInfo)

{
base.ListView.Items.Remove(item);
this.AddItem(urlRewriterRuleInfo, true);

}

private UrlRewriterRuleListViewItem SelectedUrlRewriterRule
{
get
{
if (base.ListView.SelectedItems.Count > 0)
return (UrlRewriterRuleListViewItem)base.ListView.SelectedItems[0];

return null;
}

}

#region Nested Types

private sealed class UrlRewriterRuleListViewItem : ListViewItem
{
public UrlRewriterRuleListViewItem(UrlRewriterRuleInfo urlRewriterRuleInfo)

: base(urlRewriterRuleInfo.PatternToMatch)
{
this.urlRewriterRuleInfo = urlRewriterRuleInfo;
base.SubItems.Add(new ListViewItem.ListViewSubItem(this,

urlRewriterRuleInfo.Replacement.ToString()));
}

public UrlRewriterRuleInfo UrlRewriterRuleInfo
{
get { return this.urlRewriterRuleInfo; }

}

356

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 356

Listing 8-28: (continued)

private UrlRewriterRuleInfo urlRewriterRuleInfo;
}

private sealed class PageTaskList : TaskList
{
public PageTaskList(UrlRewriterPage owner)
{
this.owner = owner;

}

public void AddUrlRewriterRule()
{
this.owner.AddUrlRewriterRule();

}

public void DeleteUrlRewriterRule()
{
this.owner.DeleteUrlRewriterRule();

}

public void UpdateUrlRewriterRule()
{
this.owner.UpdateUrlRewriterRule();

}

public override ICollection GetTaskItems()
{
ArrayList list1 = new ArrayList();
if (!owner.ReadOnly && !owner.errorGetUrlRewriterSettings)
{
list1.Add(new MethodTaskItem(“AddUrlRewriterRule”,

“Add URL rewriter rule”, “Add”));
if (owner.SelectedUrlRewriterRule != null)
{
list1.Add(new MethodTaskItem(“UpdateUrlRewriterRule”,

“Update URL rewriter rule”, “Tasks”));
list1.Add(new MethodTaskItem(“DeleteUrlRewriterRule”,

“Delete URL rewriter rule”, “Tasks”));
}

}
if (owner.errorGetUrlRewriterSettings)
list1.Add(new MessageTaskItem(MessageTaskItemType.Error, “Error”,

“Info”, “Error”));

foreach (TaskItem item2 in list1)
{
if (!(item2 is MessageTaskItem) && !(item2 is TextTaskItem))
item2.Enabled = !owner.InProgress;

}
return (TaskItem[])list1.ToArray(typeof(TaskItem));

}

357

Chapter 8: Extending the Integrated Request Processing Pipeline

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 357

Listing 8-28: (continued)

private UrlRewriterPage owner;
}

#endregion
}

}

As Listing 8-28 shows, the UrlRewriterPage module page inherits from ModuleListPage, which in
turn inherits from ModulePage. The following code listing presents those members of the
ModuleListPage base class that UrlRewriterPage overrides:

public abstract class ModuleListPage : ModulePage
{
protected abstract void InitializeListPage();
protected override void OnActivated(bool initialActivation);

}

Listing 8-29 presents those members of the ModulePage base class that the UrlRewriterPage
overrides.

Listing 8-29: The ModulePage Class

public abstract class ModulePage : ContainerControl, IModulePage, IDisposable
{
protected virtual void Refresh();
protected virtual TaskListCollection Tasks { get; }
protected virtual bool CanRefresh { get; }
protected virtual bool ReadOnly { get; }

}

Now let’s get down to the implementation of the members of the UrlRewriterPage class.

InitializeListPage
Every module page that inherits from the ModuleListPage base class must implement the
InitializeListPage method because this method is marked as abstract. Listing 8-30 contains the
UrlRewriterPage module list page’s implementation of the InitializeListPage method.

Listing 8-30: The InitializeListPage Method

protected override void InitializeListPage()
{
patternToMatchColumnHeader = new ColumnHeader();
patternToMatchColumnHeader.Text = “Pattern To Match”;
patternToMatchColumnHeader.Width = 90;
replacementColumnHeader = new ColumnHeader();
replacementColumnHeader.Text = “Replacement String”;
replacementColumnHeader.Width = 90;
base.ListView.Columns.Clear();

358

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 358

Listing 8-30: (continued)

base.ListView.Columns.AddRange(new ColumnHeader[] { patternToMatchColumnHeader,
replacementColumnHeader });

base.ListView.LabelEdit = false;
base.ListView.MultiSelect = false;
base.ListView.SelectedIndexChanged +=

new EventHandler(OnListViewSelectedIndexChanged);
base.ListView.DoubleClick += new EventHandler(OnListViewDoubleClick);
base.ListView.KeyUp += new KeyEventHandler(OnListViewKeyUp);

}

InitializeListPage creates two columns to display the values of the patternToMatch and
replacement attributes of the URL rewriter rules and adds them to the list of the columns. It then regis-
ters the OnListViewSelectedIndexChanged, OnListViewDoubleClick, and OnListViewKeyUp
methods as event handlers for the SelectedIndexChanged, DoubleClick, and KeyUp events,
respectively:

base.ListView.SelectedIndexChanged +=
new EventHandler(OnListViewSelectedIndexChanged);

base.ListView.DoubleClick += new EventHandler(OnListViewDoubleClick);
base.ListView.KeyUp += new KeyEventHandler(OnListViewKeyUp);

OnActivated
The OnActivated method is invoked when the UrlRewriterPage module list page is accessed
(see Listing 8-31). If the module page is being accessed for the first time, the method calls the
CreateProxy method of the ModulePage base class to instantiate an instance of the
UrlRewriterModuleServiceProxy proxy class and stores this instance in a private field named
serviceProxy for future reference. Note that OnActivated calls the GetUrlRewriterSettings
method to retrieve the URL rewriter rules and the value of the isLocked attribute from the server.

Listing 8-31: The OnActivated Method

protected override void OnActivated(bool initialActivation)
{
base.OnActivated(initialActivation);
if (initialActivation)
{
this.serviceProxy = (UrlRewriterModuleServiceProxy)base.CreateProxy(

typeof(UrlRewriterModuleServiceProxy));
this.GetUrlRewriterSettings();

}
}

GetUrlRewriterSettings
The GetUrlRewriterSettings method calls the StartAsyncTask method of the base class
and passes two delegates into it (see Listing 8-32). The first delegate is a DoWorkEventHandler
delegate that wraps a method named OnWorkerGetUrlRewriterSettings. The second delegate
is a RunWorkerCompletedEventHandler delegate that encapsulates a method named
OnWorkerGetUrlRewriterSettingsCompleted.

359

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 359

Listing 8-32: The GetUrlRewriterSettings Method

private void GetUrlRewriterSettings()
{
base.StartAsyncTask(“Getting URL rewriter settings”,

new DoWorkEventHandler(this.OnWorkerGetUrlRewriterSettings),
new RunWorkerCompletedEventHandler(

this.OnWorkerGetUrlRewriterSettingsCompleted));
}

OnWorkerGetUrlRewriterSettings
The OnWorkerGetUrlRewriterSettings method simply calls the GetUrlRewriterSettings method
of the proxy to retrieve the URL rewriter rules and the isLocked attribute value from the server (see
Listing 8-33). As discussed earlier, the GetUrlRewriterSettings method of the proxy calls the
GetUrlRewriterSettings method of the server-side class.

Listing 8-33: The OnWorkerGetUrlRewriterSettings Method

private void OnWorkerGetUrlRewriterSettings(object sender, DoWorkEventArgs e)
{
e.Result = this.serviceProxy.GetUrlRewriterSettings();

}

OnWorkerGetUrlRewriterSettingsCompleted
The OnWorkerGetUrlRewriterSettingsCompleted method is automatically called right after the
URL rewriter settings are retrieved from the server (see Listing 8-34).

Listing 8-34: The OnWorkerGetUrlRewriterSettingsCompleted Method

private void OnWorkerGetUrlRewriterSettingsCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
base.ListView.BeginUpdate();
try
{
if (e.Result != null)
{
base.ListView.Items.Clear();
this.bag = (PropertyBag)e.Result;
ArrayList list1 = (ArrayList)this.bag[0];
this.readOnly = (bool)this.bag[1];

if (list1 != null)
{
for (int num1 = 0; num1 < list1.Count; num1++)
{
UrlRewriterRuleInfo info1 =

new UrlRewriterRuleInfo((PropertyBag)list1[num1]);
this.AddItem(info1, false);

}
}

360

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 360

Listing 8-34: (continued)

this.errorGetUrlRewriterSettings = false;
}

}

catch (Exception exception1)
{
base.StopProgress();
base.DisplayErrorMessage(exception1.Message,

“GetUrlRewriterSettingsCompleted”);
this.errorGetUrlRewriterSettings = true;
return;

}

finally
{
base.ListView.EndUpdate();

}
}

This method first clears the list of displayed URL rewriter rules:

base.ListView.Items.Clear();

Then, it stores the PropertyBag that contains the retrieved URL rewriter settings in a private
PropertyBag field named bag for future reference:

this.bag = (PropertyBag)e.Result;

As you’ll see later, the GetUrlRewriterSettings method of the server-side class creates one
PropertyBag object for each URL rewriter rule, stores the values of the patternToMatch and replace-
ment attributes of the URL rewriter rule in this PropertyBag, and adds the PropertyBag object into an
ArrayList. It then creates a PropertyBag object, stores the ArrayList as the first element in this
PropertyBag, stores the value of the isLocked attribute as the second element in this PropertyBag, and
sends this PropertyBag to the client. Therefore, the OnWorkerGetUrlRewriterSettingsCompleted
method first accesses the ArrayList and the isLocked attribute value.

ArrayList list1 = (ArrayList)this.bag[0];
this.readOnly = (bool)this.bag[1];

Note that the method assigns the value of the isLocked attribute to the readOnly Boolean field of the
UrlRewriterPage module page. This module page overrides the ReadOnly property that it inherits
from the ModulePage base class to return the value of the readOnly Boolean field. The ReadOnly prop-
erty specifies whether the UrlRewriterPage module page is editable.

protected override bool ReadOnly
{
get { return this.readOnly; }

}

361

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 361

Now back to the implementation of the OnWorkerGetUrlRewriterSettingsCompleted method. The
method then iterates through the PropertyBag objects in the ArrayList, creates one
UrlRewriterRuleInfo object for each enumerated PropertyBag object, and calls the AddItem passing
in the UrlRewriterRuleInfo object. I discuss the UrlRewriterRuleInfo class and AddItem in the
next sections.

if (list1 != null)
{
for (int num1 = 0; num1 < list1.Count; num1++)
{
UrlRewriterRuleInfo info1 = new

UrlRewriterRuleInfo((PropertyBag)list1[num1]);
this.AddItem(info1, false);

}
}

UrlRewriterRuleInfo
The UrlRewriterRuleInfo class exposes the contents of the PropertyBag object passed into its con-
structor as strongly-typed properties (see Listing 8-35) to allow us to benefit from the Visual Studio
IntelliSense support, the compiler’s type-checking support, and well-known benefits of object-oriented
programming. Now add a new source file named UrlRewriterRuleInfo.cs to the Client subdirec-
tory of the GraphicalManagement directory and add the code shown in Listing 8-35 to this source file.

Listing 8-35: The UrlRewriterRuleInfo Class

using Microsoft.Web.Management.Server;

namespace UrlRewriting.GraphicalManagement.Client
{
internal sealed class UrlRewriterRuleInfo
{
internal UrlRewriterRuleInfo(PropertyBag bag)
{
this.bag = bag;

}

public string PatternToMatch
{
get { return (string)this.bag[0]; }
set { this.bag[0] = value; }

}

public string Replacement
{
get { return (string)this.bag[1]; }
set { this.bag[1] = value; }

}

private PropertyBag bag;
}

}

362

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 362

UrlRewriterRuleListViewItem
When you write a custom module page that inherits from the ModuleListPage base class, you must
also implement a class that inherits the ListViewItem class. This class must be private and nested
within your custom module page (see Listing 8-36). The instances of this class will represent the items
that your custom module page displays in its user interface.

Following this pattern, Listing 8-36 implements a class named UrlRewriterRuleListViewItem that
inherits from the ListViewItem class. The instances of this class will display the URL rewriter rules that
the UrlRewriterPage module list page will display. Note that the constructor of this class passes the
value of the PatternToMatch property of the UrlRewriterRuleInfo object passed into it to the con-
structor of the ListViewItem base class. The base class uses this value to uniquely identify each URL
rewriter rule in the list of displayed URL rewriter rules.

Listing 8-36: The UrlRewriterRuleListViewItem Class

public class UrlRewriterPage : ModuleListPage
{
. . .
private sealed class UrlRewriterRuleListViewItem : ListViewItem
{
public UrlRewriterRuleListViewItem(UrlRewriterRuleInfo urlRewriterRuleInfo)

: base(urlRewriterRuleInfo.PatternToMatch)
{
this.urlRewriterRuleInfo = urlRewriterRuleInfo;
base.SubItems.Add(new ListViewItem.ListViewSubItem(this,

urlRewriterRuleInfo.Replacement.ToString()));
}

public UrlRewriterRuleInfo UrlRewriterRuleInfo
{
get { return this.urlRewriterRuleInfo; }

}

private UrlRewriterRuleInfo urlRewriterRuleInfo;
}

}

AddItem
Recall from Listing 8-34 that the OnWorkerGetUrlRewriterSettingsCompleted method iterates
through the ArrayList of PropertyBag objects that it has received from the server, creates a
UrlRewriterRuleInfo object for each enumerated PropertyBag object, and calls the AddItem
method, passing in the UrlRewriterRuleInfo object. As you can see from Listing 8-37, the main
responsibility of this method is to create a UrlRewriterRuleListViewItem to represent the associated
UrlRewriterRuleInfo object and add this UrlRewriterRuleListViewItem list view item to
the Items collection of the list view. This collection contains the list view items that represent the dis-
played items.

363

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 363

Listing 8-37: The AddItem Method

private void AddItem(UrlRewriterRuleInfo urlRewriterRuleInfo, bool isSelected)
{
UrlRewriterRuleListViewItem item1 =

new UrlRewriterRuleListViewItem(urlRewriterRuleInfo);
base.ListView.Items.Add(item1);

if (isSelected)
{
item1.Selected = true;
item1.Focused = true;
base.ListView.EnsureVisible(base.ListView.Items.IndexOf(item1));

}
}

Adding Support for New Task Items
Next, you need to add three new links titled “Add URL rewriter rule,” “Update URL rewriter rule,” and
“Delete URL rewriter rule” to the task panel associated with the UrlRewriterPage module page (see
Figure 8-27). As discussed in previous chapters, it takes three steps to add these new links:

1. Implement a class named PageTaskList that inherits from the TaskList base class. This class
must be private and nested within the UrlRewriterPage module list page.

2. Override the Tasks property of the UrlRewriterPage module list page.

3. Implement an event handler associated with each new link.

PageTaskList
Listing 8-38 presents the implementation of the PageTaskList class. Note that this class is a nested type
within the UrlRewriterPage module page.

Listing 8-38: The PageTaskList Class

namespace UrlRewriting.GraphicalManagement.Client
{
public class UrlRewriterPage : ModuleListPage
{
. . .
private sealed class PageTaskList : TaskList
{
public PageTaskList(UrlRewriterPage owner)
{
this.owner = owner;

}

public void AddUrlRewriterRule()
{
this.owner.AddUrlRewriterRule();

}

364

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 364

Listing 8-38: (continued)

public void DeleteUrlRewriterRule()
{
this.owner.DeleteUrlRewriterRule();

}

public void UpdateUrlRewriterRule()
{
this.owner.UpdateUrlRewriterRule();

}

public override ICollection GetTaskItems()
{
ArrayList list1 = new ArrayList();
if (!owner.ReadOnly && !owner.errorGetUrlRewriterSettings)
{
list1.Add(new MethodTaskItem(“AddUrlRewriterRule”,

“Add URL rewriter rule”, “Add”));
if (owner.SelectedUrlRewriterRule != null)
{
list1.Add(new MethodTaskItem(“UpdateUrlRewriterRule”,

“Update URL rewriter rule”, “Tasks”));
list1.Add(new MethodTaskItem(“DeleteUrlRewriterRule”,

“Delete URL rewriter rule”, “Tasks”));
}

}

if (owner.errorGetUrlRewriterSettings)
list1.Add(new MessageTaskItem(MessageTaskItemType.Error, “Error”,

“Info”, “Error”));

foreach (TaskItem item2 in list1)
{
if (!(item2 is MessageTaskItem) && !(item2 is TextTaskItem))
item2.Enabled = !owner.InProgress;

}
return (TaskItem[])list1.ToArray(typeof(TaskItem));

}

private UrlRewriterPage owner;
}

}
}

As Listing 8-38 shows, the PageTaskList task list overrides the GetTaskItems method that it inherits
from the TaskList base class. Next, I walk through the implementation of the GetTaskItems method.
This method first creates an ArrayList:

ArrayList list1 = new ArrayList();

365

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 365

Next, it checks whether both of the following conditions are met:

❑ The UrlRewriterPage module list page that owns the PageTaskList task list is editable.
Recall that the ReadOnly property of the UrlRewriterPage module page simply returns the
value of the isLocked attribute on the <urlRewriter> configuration section in the underlying
configuration file. The user sets the value of this attribute to true to lock the <urlRewriter> con-
figuration section.

❑ The UrlRewriterPage module list page that owns the PageTaskList task list did not have
problems downloading the URL rewriter settings from the server in the first place.

If both of these conditions are met, the GetTaskItems method creates a MethodTaskItem to represent
the “Add URL rewriter rule” link. Note that it specifies the AddUrlRewriterRule method as the event
handler for this link. As Listing 8-38 shows, this method calls the AddUrlRewriterRule method of the
UrlRewriterPage module list page:

list1.Add(new MethodTaskItem(“AddUrlRewriterRule”,
“Add URL rewriter rule”, “Add”));

The GetTaskItems method then checks whether the user has selected a URL rewriter rule from the list
of displayed URL rewriter rules. If so, it creates two more MethodTaskItems to represent the “Update
URL rewriter rule” and “Delete URL rewriter rule” links. This means that these two links are rendered
only when an item is selected from the list. Notice that these two method task items respectively register
the UpdateUrlRewriterRule and DeleteUrlRewriterRule methods as event handlers for these
two links. As Listing 8-38 shows, these two methods call the UpdateUrlRewriterRule and
DeleteUrlRewriterRule methods of the UrlRewriterPage module page, respectively.

if (owner.SelectedUrlRewriterRule != null)
{
list1.Add(new MethodTaskItem(“UpdateUrlRewriterRule”,

“Update URL rewriter rule”, “Tasks”));
list1.Add(new MethodTaskItem(“DeleteUrlRewriterRule”,

“Delete URL rewriter rule”, “Tasks”));
}

GetTaskItems then checks whether the UrlRewriterPage module list page had trouble retrieving the
URL rewriter settings from the server. If so, it creates a MessageTaskItem to display an error message in
the Alerts panel.

if (owner.errorGetUrlRewriterSettings)
list1.Add(new MessageTaskItem(MessageTaskItemType.Error,”Error”,”Info”,”Error”));

Tasks
The UrlRewriterPage module page overrides the Tasks property, as shown in Listing 8-39. It first
instantiates the PageTaskList if it hasn’t already been instantiated. Next, it adds this PageTaskList
object to the Tasks collection property of its base class.

Listing 8-39: The Tasks Property

protected override TaskListCollection Tasks
{

366

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 366

Listing 8-39: (continued)

get
{
if (this.taskList == null)
this.taskList = new PageTaskList(this);

TaskListCollection collection1 = base.Tasks;
collection1.Add(this.taskList);
return collection1;

}
}

AddUrlRewriterRule
Listing 8-40 contains the implementation of the AddUrlRewriterRule method of the
UrlRewriterPage module list page.

Listing 8-40: The AddUrlRewriterRule Method

private void AddUrlRewriterRule()
{
using (UrlRewriterRuleTaskForm form1 =

new UrlRewriterRuleTaskForm(base.Module, this.serviceProxy))
{
if (base.ShowDialog(form1) == DialogResult.OK)
{
PropertyBag bag1 = new PropertyBag();
bag1[0] = form1.PatternToMatch;
bag1[1] = form1.Replacement;
this.AddItem(new UrlRewriterRuleInfo(bag1), true);

}
}

}

This method first instantiates and launches a UrlRewriterRuleTaskForm task form to allow user to
specify the patternToMatch and replacement attributes of the URL rewriter rule being added. As
you’ll see later, when the user clicks the OK button on the task form, the event handler for the button
uses the proxy to add the new URL rewriter rule to the underlying configuration file. When the task
form returns, AddUrlRewriterRule takes these steps to add the new URL rewriter rule to the list of dis-
played URL rewriter rules:

1. Creates a PropertyBag:

PropertyBag bag1 = new PropertyBag();

2. Populates the PropertyBag with the patternToMatch and replacement attributes of the new
URL rewriter rule. As you’ll see later, the UrlRewriterRuleTaskForm task form exposes these
two values as strongly-typed PatternToMatch and Replacement properties.

bag1[0] = form1.PatternToMatch;
bag1[1] = form1.Replacement;

367

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 367

3. Creates a UrlRewriterRuleInfo object, passing in the PropertyBag. Recall that the
UrlRewriterRuleInfo object exposes the content of the PropertyBag as strongly-typed prop-
erties. Finally it calls the AddItem method to add the new URL rewriter rule to the list of dis-
played URL rewriter rules:

this.AddItem(new UrlRewriterRuleInfo(bag1), true);

DeleteUrlRewriterRule
Listing 8-41 contains the code for the DeleteUrlRewriterRule method.

Listing 8-41: The DeleteUrlRewriterRule Method

private void DeleteUrlRewriterRule()
{
UrlRewriterRuleListViewItem item1 = this.SelectedUrlRewriterRule;
if (item1 != null)
{
DialogResult result1 = base.ShowMessage(

“Do you really want to delete this URL rewriter rule?”,
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button1, “Removed”);

if (result1 == DialogResult.Yes)
{
try
{
Cursor.Current = Cursors.WaitCursor;
PropertyBag bag = new PropertyBag();
bag[0] = item1.UrlRewriterRuleInfo.PatternToMatch;
this.serviceProxy.DeleteUrlRewriterRule(bag);
base.ListView.Items.Remove(item1);

}
catch (Exception exception1)
{
base.DisplayErrorMessage(exception1, null);
return;

}
finally
{
Cursor.Current = Cursors.Default;

}
}

}
}

This method first accesses the UrlRewriterRuleListViewItem object that represents the selected URL
rewriter rule:

UrlRewriterRuleListViewItem item1 = this.SelectedUrlRewriterRule;

368

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 368

It then launches a message box to double-check whether the end user indeed wants to delete the selected
URL rewriter rule from the underlying configuration file:

DialogResult result1 = base.ShowMessage(
“Do you really want to delete this URL rewriter rule?”,
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button1, “Removed”);

If the user confirms the deletion, the DeleteUrlRewriterRule takes these steps:

1. Creates a PropertyBag:

PropertyBag bag = new PropertyBag();

2. Adds the pattern to match of the URL rewriter rule being deleted to the PropertyBag:

bag[0] = item1.ItemInfo.PatternToMatch;

3. Calls the DeleteUrlRewriterRule method of the proxy, passing in the PropertyBag to delete
the URL rewriter rule from the underlying configuration file:

this.serviceProxy.DeleteUrlRewriterRule(bag);

4. Removes the deleted URL rewriter rule from the list of displayed URL rewriter rules:

base.ListView.Items.Remove(item1);

UpdateUrlRewriterRule
Listing 8-42 presents the implementation of the UpdateUrlRewriterRule method of the
UrlRewriterPage module page.

Listing 8-42: The UpdateUrlRewriterRule Method

private void UpdateUrlRewriterRule()
{
UrlRewriterRuleListViewItem item1 = this.SelectedUrlRewriterRule;
if (item1 != null)
{
UrlRewriterRuleInfo info1 = item1.UrlRewriterRuleInfo;
using (UrlRewriterRuleTaskForm form1 =

new UrlRewriterRuleTaskForm(base.Module, this.serviceProxy,
info1.PatternToMatch,
info1.Replacement))

{
if ((base.ShowDialog(form1) == DialogResult.OK) && form1.HasChanges)
{
info1.PatternToMatch = form1.PatternToMatch;
info1.Replacement = form1.Replacement;
this.ReplaceItem(item1, info1);

}
}

}
}

369

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 369

370

Chapter 8: Extending the Integrated Request Processing Pipeline

UpdateUrlRewriterRule first accesses the UrlRewriterRuleListViewItem object that represents the
selected URL rewriter rule. Recall that the users must first select the URL rewriter rule that they want to
update:

UrlRewriterRuleListViewItem item1 = this.SelectedUrlRewriterRule;

Then, it launches the UrlRewriterRuleTaskForm task form to allow the user to update the pattern to
match and replacement string of the URL rewriter rule being updated:

using (UrlRewriterRuleTaskForm form1 =
new UrlRewriterRuleTaskForm(base.Module, this.serviceProxy,

info1.PatternToMatch,
info1.Replacement))

As you’ll see later, after the end user updates the values and clicks the OK button on the task form, the
event handler for this button calls the UpdateUrlRewriterRule method of the proxy to update the
values of the corresponding URL rewriter rule in the underlying configuration file. If the end user has
indeed changed the current values, UpdateUrlRewriterRule updates the selected URL rewriter rule in
the list of displayed URL rewriter rules in the UrlRewriterPage module page:

info1.PatternToMatch = form1.PatternToMatch;
info1.Replacement = form1.Replacement;
this.ReplaceItem(item1, info1);

Here is the implementation of the ReplaceItem method of the UrlRewriterPage module page:

private void ReplaceItem(UrlRewriterRuleListViewItem item,
UrlRewriterRuleInfo urlRewriterRuleInfo)

{
base.ListView.Items.Remove(item);
this.AddItem(urlRewriterRuleInfo, true);

}

OnListViewSelectedIndexChanged
The following code listing presents the implementation of the OnListViewSelectedIndexChanged
method that the UrlRewriterPage module page registers as the event handler for the
SelectedIndexChanged event:

private void OnListViewSelectedIndexChanged(object sender, EventArgs e)
{
base.Update();

}

OnListViewDoubleClick
The following code fragment contains the implementation of the OnListViewDoubleClick method.
Recall from Listing 8-28 that the UrlRewriterPage module page registers this method as an event han-
dler for the DoubleClick event:

private void OnListViewDoubleClick(object sender, EventArgs e)
{

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 370

if ((this.SelectedUrlRewriterRule != null) && !this.ReadOnly)
this.UpdateUrlRewriterRule();

}

As you can see, OnListViewDoubleClick first checks whether both of the following conditions are
met:

❑ The user has selected a URL rewriter rule from the list of displayed URL rewriter rules. This
condition is bound to be met because double-clicking an item automatically selects the item.

❑ The ReadOnly property returns false. Recall that this property reflects the value of the
isLocked attribute on the underlying <urlRewriter> configuration section.

If both of these conditions are met, OnListViewDoubleClick invokes the UpdateUrlRewriterRule
method, which was discussed earlier.

OnListViewKeyUp
The following code listing presents the implementation of the OnListViewKeyUp method, which the
UrlRewriterPage module page registers for the KeyUp event (see Listing 8-28):

private void OnListViewKeyUp(object sender, KeyEventArgs e)
{
if ((this.SelectedUrlRewriterRule != null) && (e.KeyData == Keys.Delete))
this.DeleteUrlRewriterRule();

}

This method first checks whether both of the following conditions are met:

❑ The end user has selected a URL rewriter rule from the list of displayed URL rewriter rules
because the end users must first select the desired URL rewriter rule before they can delete it.

❑ The end user has clicked the Delete button.

If both of these conditions are met, OnListViewKeyUp invokes the DeleteUrlRewriterRule method to
delete the selected URL rewriter rule.

UrlRewriterRuleTaskForm
Listing 8-43 presents the implementation of the UrlRewriterRuleTaskForm task form. I walk through
the implementation of this task form in the following sections. Add a new source file named
UrlRewriterRuleTaskForm.cs to the GraphicalManagement/Client directory and add the code
shown in Listing 8-43 to this source file. You also need to add a reference to System.Drawing.dll
assembly to the UrlRewriterProj2 Class Library project.

Listing 8-43: The UrlRewriterRuleTaskForm Class

using Microsoft.Web.Management.Client.Win32;
using Microsoft.Web.Management.Server;
using System.Windows.Forms;
using System.ComponentModel;

371

Chapter 8: Extending the Integrated Request Processing Pipeline

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 371

Listing 8-43: (continued)

using System;
using System.Drawing;

namespace UrlRewriting.GraphicalManagement.Client
{
internal sealed class UrlRewriterRuleTaskForm : TaskForm
{
private string originalPatternToMatch;
private string patternToMatch;
private string replacement;
private bool inModificationMode;
private TextBox patternToMatchTextBox;
private TextBox replacementTextBox;
private bool hasChanges;
private UrlRewriterModuleServiceProxy serviceProxy;
private ManagementPanel contentPanel;
private Label patternToMatchLabel;
private Label replacementLabel;

public bool HasChanges
{
get { return this.hasChanges; }

}

public string PatternToMatch
{
get { return this.patternToMatch; }

}

public string Replacement
{
get { return this.replacement; }

}

public UrlRewriterRuleTaskForm(IServiceProvider serviceProvider,
UrlRewriterModuleServiceProxy proxy)

: this(serviceProvider, proxy, string.Empty, string.Empty) { }

public UrlRewriterRuleTaskForm(IServiceProvider serviceProvider,
UrlRewriterModuleServiceProxy proxy,
string patternToMatch,
string replacement)

: base(serviceProvider)
{
this.serviceProxy = proxy;
InitializeComponent();
this.inModificationMode = !string.IsNullOrEmpty(patternToMatch);
if (this.inModificationMode)
{
this.originalPatternToMatch = patternToMatch;
this.patternToMatchTextBox.Text = patternToMatch;
this.replacementTextBox.Text = replacement;

372

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 372

373

Chapter 8: Extending the Integrated Request Processing Pipeline

Listing 8-43: (continued)

this.Text = “Update URL rewriter rule”;
}
else
this.Text = “Add URL rewriter rule”;

UpdateUIState();
this.hasChanges = false;

}

private void InitializeComponent()
{
this.contentPanel = new ManagementPanel();
this.patternToMatchLabel = new Label();
this.patternToMatchTextBox = new TextBox();
this.replacementLabel = new Label();
this.replacementTextBox = new TextBox();
this.contentPanel.SuspendLayout();
base.SuspendLayout();
this.contentPanel.Controls.Add(patternToMatchLabel);
this.contentPanel.Controls.Add(patternToMatchTextBox);
this.contentPanel.Controls.Add(replacementLabel);
this.contentPanel.Controls.Add(replacementTextBox);

this.contentPanel.Dock = DockStyle.Fill;
this.contentPanel.Location = new Point(0, 0);
this.contentPanel.Name = “contentPanel”;
this.contentPanel.Size = new Size(0x114, 110);
this.contentPanel.TabIndex = 0;
this.patternToMatchLabel.Location = new Point(0, 0);
this.patternToMatchLabel.Name = “_nameLabel”;
this.patternToMatchLabel.AutoSize = true;
this.patternToMatchLabel.TabIndex = 0;
this.patternToMatchLabel.TextAlign = ContentAlignment.MiddleLeft;
this.patternToMatchLabel.Text = “Pattern To Match”;
this.patternToMatchTextBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
this.patternToMatchTextBox.Location = new Point(0, 0x10);
this.patternToMatchTextBox.Name = “_nameTextBox”;
this.patternToMatchTextBox.Size = new Size(0x114, 0x15);
this.patternToMatchTextBox.TabIndex = 1;
this.patternToMatchTextBox.TextChanged +=

new EventHandler(this.OnPatternToMatchTextBoxTextChanged);

this.replacementLabel.Location = new Point(0, 0x3b);
this.replacementLabel.Name = “_valueTextBox”;
this.replacementLabel.Text = “Replacement”;
this.replacementLabel.AutoSize = true;
this.replacementLabel.TabIndex = 0;
this.replacementLabel.TextAlign = ContentAlignment.MiddleLeft;
this.replacementTextBox.Location = new Point(0, 0x4c);
this.replacementTextBox.Name = “_nameTextBox”;
this.replacementTextBox.Size = new Size(0x114, 0x15);

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 373

Listing 8-43: (continued)

this.replacementTextBox.TabIndex = 2;
this.replacementTextBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
this.replacementTextBox.TextChanged +=

new EventHandler(this.OnReplacementTextBoxTextChanged);
base.ClientSize = new Size(300, 160);
base.AutoScaleMode = AutoScaleMode.Font;
base.Name = “UrlRewriterRuleTaskForm”;
this.contentPanel.ResumeLayout(false);
this.contentPanel.PerformLayout();
base.SetContent(contentPanel);
base.ResumeLayout(false);

}

private void OnPatternToMatchTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void OnReplacementTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void UpdateUIState()
{
this.hasChanges = true;

}

protected override void OnAccept()
{
this.patternToMatch = this.patternToMatchTextBox.Text.Trim();
this.replacement = this.replacementTextBox.Text.Trim();
base.StartAsyncTask(new DoWorkEventHandler(this.OnWorkerDoWork),

new RunWorkerCompletedEventHandler(this.OnWorkerCompleted));
base.UpdateTaskForm();

}

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
if (this.hasChanges)
{
PropertyBag bag = new PropertyBag();
if (!this.inModificationMode)
{
bag[0] = this.patternToMatch;
bag[1] = this.replacement;
this.serviceProxy.AddUrlRewriterRule(bag);

}

else
{

374

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 374

Listing 8-43: (continued)

bag[0] = this.originalPatternToMatch;
bag[1] = this.patternToMatch;
bag[2] = this.replacement;
this.serviceProxy.UpdateUrlRewriterRule(bag);

}
}

}

private void OnWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
base.UpdateTaskForm();
if (e.Error != null)
this.DisplayErrorMessage(e.Error, null);

else
{
base.DialogResult = DialogResult.OK;
base.Close();

}
}

}
}

Constructors
The following code listing contains the implementation of the constructors of
UrlRewriterRuleTaskForm task form:

public UrlRewriterRuleTaskForm(IServiceProvider serviceProvider,
UrlRewriterModuleServiceProxy proxy)

: this(serviceProvider, proxy, string.Empty, string.Empty) { }

public UrlRewriterRuleTaskForm(IServiceProvider serviceProvider,
UrlRewriterModuleServiceProxy proxy,
string patternToMatch,
string replacement)

: base(serviceProvider)
{
this.serviceProxy = proxy;
InitializeComponent();
this.inModificationMode = !string.IsNullOrEmpty(patternToMatch);
if (this.inModificationMode)
{
this.originalPatternToMatch = patternToMatch;
this.patternToMatchTextBox.Text = patternToMatch;
this.replacementTextBox.Text = replacement;
this.Text = “Update URL rewriter rule”;

}
else
this.Text = “Add URL rewriter rule”;

375

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 375

UpdateUIState();
this.hasChanges = false;

}

As you can see, the first constructor delegates to the second constructor. The second constructor calls the
InitializeComponent method to create the user interface of the UrlRewriterRuleTaskForm task
form. Because the same task form is used for both updating and adding a URL rewriter rule, the value of
the patternToMatch parameter is used to determine whether the end user is trying to update or add a
URL rewriter rule. If the user is updating a URL rewriter rule, the constructor initializes the user inter-
face of the task form with the current values of the pattern to match and replacement string of the URL
rewriter rule being updated:

patternToMatchTextBox.Text = patternToMatch;
replacementTextBox.Text = replacement;

InitializeComponent
The main responsibility of the InitializeComponent method is to create the user interface of the
UrlRewriterRuleTaskForm task form (see Listing 8-44).

Listing 8-44: The InitializeComponent Method

private void InitializeComponent()
{
this.contentPanel = new ManagementPanel();
this.patternToMatchLabel = new Label();
this.patternToMatchTextBox = new TextBox();
this.replacementLabel = new Label();
this.replacementTextBox = new TextBox();
this.contentPanel.SuspendLayout();
base.SuspendLayout();
this.contentPanel.Controls.Add(patternToMatchLabel);
this.contentPanel.Controls.Add(patternToMatchTextBox);
this.contentPanel.Controls.Add(replacementLabel);
this.contentPanel.Controls.Add(replacementTextBox);

this.contentPanel.Dock = DockStyle.Fill;
this.contentPanel.Location = new Point(0, 0);
this.contentPanel.Name = “contentPanel”;
this.contentPanel.Size = new Size(0x114, 110);
this.contentPanel.TabIndex = 0;
this.patternToMatchLabel.Location = new Point(0, 0);
this.patternToMatchLabel.Name = “_nameLabel”;
this.patternToMatchLabel.AutoSize = true;
this.patternToMatchLabel.TabIndex = 0;
this.patternToMatchLabel.TextAlign = ContentAlignment.MiddleLeft;
this.patternToMatchLabel.Text = “Pattern To Match”;
this.patternToMatchTextBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
this.patternToMatchTextBox.Location = new Point(0, 0x10);
this.patternToMatchTextBox.Name = “_nameTextBox”;
this.patternToMatchTextBox.Size = new Size(0x114, 0x15);
this.patternToMatchTextBox.TabIndex = 1;

376

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 376

Listing 8-44: (continued)

this.patternToMatchTextBox.TextChanged +=
new EventHandler(this.OnPatternToMatchTextBoxTextChanged);

this.replacementLabel.Location = new Point(0, 0x3b);
this.replacementLabel.Name = “_valueTextBox”;
this.replacementLabel.Text = “Replacement”;
this.replacementLabel.AutoSize = true;
this.replacementLabel.TabIndex = 0;
this.replacementLabel.TextAlign = ContentAlignment.MiddleLeft;
this.replacementTextBox.Location = new Point(0, 0x4c);
this.replacementTextBox.Name = “_nameTextBox”;
this.replacementTextBox.Size = new Size(0x114, 0x15);
this.replacementTextBox.TabIndex = 2;
this.replacementTextBox.Anchor =

AnchorStyles.Right | AnchorStyles.Left | AnchorStyles.Top;
this.replacementTextBox.TextChanged +=

new EventHandler(this.OnReplacementTextBoxTextChanged);
base.ClientSize = new Size(300, 160);
base.AutoScaleMode = AutoScaleMode.Font;
base.Name = “UrlRewriterRuleTaskForm”;
this.contentPanel.ResumeLayout(false);
this.contentPanel.PerformLayout();
base.SetContent(contentPanel);
base.ResumeLayout(false);

}

InitializeComponent uses a ManagementPanel control as the container for the entire user interface
of the task form. The ManagementPanel is a scrollable panel control.

As Listing 8-44 shows, the InitializeComponent method instantiates the ManagementPanel control
and adds two labels and two textbox controls. The textbox controls are used to display or specify the
pattern to match and replacement string of the associated URL rewriter rule.

InitializeComponent then registers the OnPatternToMatchTextBoxTextChanged and
OnReplacementTextBoxTextChanged methods as event handlers for the TextChanged events of the
patternToMatchTextBox and replacementTextBox textboxes, respectively:

this.patternToMatchTextBox.TextChanged +=
new EventHandler(this.OnPatternToMatchTextBoxTextChanged);

this.replacementTextBox.TextChanged +=
new EventHandler(this.OnReplacementTextBoxTextChanged);

The following code listing presents the implementation of these two methods:

private void OnPatternToMatchTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

377

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 377

private void OnReplacementTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

As you can see, these two methods simply call the UpdateUIState method:

private void UpdateUIState()
{
this.hasChanges = true;

}

In this case, the UpdateUIState method only sets the hasChanged field to true to specify that the
task form has changes to store in the underlying configuration file. However, you may have a situation
where the other GUI elements in your task form may have to be informed when the state of another GUI
element changes. In these situations, the UpdateUIState method must also contain the logic that
informs other GUI elements of the new changes.

OnAccept
Recall that UrlRewriterRuleTaskForm inherits from the TaskForm base class. This base class exposes
an overridable method named OnAccept that its subclasses must override to add the code that they
want to run when the user clicks the OK button of the task form. Listing 8-45 presents the
UrlRewriterRuleTaskForm class’s implementation of the OnAccept method.

Listing 8-45: The OnAccept Method

protected override void OnAccept()
{
this.patternToMatch = this.patternToMatchTextBox.Text.Trim();
this.replacement = this.replacementTextBox.Text.Trim();
base.StartAsyncTask(new DoWorkEventHandler(this.OnWorkerDoWork),

new RunWorkerCompletedEventHandler(this.OnWorkerCompleted));
base.UpdateTaskForm();

}

OnAccept first retrieves the new values of the pattern to match and replacement string of the associated
URL rewriter rule from the patternToMatchTextBox and replacementTextBox textbox controls and
respectively stores them in the patternToMatch and replacement fields for future reference:

this.patternToMatch = this.patternToMatchTextBox.Text.Trim();
this.replacement = this.replacementTextBox.Text.Trim();

It then calls the StartAsyncTask method, passing in the DoWorkEventHandler and
RunWorkerCompletedEventHandler delegates that respectively represent the OnWorkerDoWork and
OnWorkerCompleted methods. These two delegates and the StartAsyncTask method were thoroughly
discussed in the previous chapter.

OnWorkerDoWork
Listing 8-46 demonstrates the implementation of the OnWorkerDoWork method.

378

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 378

Listing 8-46: The OnWorkerDoWork Method

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
if (this.hasChanges)
{
PropertyBag bag = new PropertyBag();
if (!this.inModificationMode)
{
bag[0] = this.patternToMatch;
bag[1] = this.replacement;
this.serviceProxy.AddUrlRewriterRule(bag);

}

else
{
bag[0] = this.originalPatternToMatch;
bag[1] = this.patternToMatch;
bag[2] = this.replacement;
this.serviceProxy.UpdateUrlRewriterRule(bag);

}
}

}

This method first checks the value of the hasChanges field to ensure that the task form indeed has
changes to commit to the underlying configuration file. Then, it creates a PropertyBag, which will be
used to transfer data to the back end server:

PropertyBag bag = new PropertyBag();

It then checks whether the UrlRewriterRuleTaskForm task form is being used to add a new URL
rewriter rule. If so, it populates the PropertyBag with the values of the pattern to match and replace-
ment string of the URL rewriter rule being added, and calls the AddUrlRewriterRule method of the
proxy, passing in the PropertyBag to add a new URL rewriter rule with the specified patternToMatch
and replacement attribute values to the underlying configuration file:

bag[0] = this.patternToMatch;
bag[1] = this.replacement;
this.serviceProxy.AddUrlRewriterRule(bag);

If the task form is being used to update an existing URL rewriter rule, OnWorkerDoWork populates the
PropertyBag with the values of the replacement string, original pattern to match, and new pattern to
match of the URL rewriter rule being updated, and calls the UpdateUrlRewriterRule method of the
proxy, passing in the PropertyBag to update the respective URL rewriter rule in the underlying config-
uration file. Notice that the PropertyBag passed into the UpdateUrlRewriterRule must also contain
the original pattern to match to allow the server-side UpdateUrlRewriterRule method to identify the
URL rewriter rule being updated.

bag[0] = this.originalPatternToMatch;
bag[1] = this.patternToMatch;
bag[2] = this.replacement;
this.serviceProxy.UpdateUrlRewriterRule(bag);

379

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 379

OnWorkerCompleted
Listing 8-47 contains the code for the OnWorkerCompleted method.

Listing 8-47: The OnWorkerCompleted Method

private void OnWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
base.UpdateTaskForm();
if (e.Error != null)
this.DisplayErrorMessage(e.Error, null);

else
{
base.DialogResult = DialogResult.OK;
base.Close();

}
}

OnWorkerCompleted checks whether everything went fine. If an error occurs, it displays the error mes-
sage to the end user.

UrlRewriterModule
The previous sections showed you how to implement the UrlRewriterPage module page.
Implementing your custom module page is just the first step. Next, you need to register your module
page with the IIS 7 Manager so it gets instantiated and called. As discussed in previous chapters, the
IIS 7 Manager comes with a base class named Module that defines the API that you need to implement
to register your custom module pages.

In this section, you implement a custom module named UrlRewriterModule to register the
UrlRewriterPage module page with the IIS 7 Manager (see Listing 8-48). Now add a new source file
named UrlRewriterModule.cs to the GraphicalManagement/Client directory and add the code
shown in Listing 8-48 to this source file.

Listing 8-48: The UrlRewriterModule Module

using System;
using Microsoft.Web.Management.Client;
using Microsoft.Web.Management.Server;

namespace UrlRewriting.GraphicalManagement.Client
{
public class UrlRewriterModule : Module
{
protected override void Initialize(IServiceProvider serviceProvider,

ModuleInfo moduleInfo)
{
base.Initialize(serviceProvider, moduleInfo);
IControlPanel panel1 = (IControlPanel)GetService(typeof(IControlPanel));
ModulePageInfo info1 = new ModulePageInfo(this, typeof(UrlRewriterPage),

“URL Rewriter Page”, “Displays URL rewriter page”);

380

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 380

Listing 8-48: (continued)

panel1.RegisterPage(info1);
}

}
}

UrlRewriterModule overrides the Initialize method of the Module base class. First, it calls the
Initialize method of the base class to allow the base class to do its own initialization. Next, it calls
the GetService method of the Module base class, passing in the Type object that represents the
IControlPanel interface to access the control panel service. This service exposes a method named
RegisterPage that you can use to register your module page.

The RegisterPage method takes the ModulePageInfo object that represents the module page being
registered. The ModulePageInfo object encapsulates the complete information about the module page
that it represents and exposes this information through its properties as discussed in the previous
chapters.

As Listing 8-48 shows, the Initialize method instantiates the ModulePageInfo object that represents
the UrlRewriterPage module page and passes this object into the RegisterPage method of the con-
trol panel service to register the module page:

ModulePageInfo info1 = new ModulePageInfo(this, typeof(UrlRewriterPage),
“UrlRewriterPage”, “Displays URL rewriter page”);

panel1.RegisterPage(info1);

Server-Side Managed Code
As mentioned earlier, extending the IIS 7 Manager requires writing two sets of code: client-side and
server-side. So far, we’ve only covered the client-side code. This section shows you how to implement
the necessary server-side code to enable the back-end server to communicate with your
UrlRewriterPage module page and UrlRewriterRuleTaskForm task form.

Take these steps to write the server-side code:

1. Implement a custom module service named UrlRewriterModuleService with the methods
with the same signature as the proxy and mark these methods with the
ModuleServiceMethodAttribute metadata attribute.

2. Implement a custom module provider named UrlRewriterModuleProvider to register the
UrlRewriterModule module and UrlRewriterModuleService module service.

3. Register the UrlRewriterModuleProvider custom module provider with the
administration.config file located in the following directory on your machine:

%windir%\system32\inetsrv\config

381

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 381

UrlRewriterModuleService
A custom module service is a class that inherits from the ModuleService base class and exposes methods
that interact with the underlying configuration file to retrieve, add, delete, or update configuration settings.
Listing 8-49 presents the members of a custom module service named UrlRewriterModuleService,
which like any other module service, extends the ModuleService base class. Now go ahead and add a
new source file named UrlRewriterModuleService.cs to the GraphicalManagement/Server direc-
tory and add the code shown in this code listing to this source file.

Listing 8-49: The UrlRewriterModuleService Server-Side Class

using Microsoft.Web.Management.Server;
using UrlRewriting.ImperativeManagement;
using System.Collections;
using System;

namespace UrlRewriting.GraphicalManagement.Server
{
public class UrlRewriterModuleService : ModuleService
{
private UrlRewriterSection GetUrlRewriterSection()
{
if (base.ManagementUnit.Configuration != null)
{
ManagementConfiguration config = base.ManagementUnit.Configuration;
UrlRewriterSection section1 = null;
try
{
section1 =

(UrlRewriterSection)config.GetSection(
“system.webServer/urlRewriter”, typeof(UrlRewriterSection));

}
catch (Exception ex)
{
}

if (section1 == null)
base.RaiseException(“UrlRewriterSectionConfigurationError”);

return section1;
}

base.RaiseException(“UrlRewriterSectionConfigurationError”);
return null;

}

[ModuleServiceMethod]
public PropertyBag GetUrlRewriterSettings()
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
ArrayList list = new ArrayList();
PropertyBag bag;

382

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 382

Listing 8-49: (continued)

foreach (UrlRewriterRule urlRewriterRule in section1.UrlRewriterRules)
{
bag = new PropertyBag();
bag[0] = urlRewriterRule.PatternToMatch;
bag[1] = urlRewriterRule.Replacement;
list.Add(bag);

}

PropertyBag bag2 = new PropertyBag();
bag2[0] = (object)list;
bag2[1] = (bool)section1.IsLocked;
return bag2;

}

[ModuleServiceMethod]
public void AddUrlRewriterRule(PropertyBag bag)
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
section1.UrlRewriterRules.Add((string)bag[0], (string)bag[1]);
base.ManagementUnit.Update();

}

[ModuleServiceMethod]
public void DeleteUrlRewriterRule(PropertyBag bag)
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
section1.UrlRewriterRules.Remove(section1.UrlRewriterRules[(string)bag[0]]);
base.ManagementUnit.Update();

}

[ModuleServiceMethod]
public void UpdateUrlRewriterRule(PropertyBag bag)
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
UrlRewriterRule item = section1.UrlRewriterRules[(string)bag[0]];
item.PatternToMatch = (string)bag[1];
item.Replacement = (string)bag[2];
base.ManagementUnit.Update();

}
}

}

Note that all methods of the UrlRewriterModuleService module service are marked with the
ModuleServiceMethodAttribute metadata attribute except for the GetUrlRewriterSection
method. Only those methods of a custom module service marked with this metadata attribute are visible
to the proxy. In other words, a proxy can only call those methods of a module service that are marked
with this metadata attribute. The following sections present and discuss the implementation of the meth-
ods of the UrlRewriterModuleService module service.

383

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 383

GetUrlRewriterSection
The GetUrlRewriterSection method’s main responsibility is to return the UrlRewriterSection
object that represents the <urlRewriter> configuration section (see Listing 8-50).

Listing 8-50: The GetUrlRewriterSection Method

private UrlRewriterSection GetUrlRewriterSection()
{
if (base.ManagementUnit.Configuration != null)
{
ManagementConfiguration config = base.ManagementUnit.Configuration;
UrlRewriterSection section1 = null;
try
{
section1 =

(UrlRewriterSection)config.GetSection(
“system.webServer/urlRewriter”, typeof(UrlRewriterSection));

}
catch (Exception ex)
{
}

if (section1 == null)
base.RaiseException(“UrlRewriterSectionConfigurationError”);

return section1;
}

base.RaiseException(“UrlRewriterSectionConfigurationError”);
return null;

}

The ModuleService base class exposes an important property of type ManagementUnit named
ManagementUnit, which encapsulates the logic that determines the configuration hierarchy level at
which the current user is working and the configuration file from which the configuration settings are
read and into which the configuration settings are stored. Therefore, the GetUrlRewriterSection
method doesn’t need to worry about what the current configuration hierarchy level and configuration
file are.

The ManagementUnit property exposes a property of type ManagementConfiguration named
Configuration that features a method named GetSection. As the name implies, this method returns
the ConfigurationSection object that represents a configuration section with the specified name and
type. Note that the GetSection method takes two arguments. The first argument is the fully qualified
name of the configuration section being accessed, including its complete section group hierarchy. The
second argument is the Type object that represents the type of the class that represents the configuration
section. Under the hood, the GetSection method uses .NET reflection and this Type object to dynami-
cally instantiate an instance of the specified configuration section class and populates it with the associ-
ated configuration settings.

384

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 384

In this case, the UrlRewriterSection class represents the <urlRewriter> configuration section,
which means that the GetSection method will automatically return an instance of this class populated
with the required configuration settings:

UrlRewriterSection section1 =
(UrlRewriterSection)base.ManagementUnit.Configuration.GetSection(

“system.webServer/urlRewriter”, typeof(UrlRewriterSection));

GetUrlRewriterSettings
The main responsibility of the GetUrlRewriterSettings method is to retrieve the values of the
replacement and patternToMatch attributes of all URL rewriter rules and the isLocked attribute of
the <urlRewriter> configuration section and return them to the client (see Listing 8-51).

Listing 8-51: The GetUrlRewriterSettings Method

[ModuleServiceMethod]
public PropertyBag GetUrlRewriterSettings()
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
ArrayList list = new ArrayList();
PropertyBag bag;
foreach (UrlRewriterRule urlRewriterRule in section1.UrlRewriterRules)
{
bag = new PropertyBag();
bag[0] = urlRewriterRule.PatternToMatch;
bag[1] = urlRewriterRule.Replacement;
list.Add(bag);

}

PropertyBag bag2 = new PropertyBag();
bag2[0] = (object)list;
bag2[1] = (bool)section1.IsLocked;
return bag2;

}

The first order of business is to access the UrlRewriterSection object that provides programmatic
access to the <urlRewriter> configuration section:

UrlRewriterSection section1 = this.GetUrlRewriterSection();

Next, GetUrlRewriterSettings creates an ArrayList:

ArrayList list = new ArrayList();

Recall from the previous sections that the UrlRewriterSection class exposes a collection property
named UrlRewriterRules that contains one UrlRewriterRule object for each URL rewriter rule
in the collection. GetUrlRewriterSettings iterates through these UrlRewriterRule objects and
takes the following actions for each enumerated object:

1. Creates a PropertyBag:

bag = new PropertyBag();

385

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 385

2. Populates the PropertyBag with the values of the Replacement and PatternToMatch proper-
ties of the UrlRewriterRule object. Recall from the previous sections that the UrlRewriterRule
class exposes the replacement and patternToMatch attributes of the associated URL rewriter
rule as strongly-typed properties named Replacement and PatternToMatch.

bag[0] = urlRewriterRule.PatternToMatch;
bag[1] = urlRewriterRule.Replacement;

3. Adds the PropertyBag object to the ArrayList:

list.Add(bag);

Finally, GetUrlRewriterSettings creates a PropertyBag, stores the ArrayList and the value of the
isLocked attribute of the <urlRewriter> section into it, and returns this PropertyBag to the client:

PropertyBag bag2 = new PropertyBag();
bag2[0] = list;
bag2[1] = (bool)section1.IsLocked;
return bag2;

AddUrlRewriterRule
The AddUrlRewriterRule method adds a URL rewriter rule with the specified replacement and
patternToMatch attribute values (see Listing 8-52).

Listing 8-52: The AddUrlRewriterRule Method

[ModuleServiceMethod]
public void AddUrlRewriterRule(PropertyBag bag)
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
section1.UrlRewriterRules.Add((string)bag[0], (string)bag[1]);
base.ManagementUnit.Update();

}

AddUrlRewriterRule first accesses the UrlRewriterSection object as usual:

UrlRewriterSection section1 = this.GetUrlRewriterSection();

Next, it retrieves the values of the replacement and patternToMatch attributes from the
PropertyBag that it has received from the client and passes these values into the Add method of the
UrlRewriterRules collection property of the UrlRewriterSection object. Recall from the previous
sections that the Add method of the UrlRewriterRules class creates a new UrlRewriterRule object
with the specified Replacement and PatternToMatch properties, and adds this object to the
UrlRewriterRules collection.

section1.UrlRewriterRules.Add((string)bag[0], (string)bag[1]);

Finally, AddUrlRewriterRule calls the Update method of the ManagementUnit to commit the changes
to the underlying configuration file:

base.ManagementUnit.Update();

386

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 386

DeleteUrlRewriterRule
As Listing 8-53 shows, DeleteUrlRewriterRule retrieves the value of the patternToMatch attribute
of the URL rewriter rule being deleted from the PropertyBag that it has received from the client and
passes that value into the Remove method so the remove operation knows which URL rewriter rule to
delete.

Listing 8-53: The DeleteUrlRewriterRule Method

[ModuleServiceMethod]
public void DeleteUrlRewriterRule(PropertyBag bag)
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
section1.UrlRewriterRules.Remove(section1.UrlRewriterRules[(string)bag[0]]);
base.ManagementUnit.Update();

}

UpdateUrlRewriterRule
The UpdateUrlRewriterRule method’s implementation is very similar to that of the
AddUrlRewriterRule, with one notable difference (see Listing 8-54). The PropertyBag that the
UpdateUrlRewriterRule receives from the client contains an extra piece of information, that is,
the original value of the patternToMatch attribute of the URL rewriter rule being updated. The
UpdateUrlRewriterRule uses this original attribute value to locate the associated UrlRewriterRule
object in the UrlRewriterRules collection property of the UrlRewriterSection object.

Listing 8-54: The UpdateUrlRewriterRule Method

[ModuleServiceMethod]
public void UpdateUrlRewriterRule(PropertyBag bag)
{
UrlRewriterSection section1 = this.GetUrlRewriterSection();
UrlRewriterRule item = section1.UrlRewriterRules[(string)bag[0]];
item.PatternToMatch = (string)bag[1];
item.Replacement = (string)bag[2];
base.ManagementUnit.Update();

}

UrlRewriterModuleProvider
The previous sections showed you how to implement the UrlRewriterModuleService custom
module service and UrlRewriterModule custom module. Recall that the proxy invokes the methods
of the UrlRewriterModuleService custom module service to interact with the underlying configura-
tion file. The UrlRewriterModule custom module, on the other hand, is used to register the
UrlRewriterPage custom module page with the IIS 7 Manager. This raises the question: Who registers
the UrlRewriterModuleService custom module service and UrlRewriterModule custom module?

The answer is a direct or indirect subclass of the ModuleProvider base class. In this section you
implement a custom module provider named UrlRewriterModuleProvider that inherits from the
ConfigurationModuleProvider base class to register the UrlRewriterModuleService custom mod-
ule service and UrlRewriterModule custom module as shown in Listing 8-55. Keep in mind that the

387

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 387

ConfigurationModuleProvider base class inherits from another base class named
SimpleDelegatedModuleProvider, which in turn inherits the ModuleProvider base class. Now add
a new source file named UrlRewriterModuleProvider.cs to the GraphicalManagement/Server
directory and add the code shown in Listing 8-55 to this source file.

Listing 8-55: The UrlRewriterModuleProvider Custom Module Provider

using Microsoft.Web.Management.Server;
using System;

namespace UrlRewriting.GraphicalManagement.Server
{
class UrlRewriterModuleProvider : ConfigurationModuleProvider
{
public override ModuleDefinition GetModuleDefinition(

IManagementContext context)
{
Type type =

typeof(UrlRewriting.GraphicalManagement.Client.UrlRewriterModule);
return new ModuleDefinition(base.Name, type.AssemblyQualifiedName);

}

public override bool SupportsScope(ManagementScope scope)
{
return true;

}

protected sealed override string ConfigurationSectionName
{
get { return “system.webServer/urlRewriter”; }

}

public override string FriendlyName
{
get { return “urlRewriter”; }

}

public override Type ServiceType
{
get { return typeof(UrlRewriterModuleService); }

}
}

}

UrlRewriterModuleProvider overrides the following members of the ConfigurationModuleProvider
class:

❑ GetModuleDefinition: The IIS 7 and ASP.NET integrated infrastructure comes with a class
named ModuleDefinition. As the name implies, this class represents or defines a module.
Your custom module provider’s implementation of the GetModuleDefinition method must
call the ModuleDefinition constructor, passing in the following parameters:

❑ The name of the custom module provider, which is “UrlRewriterModuleProvider”
in this case.

388

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 388

❑ The assembly qualified name of the type of custom module provider, which consists of
five different parts: the fully qualified name of the type of the custom module provider
(including its complete namespace hierarchy), assembly name, assembly version,
assembly culture, and assembly public key token. The Type class exposes a method
named AssemblyQualfiedName that returns this five-part information.

Type type = typeof(UrlRewriting.GraphicalManagement.Client.UrlRewriterModule);
return new ModuleDefinition(base.Name, type.AssemblyQualifiedName);

❑ SupportsScope: This property determines the supported configuration hierarchy level.
Listing 8-55 returns true to signal that it supports all levels.

❑ ConfigurationSectionName: This property specifies the fully qualified name of the configu-
ration section including its complete section group hierarchy. Listing 8-49 returns
“system.webServer/urlRewriter”.

❑ ServiceType: This property returns the Type object that represents the custom module service
being registered. Listing 8-43 returns typeof(UrlRewriterModuleService).

Registering UrlRewriterModuleProvider
The last step of the recipe for implementing the server-side code requires you to register the
UrlRewriterModuleProvider module provider with the administration.config file. Open this file
and add the boldfaced portions of Listing 8-56 to the <moduleProviders> and <modules> sections of
this file.

It’s important that you add entries to both sections. If you don’t add the entry to the <modules> sec-
tions, you will only be able to set the configuration settings for your custom configuration section from
the machine configuration hierarchy level. In other words, you won’t be able to do it in the site or appli-
cation level.

Listing 8-56: The administration.config File

<configuration>
<moduleProviders>
<add name=”UrlRewriterModuleProvider”
type=”UrlRewriting.GraphicalManagement.Server.UrlRewriterModuleProvider,

UrlRewriter, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=01bf1d8e1663132d” />

. . .
</moduleProviders>

<location path=”.”>
<modules>
<add name=”UrlRewriterModuleProvider”/>
. . .

</modules>
</location>

</configuration>

389

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 389

Note that the <add> element in the <moduleProviders> section features two attributes named name
and type. The name attribute contains the friendly name of your custom module provider. You can use
any name you want as long as it’s unique, that is, no other module provider in the <moduleProviders>
section has the same name. The type attribute consists of a comma-separated list of five items. The first
item is the fully qualified name of the type of your custom module provider, which is UrlRewriting
.GraphicalManagement.Server.UrlRewriterModuleProvider in this case. The last four items
specify the assembly that contains the UrlRewriterModuleProvider. Note that the assembly informa-
tion includes the assembly public key token.

You must replace the value of the PublicKeyToken parameter shown in Listing 8-56 with the actual
public key token of the assembly that contains the UrlRewriterModuleProvider module provider.
Chapter 7 showed you how to access the public key token of an assembly loaded into the GAC.

Configurable Ur lRewriterModule
The previous sections extended:

❑ The IIS 7 and ASP.NET integrated configuration system to add support for a new configuration
section named urlRewriter to allow page developers to configure your UrlRewriterModule
managed module directly from configuration files.

❑ The IIS 7 and ASP.NET integrated imperative management system to add support for new
managed classes named UrlRewriterSection, UrlRewriterRule, and UrlRewriterRules
to allow page developers to configure the UrlRewriterModule managed module directly
from managed code in a strongly-typed fashion where they can benefit from Visual Studio
IntelliSense support, the compiler type-checking supports, and the well-known object-oriented
programming benefits.

❑ The IIS 7 and ASP.NET integrated graphical management system to add support for a new
module page named UrlRewriterPage, a new task form named UrlRewriterRuleTaskForm,
a new proxy class named UrlRewriterModuleServiceProxy, a new module named
UrlRewriterModule, a new module service named UrlRewriterModuleService, and new
module provider named UrlRewriterModuleProvider to allow page developers to configure
your UrlRewriterModule managed module directly from the IIS 7 Manager.

As you can see, the whole idea behind these three extensions is to allow users to configure the
UrlRewriterModule managed module. However, as you can see from Listing 8-7, your current imple-
mentation of the UrlRewriterModule managed module is not configurable because of two fundamen-
tal problems. First, as Listing 8-11 shows, the current implementation hard-codes the following two
important pieces of information:

❑ The regular expression that defines the pattern that the Regex object looks for in the memo-
rable URL:

Regex regex = new Regex(@”Articles/(.*)\.aspx”, RegexOptions.IgnoreCase);

❑ The regular expression that defines the replacement string:

string newPath = regex.Replace(context.Request.Path,
@”Articles.aspx?AuthorName=$1”);

390

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 390

391

Chapter 8: Extending the Integrated Request Processing Pipeline

Second, as Listing 8-11 shows, the current implementation supports only one pair of regular expressions.

Listing 8-57 presents the implementation of a configurable version of the UrlRewriterModule managed
module, which fixes the preceding two problems.

Listing 8-57: A Configurable Version of the UrlRewriterModule Managed Module

using System;
using System.Collections.Generic;
using System.Text;
using System.Web;
using Microsoft.Web.Administration;
using UrlRewriting.ImperativeManagement;
using System.Text.RegularExpressions;

namespace UrlRewriting
{
public class UrlRewriterModule : IHttpModule
{
void IHttpModule.Init(HttpApplication app)
{
app.BeginRequest += new EventHandler(App_BeginRequest);

}

void App_BeginRequest(object sender, EventArgs e)
{
HttpApplication app = sender as HttpApplication;
HttpContext context = app.Context;

ServerManager mgr = new ServerManager();
Configuration appHostConfig = mgr.GetWebConfiguration(“Default Web Site”,

context.Request.ApplicationPath);
UrlRewriterSection urlRewriterSection =

(UrlRewriterSection)appHostConfig.GetSection(
“system.webServer/urlRewriter”,
typeof(UrlRewriterSection));

UrlRewriterRules urlRewriterRules = urlRewriterSection.UrlRewriterRules;

Regex regex;
Match match;
String newPath;
foreach (UrlRewriterRule urlRewriterRule in urlRewriterRules)
{
regex = new Regex(urlRewriterRule.PatternToMatch, RegexOptions.IgnoreCase);
match = regex.Match(context.Request.Path);

if (match.Success)
{
newPath = regex.Replace(context.Request.Path,

urlRewriterRule.Replacement);
context.RewritePath(newPath);
break;

}

(Continued)

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 391

Listing 8-57: (continued)

}
}

void IHttpModule.Dispose() { }
}

}

Next, I walk through the implementation of the App_BeginRequest method. This method begins by
accessing the current HttpContext object. Recall that this object exposes the well-known ASP.NET
objects such as Request, Response, Server, and the like.

HttpApplication app = sender as HttpApplication;
HttpContext context = app.Context;

Next, it instantiates a ServerManager object, which is always the starting point for imperative interac-
tion with the IIS 7 and ASP.NET integrated configuration system:

ServerManager mgr = new ServerManager();

Then, it invokes the GetWebConfiguration method on the ServerManager object to load the content
of the web.config file of the current ASP.NET application into a Configuration object:

Configuration appHostConfig = mgr.GetWebConfiguration(“Default Web Site”,
context.Request.ApplicationPath);

Next, it invokes the GetSection method on this Configuration object to return a reference to the
UrlRewriterSection object that provides imperative access to the <urlRewriter> configuration sec-
tion of the web.config file of the current ASP.NET application:

UrlRewriterSection urlRewriterSection =
(UrlRewriterSection)appHostConfig.GetSection(

“system.webServer/urlRewriter”,
typeof(UrlRewriterSection));

Then, it accesses the UrlRewriterRules collection object that provides imperative access to the URL
rewriter rules:

UrlRewriterRules urlRewriterRules = urlRewriterSection.UrlRewriterRules;

Next, it iterates through the UrlRewriterRule objects in the UrlRewriterRules collection and
performs the same actions for each enumerated UrlRewriterRule object (keep in mind that each
UrlRewriterRule object in this collection represents a URL rewriter rule). First, it uses the constructor
of the Regex class, passing in the value of the PatternToMatch property of the enumerated
UrlRewriterRule object to instantiate a Regex object. Recall that the PatternToMatch property of
a UrlRewriterRule object contains the value of the patternToMatch attribute of the associated URL
rewriter rule.

regex = new Regex(urlRewriterRule.PatternToMatch, RegexOptions.IgnoreCase);

392

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 392

Next, it invokes the Match method on the Regex object to check whether the requested URL contains the
specified pattern:

match = regex.Match(context.Request.Path);

If so, it calls the Replace method, passing in the request URL and the replacement string to convert the
user’s memorable URL to the actual URL that the application expects:

newPath = regex.Replace(context.Request.Path,
urlRewriterRule.Replacement);

Finally, it invokes the RewriterPath method on the current HttpContext object to rewrite the value of
the requested URL to the actual value:

context.RewritePath(newPath);

Rewriting Non-ASP.NET URLs
One of the great advantages of the IIS 7 and ASP.NET integrated request processing pipeline is that you
can plug a managed module into the pipeline and use this module to pre-process or post-process non-
ASP.NET content, such as requests for .asp and .php resources. To enable your configurable
UrlRewriterModule managed module to rewrite non-ASP.NET URLs, you need to add the following
configuration segment to the appropriate configuration file:

<system.webServer>
<modules runAllManagedModulesForAllRequests=”true”>
<add name=”UrlRewriterModule” type=”UrlRewriting.UrlRewriterModule” />

</modules>
</system.webServer>

These configuration settings provide another benefit besides enabling URL rewriting for non-ASP.NET
contents. It also allows you to rewrite URLs such as the following:

http://mysite.com/Articles

This memorable URL allows users to access all articles. You can have a URL rewriter rule that will
instruct your UrlRewriterModule managed module to rewrite this memorable URL to something like
http://mysite.com/article.aspx?AllArticles=true.

Postback Problem with URL Rewriting
As discussed, the UrlRewriterModule managed module rewrites the end user’s memorable URL back
to the actual URL that your application expects. Because URL rewriting occurs before the page handler
responsible for processing the current request springs into life, the page handler only deals with the
actual URL. This means that when the HtmlForm server control enters its rendering phase, it will render
the actual URL as the value of the action attribute on the <form runat=”server”> HTML element
on the current page.

393

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 393

Therefore, when the user posts the page back to the server, the browser’s address bar will show the
actual URL instead of the original memorable URL. To fix this problem, you need to instruct the
HtmlForm server control to render the original memorable URL as the value of the action attribute on
the <form runat=”server”/> element. Obviously, you need to extend the functionality of the
HtmlForm server control to enable it to render the original memorable URL as the value of the action
attribute. There are two ways to achieve this. One way is to write a custom server control that inherits
the HtmlForm server control. Another approach is to use a control adapter. You’ll use the second
approach because it does not require any code changes in the existing code.

Every ASP.NET server control is associated with a component called a control adapter. The control
adapter associated with an ASP.NET server control allows you to extend the functionality of the server
control without having to write a new custom server control that inherits from the server control.

Follow these steps to extend the functionality of a server control such as HtmlForm via a control adapter:

1. Implement a new control adapter that inherits from the ControlAdapter base class.

2. Add a new .browser file to the App_Browsers directory of your application to register your
custom control adapter.

Following this recipe, Listing 8-58 presents the implementation of a new control adapter named
UrlRewriterControlAdapter, which extends the ControlAdapter base class.

Listing 8-58: The UrlRewriterControlAdapter

using System.Web.UI;
using System.Web.UI.Adapters;

namespace UrlRewriting
{
public class UrlRewriterControlAdapter : ControlAdapter
{
protected override void Render(HtmlTextWriter writer)
{
base.Render(new UrlRewriterHtmlTextWriter(writer));

}
}

}

As you can see, UrlRewriterControlAdapter overrides the Render method of its base class to use an
instance of a class named UrlRewriterHtmlTextWriter as the HTML text writer for rendering the
HTML markup of the HtmlForm server control. Listing 8-59 presents the implementation of the
UrlRewriterHtmlTextWriter class.

Listing 8-59: The UrlRewriterHtmlTextWriter Class

using System.Web.UI;
using System.Web;
using System.IO;

namespace UrlRewriting
{

394

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 394

Listing 8-59: (continued)

public class UrlRewriterHtmlTextWriter : HtmlTextWriter
{
public UrlRewriterHtmlTextWriter(HtmlTextWriter writer): base(writer)
{
this.InnerWriter = writer.InnerWriter;

}

public UrlRewriterHtmlTextWriter(TextWriter writer): base(writer)
{
this.InnerWriter = writer;

}

public override void WriteAttribute(string name, string value, bool fEncode)
{
if (HttpContext.Current.Items[“ActionRewrittenToMemorableUrl”] == null &&

name == “action”)
{
value = HttpContext.Current.Request.RawUrl;
HttpContext.Current.Items[“ActionRewrittenToMemorableUrl”] = true;

}

base.WriteAttribute(name, value, fEncode);
}

}
}

As you can see, the UrlRewriterHtmlTextWriter class overrides the WriteAttribute method of its
base class to ensure that this method renders the original memorable URL as the value of the action
attribute on the <form runat=”server”> HTML element. Keep in mind that the RawUrl property of
the ASP.NET Request object contains the original memorable URL.

The WriteAttribute method takes two important parameters. The first parameter contains the name
of the attribute being written. You’re only interested in the action attribute. The second parameter con-
tains the value of the attribute being written. This value is the actual URL. The WriteAttribute
method replaces this value with the memorable URL before it calls the WriteAttribute method on the
base class to write the value of the action attribute.

Finally, you need to add a new .browser file named UrlRewriter.browser to the App_Browsers
directory of the application to register the UrlRewriterControlAdapter control adapter with
ASP.NET in a declarative fashion. Listing 8-60 presents the content of the UrlRewriter.browser file.

Listing 8-60: The Content of the UrlRewriter.browser File

<browsers>
<browser refID=”Default”>
<controlAdapters>
<adapter controlType=”System.Web.UI.HtmlControls.HtmlForm”

adapterType=”UrlRewriterControlAdapter” />
</controlAdapters>

</browser>
</browsers>

395

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 395

Summary
This chapter showed you how to implement configurable managed modules and handler factories to
extend the IIS 7 and ASP.NET integrated request processing pipeline in a configurable fashion where the
clients of your configurable managed modules and handler factories can use the IIS 7 and ASP.NET inte-
grated configuration system, integrated imperative management system, and integrated graphical man-
agement system to configure these managed modules and handler factories directly from configuration
files, managed code, and the IIS 7 Manager, respectively.

The next chapter discusses developing configurable managed handlers in the context of the IIS 7 and
ASP.NET Integrated Providers Extensibility model.

396

Chapter 8: Extending the Integrated Request Processing Pipeline

52539c08.qxd:WroxPro 9/17/07 6:57 PM Page 396

Understanding the
Integrated Providers Model

A provider-based service is a piece of software that can service a specific type of data from any
type of data store. The ASP.NET Framework comes with standard provider-based services such as:

❑ User membership service, which services user membership data from any type of
data store

❑ Role management service, which services role data from any type of data store

❑ User profile service, which services user profile data from any type of data store

Provider-based services play a central role in data-driven Web applications where data comes
from many different types of data stores, such as SQL Server databases, Oracle databases, XML
documents, flat files, and Web services, just to name a few. A provider-based service hides the
data-store–specific data access APIs behind a standard API to enable all clients of the service to
use the same API to interact with any type of data store. In other words, these clients can write one
set of data access code that can interact with all types of data stores without code changes.

The IIS 7 and ASP.NET integrated providers model is an extensible infrastructure that allows you
to implement fully configurable provider-based services and plug them into the IIS 7 and
ASP.NET integrated infrastructure.

I begin this chapter by discussing why you need provider-based services in the first place. I then
use an example to show you the integrated providers model in action before getting into the
implementation details. Next, I dive into to the internals of the integrated providers model in
preparation for the next chapter, where I show you how to extend the integrated providers model
to implement fully configurable provider-based services and to plug them into the IIS 7 and
ASP.NET integrated infrastructure.

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 397

Why You Need Provider-Based Services
The previous chapter developed an HTTP handler named RssHandler that services requests for
resources with the file extension .rss. Listing 9-1 shows the definition of RssHandler, which generates
an RSS document from a specified SQL Server database. The current implementation of RssHandler
suffers from the following important shortcomings:

❑ As the highlighted portions of Listing 9-1 illustrate, RssHandler uses ADO.NET classes to
retrieve the data required for generating the RSS document from the underlying SQL Server
database. Because ADO.NET classes are the data access API for relational databases, they can’t
be used to retrieve data from non-relational data stores, such as XML documents, Web services,
flat files, and so on. In other words, the implementation of the RssHandler shown in Listing 9-1
is tied to relational databases and can’t generate RSS documents from non-relational data stores.

❑ As the highlighted portions of Listing 9-1 illustrate, RssHandler uses ADO.NET SQL
Server–specific classes to retrieve the data required for generating the RSS document. As such,
the current implementation of RssHandler cannot generate RSS documents from other types of
relational data stores such as Oracle databases.

❑ As you can see from the boldfaced portions of Listing 9-1, the current implementation of
RssHandler is tied to a SQL Server database with a specific schema. Therefore, this implemen-
tation cannot generate RSS documents from SQL Server databases with different schemas.

❑ As you can see from Listing 9-1, the current implementation of RssHandler hard-codes the
channel information, that is, channel title, description, and link.

Listing 9-1: The RssHandler Class

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Data.SqlClient;
using System.IO;
using System.Collections;

namespace CustomComponents
{
public class RssHandler : IHttpHandler
{

string channelTitle;
string channelLink;
string channelDescription;
string itemTitleField;
string itemDescriptionField;
string itemLinkField;
string itemLinkFormatString;
string connectionStringName;
string commandText;
CommandType commandType;

398

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 398

Listing 9-1: (continued)

public RssHandler()
{

channelTitle = "New Articles On some site";
channelLink = "http://somesite";
channelDescription = "The list of newly published articles on some site";
itemTitleField = "Title";
itemDescriptionField = "Abstract";
itemLinkField = "AuthorName";
itemLinkFormatString = "http://somesite/WebSite23/{0}.aspx";
connectionStringName = "MyConnectionString";
commandText = "Select * From Articles";
commandType = CommandType.Text;

}

bool IHttpHandler.IsReusable
{

get { return false; }
}

SqlDataReader GetDataReader()
{
SqlConnection con = new SqlConnection();
ConnectionStringSettings settings =
ConfigurationManager.ConnectionStrings[connectionStringName];

con.ConnectionString = settings.ConnectionString;
SqlCommand com = new SqlCommand();
com.Connection = con;
com.CommandText = commandText;
com.CommandType = commandType;
con.Open();
return com.ExecuteReader(CommandBehavior.CloseConnection);

}

public void LoadRss(Stream stream)
{
SqlDataReader reader = GetDataReader();

ArrayList items = new ArrayList();
Item item;
while (reader.Read())
{

item = new Item();
item.Title = (string)reader[itemTitleField];
item.Link = (string)reader[itemLinkField];
item.Description = (string)reader[itemDescriptionField];
item.LinkFormatString = itemLinkFormatString;
items.Add(item);

}
reader.Close();

Channel channel = new Channel();
channel.Title = channelTitle;

399

Chapter 9: Understanding the Integrated Providers Model

(Continued)

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 399

400

Chapter 9: Understanding the Integrated Providers Model

Listing 9-1: (continued)

channel.Link = channelLink;
channel.Description = channelDescription;

RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);
}

void IHttpHandler.ProcessRequest(HttpContext context)
{

context.Response.ContentType = "text/xml";
LoadRss(context.Response.OutputStream);

}
}

}

One approach to fixing these problems is to make the data access code used in Listing 9-1 generic. The
.NET Framework comes with different techniques and tools for writing generic data access code.
Making the data access generic has its own downsides; for example, you cannot perform data-store–
specific optimizations to improve the performance of your application.

A better approach to fixing the problems with the current implementation of RssHandler is to move the
data access code from RssHandler to a different component known as a provider, and have RssHandler
use this provider to retrieve data from the underlying data store. Because the data access code is
data-store–specific and consequently varies from one data store to another, the same provider cannot be
used to interact with different types of data stores. As such, simply moving the data access code from
RssHandler to a provider will not resolve the problems, because you still have to make code changes
in RssHandler to have it use a new provider to retrieve data from a new data store. In other words,
RssHandler is still tied to the underlying data store even though it does not directly contain the data
access code.

The way to fix this problem is to move the code that switches providers to a different component known
as RssService and have RssHandler interact with RssService instead of the provider. As you’ll see
later, the RssService will read the information about the configured provider from the configuration
file and use .NET reflection to instantiate an instance of the provider in a generic fashion. What we’ve
been talking about so far is known as the provider pattern. This pattern is at the heart of the ASP.NET
provider-based services.

The Integrated Providers Model in Action
Before diving into the IIS 7 and ASP.NET integrated providers model and its extensibility points, let’s see
what this model looks like in action. As Figure 9-1 shows, the IIS 7 Manager server home page contains
an item named Providers.

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 400

Figure 9-1

If you click the Providers item, it will take you to the module page shown in Figure 9-2. This page is an
instance of an internal module list page named ProviderConfigurationConsolidatedPage. As the
name implies, this module page consolidates the user interface that allows the end user to add, remove,
and update providers for any type of provider-based service including your very own custom services.
In other words, this consolidated page allows the end user to configure providers for all types of
provider-based services from the same module page.

Figure 9-2

401

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 401

As you can see, the provider configuration consolidated page consists of a combo box labeled “Feature”
that displays the list of available provider-based services to choose from and a list view that displays the
list of providers registered for the provider-based service that the user has selected from the Feature
combo box. For example, the combo box in Figure 9-2 displays the .NET Roles provider-based service,
and the list view below this combo box displays all the providers registered for this service. Note that
the task panel associated with the provider configuration consolidated page in Figure 9-2 contains two
link buttons named “Add” and “Connection Strings.” If you click the Connection Strings link, it will
take you to the connection strings page where you can add, remove, or edit connection strings. If you
click the Add link, it will pop up the Add Provider task form shown in Figure 9-3. This task form is an
instance of a task form named AddProviderForm. This task form allows you to register a new provider
with the provider-based service.

Figure 9-3

As you can see, this task form consists of four main parts. The first part is a combo box that displays the
list of available provider types for the specified provider-based service. You need to choose a provider
type for the provider you’re about to add. The second part is a textbox where you need to enter a
friendly name for the new provider. Notice that as soon as you select a provider type from the combo
box and enter a friendly name in the textbox, the OK button is enabled. The third part is a grid where
you can specify the settings for your provider. The fourth part is the command bar, which contains the
OK and Cancel buttons.

Now back to the IIS 7 Manager shown in Figure 9-1. If you select a provider from the list of displayed
providers, the task panel will show a few more link buttons, including Edit, Rename, and Remove, as
shown in Figure 9-4.

If you click the Edit link in the task panel, it will launch the Edit Provider task form shown in Figure 9-5.
This task form allows you to edit the settings of the selected provider.

402

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 402

Figure 9-4

Figure 9-5

Note the main differences between the task forms shown in Figures 9-3 and 9-5. The task form shown in
Figure 9-5 is missing the combo box that displays the list of available provider types. Also note that both
textbox controls in the top of the Edit Provider task form are grayed out. Both of these make lot of sense
because the Edit Provider task form is not adding a new provider. Instead it is editing the settings of the
selected provider.

Now back to the IIS 7 Manager shown in Figure 9-4. If you click the Rename link or click the selected
provider, you’ll get the result shown in Figure 9-6. As you can see, clicking the Rename link button
makes the name of the selected provider editable.

403

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 403

Figure 9-6

The ProviderConfigurationConsolidatedPage module list page is where you add, update, remove,
or rename providers of a given provider-based service. Adding, updating, removing, and renaming
providers are not the only configurable aspects of a provider-based service. Every provider-based serv-
ice also exposes a module page of its own where you can configure other aspects of the service. Next, I
show an example of such a module page. If you click the Default Web Site node in the Connections pane,
you’ll get the result shown in Figure 9-7.

Figure 9-7

404

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 404

If you click the .NET Roles item, it’ll take you to the .NET Roles page, shown in Figure 9-8. This is the
module page where you can configure aspects of the Roles provider-based service other than adding,
removing, updating, and renaming its providers.

Figure 9-8

Note that the task panel associated with this module page contains a link button named Set Default
Provider. If you click this link, it will pop up the task form shown in Figure 9-9. This task form allows
you to specify the default provider for the .NET Roles provider-based service. As you can see, this task
form contains a combo box that displays the list of available providers to choose from.

Figure 9-9

Under the Hood of the Integrated
Providers Model

The IIS 7 and ASP.NET integrated providers model comes with two important abstract base classes
named ProviderFeature and ProviderConfigurationSettings and an important interface named
IProviderConfigurationService. Extending the integrated providers model requires a solid

405

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 405

understanding of these two abstract base classes (and their subclasses) and this interface (and the class
that implements this interface).

ProviderFeature
The integrated providers model comes with three standard subclasses of the ProviderFeature base
class as follows:

❑ RolesProviderConfigurationFeature: The integrated providers model uses an instance of
the RolesProviderConfigurationFeature subclass of the ProviderFeature abstract base
class to represent the Roles provider-based service.

❑ MembershipProviderConfigurationFeature: The integrated providers model
uses an instance of the MembershipProviderConfigurationFeature subclass of the
ProviderFeature abstract base class to represent the Users provider-based service.

❑ ProfileProviderConfigurationFeature: The integrated providers model uses an instance
of the ProfileProviderConfigurationFeature subclass of the ProviderFeature abstract
base class to represent the Profile provider-based service.

As you’ll see later in this chapter, you can also implement your own subclass of the ProviderFeature
abstract base class and have the integrated providers model use an instance of this subclass to represent
your own custom provider-based service or feature. For example, you’ll implement a subclass of the
ProviderFeature abstract base class named RssProviderConfigurationFeature and have the inte-
grated providers model use an instance of this subclass to represent your RSS provider-based service.

Listing 9-2 presents the internal implementation of the ProviderFeature abstract base class.

Listing 9-2: The ProviderFeature Abstract Base Class

public abstract class ProviderFeature
{
public virtual string ConnectionStringAttributeName
{
get { return string.Empty; }

}

public virtual bool ConnectionStringRequired
{
get { return false; }

}

public abstract string FeatureName { get; }
public abstract string ProviderBaseType { get; }
public abstract string ProviderCollectionPropertyName { get; }
public abstract string[] ProviderConfigurationSettingNames { get; }
public abstract string SectionName { get; }
public abstract string SelectedProvider { get; }
public abstract string SelectedProviderPropertyName { get; }
public abstract ProviderConfigurationSettings Settings { get; }

}

406

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 406

The abstract properties of the ProviderFeature abstract base class define the API that every
provider feature must implement, including RolesProviderConfigurationFeature,
MembershipProviderConfigurationFeature, ProfileProviderConfigurationFeature, and
your very own custom provider feature:

❑ FeatureName: Your custom provider feature’s implementation of this property must return a
string that contains your custom provider-based service name. The integrated providers model
displays the value of this property in the Feature combo box shown in Figure 9-2. For example,
the RolesProviderConfigurationFeature’s implementation of this property returns the
string “.NET Roles”, which is listed in the list of features that the Feature combo box displays.

❑ ProviderBaseType: As you’ll see later in this chapter, as part of the implementation of your
custom provider-based service or feature, you must implement an abstract class known as a
provider base, which will act as the base class for all providers of your custom provider-based
service. For example, all Roles providers inherit from an abstract provider base class named
RoleProvider.

❑ Your custom provider feature’s implementation of the ProviderBaseType property must
return a string that contains the complete type information about the provider base from which
all the providers of your custom provider-based service inherit. This type information consists
of two main parts, but only the first part is required. The first part specifies the fully qualified
name of the type of the custom provider base including its complete namespace containment
hierarchy. The second part specifies the information about the assembly that contains the cus-
tom provider base including the assembly name, version, culture, and public key token.

❑ For example, the RolesProviderConfigurationFeature provider feature’s implementation of
the ProviderBaseType property returns the string "System.Web.Security.RoleProvider":

public override string ProviderBaseType
{
get { return "System.Web.Security.RoleProvider"; }

}

❑ ProviderCollectionPropertyName: As you’ll see later in this chapter, as part of the imple-
mentation of your custom provider-based service, you should also extend the IIS 7 and
ASP.NET integrated configuration system to add support for a new configuration section to
allow the clients of your service to configure your service from a configuration file. This config-
uration section must contain a Collection XML element (normally named <providers>) where
the clients of your custom provider-based service can use an Add XML element (normally
named <add>) to register a new provider with your service.

❑ For example, the IIS 7 and ASP.NET integrated configuration system supports a configuration
section named <roleManager> that contains a Collection XML element named <providers>
where the clients of the ASP.NET Roles provider-based service can add new providers:

<roleManager defaultProvider="SqlProvider" enabled="true" cacheRolesInCookie="true"
cookieName=".ASPROLES" cookieTimeout="30" cookiePath="/" cookieRequireSSL="false"
cookieSlidingExpiration="true" cookieProtection="All" >
<providers>
<add name="SqlProvider" type="System.Web.Security.SqlRoleProvider"
connectionStringName="SqlServices" applicationName="MyApplication" />

</providers>
</roleManager>

407

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 407

❑ Your custom provider feature’s implementation of the ProviderCollectionPropertyName
property must return a string that contains the name of this Collection XML element. A typical
implementation of the ProviderCollectionPropertyName property returns the string
“providers”. The following code listing presents the
RolesProviderConfigurationFeature provider feature’s implementation of the
ProviderCollectionPropertyName property:

public override string ProviderCollectionPropertyName
{
get { return "providers";}

}

❑ ProviderConfigurationSettingNames: Your custom provider feature’s implementation of
this property must return a string array that contains the names of the attributes on the Add ele-
ments that add providers to the collection that the Collection XML element represents. This Add
element is normally named <add>. For example, the RolesProviderConfigurationFeature
provider feature’s implementation of the ProviderConfigurationSettingNames property
returns a string array that contains the strings "applicationName", "description", and
"connectionStringName", which are the names of the attributes on the <add> element that
registers a new provider with the Roles provider-based service:

public override string[] ProviderConfigurationSettingNames
{
get
{
return new string[] { "applicationName", "description",

"connectionStringName" };
}

}

❑ SectionName: Your custom provider feature’s implementation of this property must return a
string that contains the fully qualified name of the configuration section that configures your
custom provider-based service. This name must include the complete group hierarchy of the
configuration section. For example, the RolesProviderConfigurationFeature provider fea-
ture’s implementation of the SectionName property returns the string
"system.web/roleManager", which is the fully qualified named of the configuration section
where the clients of the Roles provider-based service can configure the service:

public override string SectionName
{
get { return "system.web/roleManager"; }

}

❑ SelectedProvider: Your custom provider feature’s implementation of this property must
return a string that contains the friendly name of the default provider of your custom provider-
based service.

❑ SelectedProviderPropertyName: Your custom provider feature’s implementation of this
property must return a string that contains the name of the attribute whose value specifies the
friendly name of the default provider of your custom provider-based service. This property nor-
mally returns the string “defaultProvider”. For example, the following code listing presents

408

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 408

the RolesProviderConfigurationFeature provider feature’s implementation of the
SelectedProviderPropertyName property:

public override string SelectedProviderPropertyName
{
get { return "defaultProvider"; }

}

❑ Settings: As you’ll see later in this chapter, as part of the implementation of your custom
provider-based service, you must also implement a provider configuration settings class that
inherits from the ProviderConfigurationSettings base class. For example, the Roles
provider-based service comes with a provider configuration settings class named
RolesProviderConfigurationSetings. Your custom provider feature’s implementation of
the Settings property must create and return an instance of the associated provider configura-
tion settings class. For example, the RolesProviderConfigurationFeature provider fea-
ture’s implementation of the Settings property instantiates and returns an instance of the
RolesProviderConfigurationSettings:

public override ProviderConfigurationSettings Settings
{
get { return new RolesProviderConfigurationSettings(this._module); }

}

Note that the ProviderFeature abstract base class also exposes two virtual properties that its sub-
classes may choose to override:

❑ ConnectionStringAttributeName: Your custom provider feature’s implementation of this
property must return a string that contains the name of the attribute whose value specifies the
connection string name. This property normally returns the string “connectionStringName”.
As Listing 9-2 shows, the ProviderFeature abstract base class’s implementation of this
property returns an empty string. For example, the following code listing presents the
RolesProviderConfigurationFeature provider feature’s implementation of the
ConnectionStringAttributeName property:

public override string ConnectionStringAttributeName
{
get { return "connectionStringName"; }

}

❑ ConnectionStringRequired: Your custom provider feature’s implementation of this property
must return a Boolean value that specifies whether the providers of your provider-based service
require connection strings. As Listing 9-2 shows, the ProviderFeature abstract base class’s
implementation of this property returns false. Therefore, if your custom provider feature does
not implement this property, the integrated providers model will assume that the providers of
your provider-based service do not require connection strings. As a result, if the end user does
not enter a value into the ConnectStringName textbox shown in Figure 9-5 when it is register-
ing a new provider, the integrated providers model will allow the registration process to go
through.

As you can see, your custom provider feature provides the integrated providers model with the com-
plete information about your custom provider-based service. For example, as you just saw, the
RolesProviderConfigurationFeature provider feature provides the integrated providers model

409

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 409

with the following pieces of information about the Roles provider-based service among other pieces of
information:

❑ The name of the Roles provider-based service, that is, “.NET Roles”. This name appears in the
Feature combo box.

❑ The fully qualified name of the configuration section, which contains the configuration settings
for the Roles provider-based service, that is, "system.web/roleManager".

❑ The name of the attribute on the configuration section’s containing element, which contains the
default provider of the Roles provider-based service, that is, "defaultProvider".

❑ The friendly name of the default provider.

❑ The name of the Collection XML element that contains the registered providers, that is,
"providers".

❑ The names of the attributes on the Add XML elements that register providers with the Roles
provider-based service, that is, "applicationName", "description", and
"connectionStringName".

❑ The fully qualified name of the provider base type, that is, "System.Web.Security
.RoleProvider" from which all providers of the Roles provider-based service inherit.

Implementing a custom provider feature for your custom provider-based service is just half the story.
You must also create an instance of your custom provider feature and make this instance available to the
integrated providers model. As you’ll see shortly, this model uses this instance to extract the complete
information about your provider-based service. As such, this instance is known as an extension because
it extends the functionality of the integrated providers model.

You may be wondering how you can make an instance of your custom provider feature available to the
integrated providers model. In other words, how can you add an extension to this model?

The configuration settings of your custom provider-based service can be divided into two main groups. The
first group includes provider-specific operations such as adding, updating, removing, and renaming
providers. These operations must be performed from the ProviderConfigurationConsolidatedPage
module list page as discussed earlier. The second group includes anything else.

As you’ll see later in this chapter, as part of the implementation of your custom provider-based service,
you must also implement one or more module pages, which provide the clients of your custom
provider-based service with the appropriate user interface to specify the configuration settings of your
service other than adding, updating, removing, and renaming its providers. For example, the Roles
provider-based service provides its clients with a module page named RolesPage to specify the config-
uration settings other than adding, updating, removing, and renaming providers. Figure 9-8 shows the
RolesPage module list page in action.

As you saw in the previous chapter, when you implement a custom module page, you must also imple-
ment a custom module that inherits from the Module base class to register your custom module page
with the IIS 7 Manager. As part of this registration process, you must also instantiate an instance of your
custom provider feature and register this instance with the integrated providers model. For example, the
Roles provider-based service implements a custom module named RolesModule to register the
RolesPage module list page. Listing 9-3 presents the internal implementation of the Initialize
method of the RolesModule module where this registration takes place.

410

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 410

Listing 9-3: The Initialize Method of the RolesModule Module

protected override void Initialize(IServiceProvider serviceProvider,
ModuleInfo moduleInfo)

{
base.Initialize(serviceProvider, moduleInfo);
Connection service = (Connection) serviceProvider.GetService(typeof(Connection));
ModulePageInfo itemPageInfo = new ModulePageInfo(this, typeof(RolesPage),

“.NET Roles”, “.NET Roles”);
IControlPanel panel =

(IControlPanel) serviceProvider.GetService(typeof(IControlPanel));
panel.RegisterPage(ControlPanelCategoryInfo.Security, itemPageInfo);
panel.RegisterPage(ControlPanelCategoryInfo.AspNet, itemPageInfo);

IExtensibilityManager manager =
(IExtensibilityManager)serviceProvider.GetService(

typeof(IExtensibilityManager));
if (manager != null)
{
RolesProviderConfigurationFeature extension =

new RolesProviderConfigurationFeature(this);
manager.RegisterExtension(typeof(ProviderFeature), extension);

}
}

As you can see from Listing 9-3, the Initialize method consists of two main parts. The first part regis-
ters the RolesPage module list page:

Connection service = (Connection) serviceProvider.GetService(typeof(Connection));
ModulePageInfo itemPageInfo = new ModulePageInfo(this, typeof(RolesPage),

“.NET Roles”, “.NET Roles”);
IControlPanel panel =

(IControlPanel) serviceProvider.GetService(typeof(IControlPanel));
panel.RegisterPage(ControlPanelCategoryInfo.Security, itemPageInfo);
panel.RegisterPage(ControlPanelCategoryInfo.AspNet, itemPageInfo);

The second part adds a new extension to the IIS 7 and ASP.NET integrated infrastructure. First, it
accesses a service known as the extensibility manager service. This service, like any other service in the
integrated infrastructure, implements an interface. This interface in this case is an interface named
IExtensibilityManager.

IExtensibilityManager manager =
(IExtensibilityManager)serviceProvider.GetService(

typeof(IExtensibilityManager));

As the name suggests, the extensibility manager service manages the extensions to the integrated infra-
structure. Next, the Initialize method instantiates an instance of the
RolesProviderConfigurationFeature provider feature:

RolesProviderConfigurationFeature extension =
new RolesProviderConfigurationFeature(this);

411

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 411

412

Chapter 9: Understanding the Integrated Providers Model

Finally, it invokes a method named RegisterExtension on the extensibility manager service to register
this RolesProviderConfigurationFeature provider feature extension. Note that this extension is
registered under the Type object that represents the ProviderFeature abstract base class.

manager.RegisterExtension(typeof(ProviderFeature), extension);

ProviderConfigurationSettings
Next, I discuss the ProviderConfigurationSettings abstract base class. Recall that the
ProviderFeature abstract base class exposes a property of type ProviderConfigurationSettings
named Settings. As you’ll see later in this chapter, as part of the implementation of your custom
provider-based service, you must also implement a custom provider configuration settings class that
inherits the ProviderConfigurationSettings abstract base class. Your custom provider feature’s
implementation of the Settings property must create and return an instance of this custom provider
configuration settings class. Listing 9-4 presents the implementation of the
ProviderConfigurationSettings base class.

Listing 9-4: The ProviderConfigurationSettings Class

public abstract class ProviderConfigurationSettings
{
public IDictionary GetSettings()
{
return this.Settings;

}

public void LoadSettings(string[] parameters)
{
for (int i = 0; i < parameters.Length; i += 2)
{
this.Settings[parameters[i]] = parameters[i + 1];

}
}

public abstract bool Validate(out string message);
protected abstract IDictionary Settings { get; }

}

Note that ProviderConfigurationSettings is an abstract class. It is the responsibility of
each provider-based service to implement a class that inherits from this abstract base class. For
example, the ASP.NET Profile, Roles, and Users provider-based services respectively implement the
ProfileProviderConfigurationSettings, RolesProviderConfigurationSettings, and
MembershipProviderConfigurationSettings classes that inherit the
ProviderConfigurationSettings abstract base class. Every provider configuration settings class
must implement the Validate method and Settings property of the
ProviderConfigurationSettings base class because they’re both marked as abstract.

Your custom provider configuration setting’s implementation of the Validate method must contain the
logic that performs the necessary validation. This method must return a Boolean value that specifies
whether the validation succeeded. It must also populate a string passed into it as its argument with the
appropriate error message if the validation fails.

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 412

Your custom provider configuration setting’s implementation of the Settings property must return an
IDictionary collection that contains the names and values of the attributes of the Add element that
registers a provider with the specified provider-based service. This Add element is normally named
<add>. The values of these attributes basically specify the configuration settings of the provider that
the <add> element registers.

Let’s consider the implementation of the RolesProviderConfigurationSettings class as shown in
Listing 9-5.

Listing 9-5: The RolesProviderConfigurationSettings Class

public sealed class RolesProviderConfigurationSettings :
ProviderConfigurationSettings

{
private Hashtable settings;

public RolesProviderConfigurationSettings()
{
this.settings = new Hashtable();

}

public override bool Validate(out string message)
{
if (this.ConnectionStringName.Length == 0)
{
message = "Connection string name is required";
return false;

}

message = string.Empty;
return true;

}

public string ApplicationName
{
get
{
if (this.settings["applicationName"] != null)
return (string) this.settings["applicationName"];

return string.Empty;
}

set { this.settings["applicationName"] = value; }
}

public string ConnectionStringName
{
get
{
if (this.settings["connectionStringName"] != null)
return (string) this.settings["connectionStringName"];

413

Chapter 9: Understanding the Integrated Providers Model

(Continued)

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 413

Listing 9-5: (continued)

return string.Empty;
}

set { this.settings["connectionStringName"] = value; }
}

public string Description
{
get
{
if (this.settings["description"] != null)
return (string) this.settings["description"];

return string.Empty;
}

set { this.settings["description"] = value; }
}

protected override IDictionary Settings
{
get { return this.settings; }

}
}

Follow these steps to implement a custom provider configuration settings class:

1. Derive your provider configuration settings class from the ProviderConfigurationSettings
base class:

public sealed class RolesProviderConfigurationSettings :
ProviderConfigurationSettings

2. Add a private field of type Hashtable named settings to your provider configuration set-
tings class. You don’t have to use a hashtable; any IDictionary will do the job.

private Hashtable settings;

3. Add a default constructor to your provider configuration settings class, which instantiates a
Hashtable and assigns it to this private field:

public RolesProviderConfigurationSettings()
{
this.settings = new Hashtable();

}

4. Override the Settings property of the ProviderConfigurationSettings base class to
return a reference to the settings private field:

protected override IDictionary Settings
{
get { return this.settings; }

}

414

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 414

5. Add a bunch of read/write properties to your provider configuration settings class,
where each property exposes a specific item in the settings Hashtable. For example,
the RolesProviderConfigurationSettings class exposes three read/write properties
named ApplicationName, ConnectionStringName, and Description, which expose the
applicationName, connectionStringName, and description contents of the settings
Hashtable.

Keep in mind that the contents of the settings Hashtable map to the attributes on the Add XML
element that is used to register a provider with your provider-based service. This Add XML ele-
ment is normally named <add>. The attributes on the Add XML element basically specify the
configuration settings of the provider being registered.

As you can see, your provider configuration settings class basically exposes the attributes on the
Add XML element as strongly-typed properties. We’ve discussed the benefits of strongly-typed
properties on several occasions in the previous chapters. To put it differently, your provider con-
figuration settings class basically exposes the configuration settings of the providers of your
provider-based service, hence the name ProviderConfigurationSettings.

Now you should clearly see the difference between a provider feature and provider configura-
tion settings. A provider feature describes your provider-based service, whereas provider con-
figuration settings describe the providers of your provider-based service.

6. Override the Validate method to include the logic that validates the values assigned
to the properties of your provider configuration settings class. For example, the
RolesProviderConfigurationSettings class’s implementation of the Validate
method contains the logic that determines whether the value of the ConnectionStringName
property is set.

public override bool Validate(out string message)
{
if (this.ConnectionStringName.Length == 0)
{
message = "Connection string name is required";
return false;

}

message = string.Empty;
return true;

}

Putting it All Together
Recall that Figures 9-1 through 9-6 took you through typical workflows that the clients of a provider-
based service such as the Roles provider-based service use to update, remove, rename, and add
providers for the service. Next, I take you under the hood of four of these workflows to help you under-
stand the important roles that the ProviderFeature and ProviderConfigurationSettings base
classes and their subclasses play in the integrated providers model.

Before diving into the internals of these workflows, let’s briefly enumerate these four workflows:

❑ The workflow that takes you to the ProviderConfigurationConsolidatedPage module list
page. This workflow consists of one of the following two activities:

415

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 415

❑ Double-clicking the Providers item in the workspace of the IIS 7 Manager
(see Figure 9-1)

❑ Selecting the Providers item in the workspace and clicking the Open Feature link in the
task panel

❑ The workflow that allows you to view the providers registered for a particular provider-based
service. This workflow consists of a single activity: selecting a provider-based service from the
Feature combo box.

❑ The workflow that allows you to add a new provider to a particular provider-based service.
This workflow consists of the following activities:

1. Clicking the Add link in the task panel associated with the
ProviderConfigurationConsolidatedPage module list page to launch the
AddProviderForm task form.

2. Entering or selecting the desired configuration settings for the provider being added.

3. Clicking the OK button on the AddProviderForm task form to add the provider to the
underlying configuration file.

❑ The workflow that allows you to edit a provider of a particular provider-based service. This
workflow consists of the following activities:

1. Clicking the Edit link in the task panel associated with the
ProviderConfigurationConsolidatedPage module list page to launch the
AddProviderForm task form.

2. Editing the desired configuration settings for the provider.

3. Clicking the OK button on the AddProviderForm task form to update the provider in
the underling configuration file.

Workflow that Displays the ProviderConfigurationConsolidatedPage
Module List Page

Let’s begin our discussions with Figure 9-1. Recall that the workspace shown in this figure
contains an item named Providers. When the end user double-clicks this item to navigate to the
ProviderConfigurationConsolidatedPage module list page shown in Figure 9-2, the OnActivated
method of this module list page is automatically invoked. This method takes a single Boolean argument
that specifies whether the module list page is being accessed for the first time. Listing 9-6 presents a por-
tion of the ProviderConfigurationConsolidatedPage module list page’s implementation of the
OnActivated method.

Listing 9-6: The OnActivated Method

protected override void OnActivated(bool initialActivation)
{
. . .

if (initialActivation)
{
. . .

416

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 416

Listing 9-6: (continued)

IExtensibilityManager extensibilityManager =
(IExtensibilityManager)base.GetService(

typeof(IExtensibilityManager));
this.features =

extensibilityManager.GetExtensions(typeof(ProviderFeature));

foreach (ProviderFeature feature in this.features)
{
this.featuresComboBox.Items.Add(feature.FeatureName);

}

. . .

}

. . .
}

As you can see, the OnActiviated method first accesses the extensibility manager service:

IExtensibilityManager extensibilityManager =
(IExtensibilityManager)base.GetService(

typeof(IExtensibilityManager));

Recall that the extensibility manager service manages the extensions to the IIS 7 and ASP.NET integrated
infrastructure. As discussed earlier, as part of the implementation of your custom provider-based serv-
ice, you must also implement one or more module pages, which provide the clients of your custom
provider-based service with the appropriate user interface to specify the configuration settings of your
service other than adding, removing, updating, and renaming providers. Also recall that the custom
module that registers these module pages (see Listing 9-3) must instantiate an instance of your custom
provider feature and register the instance with the extensibility manager service. In other words,
this provider feature instance is an extension to the integrated infrastructure. Recall from Listing 9-3
that this provider feature extension is registered with the extensibility manager service under the Type
object that represents the ProviderFeature base class, that is, typeof(ProviderFeature).

The extensibility manager service comes with a method named GetExtensions that takes a Type object
and returns a collection that contains all extensions of the specified type. As you can see from Listing 9-6,
the OnActivated method of the ProviderConfigurationConsolidatedPage module list page uses the
GetExtensions method to return a collection that contains extensions of type ProviderFeature. Note
that this method stores this collection in a private field named features for future reference.

this.features = service.GetExtensions(typeof(ProviderFeature));

As you can see, the features collection is a collection of provider feature objects where each provider
feature object represents a particular provider-based service. As such, the features collection contains at
least the three provider feature objects that represent the Roles, Users, and Profile provider-based services.
These three provider feature objects are instances of the RolesProviderConfigurationFeature,
MembershipProviderConfigurationFeature, and ProfileProviderConfigurationFeature,
respectively. Recall that these three classes, like any other custom provider feature class, inherit from the

417

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 417

ProviderFeature base class. The features collection also contains the provider feature objects that rep-
resent your own custom provider-based services if you have taken the steps discussed earlier to register
these provider feature objects with the extensibility manager service.

The OnActivated method then iterates through the ProviderFeature objects in this collection and
adds the value of the FeatureName property of each object to the Feature combo box. This property
basically contains the name of the provider-based service that the enumerated ProviderFeature object
represents:

foreach (ProviderFeature feature in this.features)
{
this.featuresComboBox.Items.Add(feature.FeatureName);

}

In summary, the custom module that registers the module pages of your provider-based service instantiates
a provider feature that represents the service and registers this provider feature extension with the extensi-
bility manager service. The OnActivated method of the ProviderConfigurationConsolidatedPage
module list page, on the other hand, retrieves this provider feature extension from the extensibility manager
service, stores it somewhere for future reference, extracts the feature name (FeatureName) from this
provider feature extension, and adds this name to the Feature combo box.

Workflow for Viewing the Providers of a Provider-Based Service
When the user selects a provider-based service from the Feature combo box, the event handler
registered for the SelectedIndexChanged event of this combo box is automatically invoked. This event
handler is a method of the ProviderConfigurationConsolidatedPage module list page named
OnFeatureComboBoxSelectedIndexChanged. Listing 9-7 presents the portion of the internal imple-
mentation of this method.

Listing 9-7: The Portion of the Implementation of the
OnFeatureComboBoxSelectedIndexChanged Event Handler

private void OnFeatureComboBoxSelectedIndexChanged(object sender, EventArgs e)
{
string selectedFeatureName = this.featuresComboBox.Text;
ProviderFeature selectedFeature;
foreach (ProviderFeature feature in this.features)
{
if (string.Equals(feature.FeatureName, selectedFeatureName,

StringComparison.OrdinalIgnoreCase))
{
selectedFeature = feature;
break;

}
}

PropertyBag selectedFeatureInfoBag = new PropertyBag();
selectedFeatureInfoBag[0] = selectedFeature.SectionName;
selectedFeatureInfoBag[1] = selectedFeature.SelectedProviderPropertyName;
selectedFeatureInfoBag[2] = selectedFeature.ProviderCollectionPropertyName;
selectedFeatureInfoBag[3] = selectedFeature.ProviderBaseType;

418

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 418

Listing 9-7: (continued)

selectedFeatureInfoBag[4] = selectedFeature.ProviderConfigurationSettingNames;
selectedFeatureInfoBag[5] = selectedFeature.ConnectionStringRequired;
selectedFeatureInfoBag[6] = selectedFeature.ConnectionStringAttributeName;

this.DownloadAndDisplayProviders(selectedFeatureInfoBag);
}

As you can see, this event handler first retrieves the name of the selected provider-based service from
the Feature combo box:

string selectedFeatureName = this.featuresComboBox.Text;

Next, it searches the features collection for the provider feature that represents the provider-based
service with the specified name (recall that the features collection is a collection of provider feature
objects where each provider feature object represents a particular provider-based service):

ProviderFeature selectedFeature;
foreach (ProviderFeature feature in this.features)
{
if (string.Equals(feature.FeatureName, selectedFeatureName,

StringComparison.OrdinalIgnoreCase))
{
selectedFeature = feature;
break;

}
}

Then, it instantiates a PropertyBag collection and populates the collection with the complete informa-
tion about the selected provider-based service. Recall that the provider feature object that represents a
provider-based service exposes the complete information about the service through its strongly-typed
properties:

PropertyBag selectedFeatureInfoBag = new PropertyBag();
selectedFeatureInfoBag[0] = selectedFeature.SectionName;
selectedFeatureInfoBag[1] = selectedFeature.SelectedProviderPropertyName;
selectedFeatureInfoBag[2] = selectedFeature.ProviderCollectionPropertyName;
selectedFeatureInfoBag[3] = selectedFeature.ProviderBaseType;
selectedFeatureInfoBag[4] = selectedFeature.ProviderConfigurationSettingNames;
selectedFeatureInfoBag[5] = selectedFeature.ConnectionStringRequired;
selectedFeatureInfoBag[6] = selectedFeature.ConnectionStringAttributeName;

Finally, it invokes a method named DownLoadAndDisplayProviders passing in the PropertyBag col-
lection to download the providers registered for the selected provider-based service from the Collection
XML element — with the name specified in the third item in the PropertyBag collection — of the con-
figuration section with the name specified in the first item in the PropertyBag collection and to display
these providers in the list view below the Feature combo box:

this.DownloadAndDisplayProviders(selectedFeatureInfoBag);

419

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 419

Workflow for Adding a New Provider to a Provider-Based Service
When the user clicks the Add link button in the task panel associated with the
ProviderConfigurationConsolidatedPage module list page, this module list page automatically
instantiates and launches the AddProviderForm task form shown in Figure 9-3. When the
ProviderConfigurationConsolidatedPage module list page is instantiating the AddProviderForm
task form, it passes the following two pieces of information into the constructor of this task form:

❑ The provider configuration settings object whose properties specify the configuration settings of
the provider being added. The ProviderFeature object that represents the selected provider-
based service exposes a property of type ProviderConfigurationSettings named
Settings that returns a reference to this provider configuration settings object. The
ProviderConfigurationConsolidatedPage module list page passes the value of this
Settings property into the constructor of the AddProviderForm task form.

❑ The PropertyBag collection that contains the complete information about the selected
provider-based service. As you saw earlier, this PropertyBag collection is populated with the
values of the properties of the ProviderFeature object that represents the selected provider-
based service:

PropertyBag selectedFeatureInfoBag = new PropertyBag();
selectedFeatureInfoBag[0] = selectedFeature.SectionName;
selectedFeatureInfoBag[1] = selectedFeature.SelectedProviderPropertyName;
selectedFeatureInfoBag[2] = selectedFeature.ProviderCollectionPropertyName;
selectedFeatureInfoBag[3] = selectedFeature.ProviderBaseType;
selectedFeatureInfoBag[4] = selectedFeature.ProviderConfigurationSettingNames;
selectedFeatureInfoBag[5] = selectedFeature.ConnectionStringRequired;
selectedFeatureInfoBag[6] = selectedFeature.ConnectionStringAttributeName;

The AddProviderForm task form internally invokes a method named DownLoadProviderTypes,
passing in the complete type information about the provider base of the selected provider based-service.
As just mentioned, the ProviderConfigurationConsolidatedPage module list page passes a
PropertyBag collection to the AddProviderForm task form that contains this complete type informa-
tion, among other pieces of information. Recall that all providers of a given provider-based service
inherit from a base class known as a provider base. For example, all providers of the Roles provider-
based service inherit the RoleProvider provider base.

As the name suggests, the DownLoadProviderTypes method downloads all provider types that inherit
the specified provider base type. The server-side code under the hood uses .NET reflection and searches
through the appropriate assemblies for those types that inherit the specified provider base type and
returns the assembly-qualified names of these types to the AddProviderForm task form, where this task
form displays these names in the Type combo box for the user to choose from. Which assemblies the
search is performed through on the server-side depends on which level the user is registering her
provider for.

This is very similar to the discussions in the previous chapter regarding the level for which you register
an HTTP module or handler. Recall that this registration can be done in one of the following two levels:

❑ The IIS 7 Web server level

❑ A particular Web site, Web application, or virtual directory level

420

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 420

As discussed in the previous chapter, the Type combo box in the Add Managed Handler (or Add
Managed Module) task form displays the list of HTTP handlers (or modules) to choose from. When the
Add Managed Handler (or Add Managed Module) task form is launched, this task form under the hood
uses the appropriate proxy to download the list of available HTTP handlers (or modules) from the
server. As you saw in the previous chapter, the underlying server-side code searches through the assem-
blies in the Global Assembly Cache (GAC) for those types that implement the IHttpHandler (or
IHttpModule) if you’re registering an HTTP handler (or HTTP module) at the IIS 7 Web server level.
This server-side code searches through the referenced assemblies for those types that implement the
IHttpHandler (or IHttpModule) if you’re registering an HTTP handler (or HTTP module) at a particu-
lar Web site, Web application, or virtual directory level. As you saw, this affects how you should go
about compiling your custom HTTP handlers, modules, and handler factories. If you want to allow
users to register your custom HTTP handler, module, or handler factory at the IIS 7 Web server level,
you must compile your custom HTTP handler, module, or handler factory into a strongly-named assem-
bly and deploy this assembly to the GAC. If you want to allow users to register your custom HTTP
handler, module, or handler factory at a particular Web site, Web application, or virtual directory level,
you have several compilation options but there is one requirement. You must add a reference to the
assembly that contains your custom HTTP handler, module, or handler factory to the Web site or Web
application that needs to use your custom HTTP handler, module, or handler factory.

The same exact argument applies when you launch the AddProviderForm task form to register a new
provider for a given provider-based service. This task form under the hood uses the appropriate proxy
to download the list of registered providers from the server. The server-side code searches through the
assemblies in the GAC for those types that inherit the specified provider base type if you’re registering a
provider at the IIS 7 Web server level. This server-side code searches through the referenced assemblies
for those types that inherit the specified provider base type if you’re registering a provider at a particu-
lar Web site, Web application, or virtual directory level. Similarly, this affects how you should go about
compiling a provider type of your custom provider-based service. If you want to allow users to register
providers of the same type as your provider type at the IIS 7 Web server level, you must compile your
provider type into a strongly-named assembly and deploy this assembly to the GAC. If you want to
allow users to register providers of your provider type at a particular Web site, Web application, or vir-
tual directory level, you have several compilation options but there is one requirement. You must add a
reference to the assembly that contains your provider type to the Web site or Web application that needs
to use your provider type.

After invoking the DownLoadProviderTypes method and downloading the provider types of the
selected provider-based service, the AddProviderForm task form displays these provider types in the
Type combo box shown in Figure 9-3.

Recall from Figure 9-3 that the AddProviderForm task form contains a grid that displays a bunch of
controls, such as textboxes with labels. This grid is an instance of a control named PropertyGrid, which
exposes a property named SelectedObject. The AddProviderForm task form assigns the provider
configuration settings object that it has received from the ProviderConfigurationConsolidatedPage
module list page to the SelectedObject property of the PropertyGrid control.

The PropertyGrid control under the hood uses .NET reflection to retrieve the names and values of the
properties of the object assigned to its SelectedObject property. The control then renders a label and a
control such as a textbox for each property of this object and displays the name of the property in the
label. Every time the user enters a new value into a textbox, or edits a value, the PropertyGrid control
automatically updates the value of the object assigned to its SelectedObject property, which is the
provider configuration settings object in this case.

421

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 421

To help you understand the significance of the PropertyGrid control and how you can customize this
control for your own provider-based services, I’ll walk you through an exercise. Launch Visual Studio.
Add a new Windows Forms Application project named MyApplication. This will automatically add a
new Form1.cs file to the project. Change the name of this file to MyForm.cs. Right-click the
MyApplication node in the Solution Explorer panel and select the Properties option from the popup
menu to launch the Properties page. Switch to the Application tab and enter “MyNamespace” into the
“Default namespace” textfield.

Add a new source file named MyClass1.cs to the MyApplication project and add the code shown in
Listing 9-8 to this source file.

Listing 9-8: The MyClass1 Class

using System;
using System.ComponentModel;

namespace MyNamespace
{
[DefaultProperty("MyClass1Property3")]
class MyClass1
{
private bool myClass1Field1;
private string myClass1Field2;
private MyEnum myClass1Field3;
private DateTime myClass1Field4;
private string[] myClass1Field5;
private MyClass2[] myClass1Field6;

[Description("This is MyClass1Property1 property.")]
[Category("Non-Collection Properties")]
[DefaultValue(false)]
public bool MyClass1Property1
{
get { return this.myClass1Field1; }
set { this.myClass1Field1 = value; }

}

[Description("This is MyClass1Property2 property.")]
[Category("Non-Collection Properties")]
[DefaultValue("")]
public string MyClass1Property2
{
get { return this.myClass1Field2; }
set { this.myClass1Field2 = value; }

}

[Description("This is MyClass1Property3 property.")]
[Category("Non-Collection Properties")]
[DefaultValue("MyValue1")]
public MyEnum MyClass1Property3
{
get { return this.myClass1Field3; }
set { this.myClass1Field3 = value; }

422

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 422

Listing 9-8: (continued)

}

[Description("This is MyClass1Property4 property.")]
[Category("Non-Collection Properties")]
[DefaultValue("")]
public DateTime MyClass1Property4
{
get { return this.myClass1Field4; }
set { this.myClass1Field4 = value; }

}

[Description("This is MyClass1Property5 property.")]
[Category("Collection Properties")]
[DefaultValue("")]
public string[] MyClass1Property5
{
get { return this.myClass1Field5; }
set { this.myClass1Field5 = value; }

}

[Description("This is MyClass1Property6 property.")]
[Category("Collection Properties")]
[DefaultValue("")]
public MyClass2[] MyClass1Property6
{
get { return this.myClass1Field6; }
set { this.myClass1Field6 = value; }

}
}

}

As you can see, MyClass1 is a simple class with six read/write properties named MyClass1Property1,
MyClass1Property2, MyClass1Property3, MyClass1Property4, MyClass1Property5, and
MyClass1Property6 of types bool, string, MyEnum, DateTime, string[], and MyClass2[], respec-
tively. Note that MyEnum is a simple enumeration type with four values named MyValue1, MyValue2,
MyValue3, and MyValue4 as shown in Listing 9-9.

Now and add a new source file named MyEnum.cs to the MyApplication project and add the code
shown in Listing 9-9 to this source file.

Listing 9-9: The MyEnum Enumeration

namespace MyNamespace
{
enum MyEnum
{
MyValue1, MyValue2, MyValue3, MyValue4

}
}

423

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 423

As you can see from Listing 9-10, MyClass1 exposes a property of type MyClass2[] named
MyClass1Property6. Listing 9-10 presents the implementation of MyClass2. Add a new source file to
the MyApplication project and add the code shown in Listing 9-10 to this source file.

Listing 9-10: The MyClass2 Class

using System;
using System.ComponentModel;

namespace MyNamespace
{
[DefaultProperty("MyClass2Property2")]
class MyClass2
{
private DateTime myClass2Field1;
private string[] myClass2Field2;

[Description("This is MyClass2Property1 property.")]
[Category("Non-Collection Properties")]
[DefaultValue("")]
public DateTime MyClass2Property1
{
get { return this.myClass2Field1; }
set { this.myClass2Field1 = value; }

}

[Description("This is MyClass2Property2 property.")]
[Category("Collection Properties")]
[DefaultValue("")]
public string[] MyClass2Property2
{
get { return this.myClass2Field2; }
set { this.myClass2Field2 = value; }

}

}
}

Now add a PropertyGrid control and a Button control to the MyForm Windows Form as shown in
Listing 9-11, which presents the content of the MyForm.Designer.cs file.

Listing 9-11: The Content of the MyForm.Designer.cs File

namespace MyNamespace
{
partial class MyForm
{
private System.ComponentModel.IContainer components = null;

protected override void Dispose(bool disposing)
{
if (disposing && (components != null))
components.Dispose();

424

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 424

Listing 9-11: (continued)

base.Dispose(disposing);
}

#region Windows Form Designer generated code

private void InitializeComponent()
{
this.propertyGrid1 = new System.Windows.Forms.PropertyGrid();
this.button1 = new System.Windows.Forms.Button();
this.SuspendLayout();
this.propertyGrid1.Anchor = ((System.Windows.Forms.AnchorStyles)(

((System.Windows.Forms.AnchorStyles.Top |
System.Windows.Forms.AnchorStyles.Left) |

System.Windows.Forms.AnchorStyles.Right)));
this.propertyGrid1.Location = new System.Drawing.Point(-1, 1);
this.propertyGrid1.Name = "propertyGrid1";
this.propertyGrid1.Size = new System.Drawing.Size(416, 219);
this.propertyGrid1.TabIndex = 0;
this.button1.Location = new System.Drawing.Point(167, 235);
this.button1.Name = "button1";
this.button1.Size = new System.Drawing.Size(75, 23);
this.button1.TabIndex = 1;
this.button1.Text = "OK";
this.button1.UseVisualStyleBackColor = true;
this.button1.Click += new System.EventHandler(this.button1_Click);
this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
this.ClientSize = new System.Drawing.Size(412, 270);
this.Controls.Add(this.button1);
this.Controls.Add(this.propertyGrid1);
this.Name = "MyForm";
this.Text = "MyForm";
this.ResumeLayout(false);

}

#endregion

private System.Windows.Forms.PropertyGrid propertyGrid1;
private System.Windows.Forms.Button button1;

}
}

Note that Listing 9-11 also registers a method named Button1_Click as the event handler for the
Click event of the Button. Listing 9-12 presents the content of the MyForm.cs file.

Listing 9-12: The Content of the MyForm.cs File

using System;
using System.Collections.Generic;
using System.ComponentModel;

425

Chapter 9: Understanding the Integrated Providers Model

(Continued)

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 425

426

Chapter 9: Understanding the Integrated Providers Model

Listing 9-12: (continued)

using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace MyNamespace
{
public partial class MyForm : Form
{
MyClass1 myobj = new MyClass1();

public MyForm()
{
InitializeComponent();
propertyGrid1.SelectedObject = myobj;

}

private void button1_Click(object sender, EventArgs e)
{
string msg = string.Empty;
msg += ("MyClass1Property1 = " + myobj.MyClass1Property1.ToString());
msg += ("\n\nMyClass1Property2 = " + myobj.MyClass1Property2);
msg += ("\n\nMyClass1Property3 = " + myobj.MyClass1Property3.ToString());
msg += ("\n\nMyClass1Property4 = " + myobj.MyClass1Property4.ToString());

msg += "\n\nMyClass1Property5 = { ";
for (int i = 0; i < myobj.MyClass1Property5.Length; i++)
{
msg += myobj.MyClass1Property5[i];
if (i != myobj.MyClass1Property5.Length - 1)
msg += ", ";

}
msg += " }";

msg += "\n\nMyClass1Property6 : \n";
for (int j=0; j<myobj.MyClass1Property6.Length; j++)
{
msg += ("MyClass2Property1 = "+

myobj.MyClass1Property6[j].MyClass2Property1.ToShortDateString()+"\n");
msg += "MyClass2Property2 = { ";
for (int k=0; k<myobj.MyClass1Property6[j].MyClass2Property2.Length; k++)
{
msg += myobj.MyClass1Property6[j].MyClass2Property2[k];
if (k != myobj.MyClass1Property6[j].MyClass2Property2.Length - 1)
msg += ", ";

}
msg += " }\n";

}

MessageBox.Show(msg);
}

}
}

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 426

Note that the MyForm class features a private field of type MyClass1 named myobj:

MyClass1 myobj = new MyClass1();

As Listing 9-12 shows, the constructor of the MyForm Windows Form assigns the myobj object to the
SelectedObject property of the PropertyGrid control. We claimed earlier that the PropertyGrid
control is capable of displaying the appropriate user interface to allow you to edit the properties of the
object assigned to its SelectedObject property. Let’s see this in action. Go ahead and run the
MyApplication application. You should get the result shown in Figure 9-10.

Figure 9-10

Here are a few observations about Figure 9-10:

❑ The properties are divided into two groups named “Collection Properties” and “Non-
Collection Properties.” You may be wondering who did this grouping. The answer lies in
Listing 9-9 where we’ve annotated the MyClass1Property5 and MyClass1Property6 proper-
ties with the [Category("Non-Collection Properties")] metadata attribute and the
MyClass1Property1, MyClass1Property2, MyClass1Property3, and MyClass1Property4
properties with the [Category("Collection Properties")] metadata attribute. Decorating
a property with the Category metadata attribute instructs the PropertyGrid control to display
the property in the specified category.

❑ The label that displays the text “MyClass1Property3” is highlighted. You may be wondering
why this property in particular is highlighted. The answer lies in Listing 9-9 where we’ve anno-
tated the MyClass1 class with [DefaultProperty("MyClass1Property3")]. Annotating a
class with this the DefaultProperty metadata attribute instructs the PropertyGrid control to
highlight the specified property. In other words, this property is treated as the default property
of the class.

❑ When you click a property, the bottom area of the PropertyGrid control displays the name of
the property in bold and a short description about the property. This short description comes
from Listing 9-9 where we’ve annotated each property of the MyClass1 class with the
Description metadata attribute. For example, the MyClass1Property3 property is annotated
with this metadata attribute as follows:

[Description("This is MyClass1Property3 property.")]
[Category("Non-Collection Properties")]

427

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 427

[DefaultValue("MyValue1")]
public MyEnum MyClass1Property3
{
get { return this.myClass1Field3; }
set { this.myClass1Field3 = value; }

}

❑ This instructs the PropertyGrid control to display the text "This is MyClass1Property3
property" when the user selects the MyClass1Property3 property.

If you click the textfield associated with the MyClass1Property5 property in Figure 9-10, you’ll see the
result shown in Figure 9-11 where this textfield contains a little button labeled “…”. As you can see, the
PropertyGrid control uses .NET reflection to determine whether a property is a collection. If so, it auto-
matically displays this little button in the textfield associated with the property.

Figure 9-11

If you click this little button, the PropertyGrid control automatically pops up the String Collection
Editor shown in Figure 9-12. Again thanks to .NET reflection, the PropertyGrid control has determined
that the MyClass1Property5 property is a string collection and consequently pops up the String
Collection Editor to allow you to edit the value of this property.

Figure 9-12

428

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 428

If you click the MyClass1Property6 property in Figure 9-10, you’ll see the result shown in Figure 9-13
where the associated textfield contains the little button we discussed earlier. Again this means that the
PropertyGrid control was able to determine that the MyClass1Property6 property is a collection.

Figure 9-13

Now if you click the button, the PropertyGrid control will pop up a different editor, that is, the
MyClass2 Collection Editor, as shown in Figure 9-14. In other words, the PropertyGrid control is
capable of making a distinction between the MyClass1Property5 and MyClass1Property6 collection
properties.

Figure 9-14

Now if you click the Add button shown in Figure 9-14, you’ll see the result shown in Figure 9-15. The
PropertyGrid control was able to determine that the MyClass1Property6 collection property is a col-
lection of MyClass2 objects and consequently it displays another PropertyGrid control where you can
edit the properties of the MyClass2 object being added to the MyClass1Property6 collection property.

429

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 429

Figure 9-15

If you click the MyClass1Property3 property in Figure 9-10, you’ll see the result shown in Figure 9-16.
As you can see, the PropertyGrid control automatically uses a combo box to display the legal values of
the MyEnum enumeration, which is the type of the MyClass1Property3.

Figure 9-16

If you click the MyClass1Property4 property in Figure 9-10, you’ll see the result shown in Figure 9-17.
As you can see, the PropertyGrid control uses .NET reflection to determine that this property is of type
DateTime and pops up a calendar control to allow you to edit the value of this property.

If none of the standard editors such as calendar, string collection editor, and so on that the
PropertyGrid control uses by default are appropriate for a particular type of property, you can always
implement your own custom editor and annotate your property with the appropriate metadata attrib-
ute to instruct the PropertyGrid control to pop up your custom editor. This topic is beyond the scope
of this book.

430

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 430

Figure 9-17

We claimed that when you edit a property in the PropertyGrid control or one of the editors that this
control pops up, these changes are automatically reflected in the object assigned to the SelectedObject
property of the control. To help you see this in action, I’ve added an OK button to the MyForm Windows
Form as shown in Figure 9-10 and registered an event handler named Button1_Click for the Click
event of this button. The following code listing presents the implementation of this event handler:

private void button1_Click(object sender, EventArgs e)
{
string msg = string.Empty;
msg += ("MyClass1Property1 = " + myobj.MyClass1Property1.ToString());
msg += ("\n\nMyClass1Property2 = " + myobj.MyClass1Property2);
msg += ("\n\nMyClass1Property3 = " + myobj.MyClass1Property3.ToString());
msg += ("\n\nMyClass1Property4 = " + myobj.MyClass1Property4.ToString());

msg += "\n\nMyClass1Property5 = { ";
for (int i = 0; i < myobj.MyClass1Property5.Length; i++)
{
msg += myobj.MyClass1Property5[i];
if (i != myobj.MyClass1Property5.Length - 1)
msg += ", ";

}
msg += " }";

msg += "\n\nMyClass1Property6 : \n";
for (int j=0; j<myobj.MyClass1Property6.Length; j++)
{
msg += ("MyClass2Property1 = "+

myobj.MyClass1Property6[j].MyClass2Property1.ToShortDateString()+"\n");
msg += "MyClass2Property2 = { ";
for (int k = 0; k < myobj.MyClass1Property6[j].MyClass2Property2.Length; k++)
{
msg += myobj.MyClass1Property6[j].MyClass2Property2[k];
if (k != myobj.MyClass1Property6[j].MyClass2Property2.Length - 1)
msg += ", ";

}

431

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 431

msg += " }\n";
}

MessageBox.Show(msg);
}

If you run the MyApplication application, use the PropertyGrid control and its editors to edit the dis-
played properties, and click the OK button, the event handler will pop up the message shown in
Figure 9-18 where the names and values of the properties of the object assigned to the SelectedObject
property of the PropertyGrid control are displayed.

Figure 9-18

Now that you’ve learned a great deal about the PropertyGrid control, let’s go back to our original dis-
cussion that is the AddProviderForm task form where we left off. As Figure 9-3 shows, this task form
consists of four different parts:

❑ Type combo box: As discussed earlier, the AddProviderForm task form invokes the
DownLoadProviderTypes method to download the provider types that the selected provider-
based service supports from the server and displays them in the Type combo box.

❑ Friendly name textfield: This is where the user enters a friendly name for the provider being added.

❑ PropertyGrid: The AddProviderForm task form assigns the provider configuration settings
object that it receives from the ProviderConfigurationConsolidatedPage module list page
to the SelectedObject property of this PropertyGrid control. Recall that the type of this
provider configuration settings object depends on the type of the selected provider-based serv-
ice. For example, if the end user has selected the Roles provider-based service from the Feature
combo box of the ProviderConfigurationConsolidatedPage module list page, this module
list page will pass an instance of the RolesProviderConfigurationSettings class into the
constructor of the AddProviderForm task form.

❑ Therefore, the PropertyGrid control displays the properties of the provider configuration set-
tings object attached to its SelectedObject property. When you’re implementing a custom
provider configuration settings class for your custom provider-based service, you should anno-
tate the properties of this class with the appropriate metadata attributes as discussed earlier to
improve the user experience with the AddProviderForm task form. As you can see, all of our
previous discussions about the PropertyGrid control equally apply here.

432

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 432

When the user is finally done with editing the configuration settings of the provider being added and
clicks the OK button on the AddProviderForm task form, the event handler registered for the Click
event of this button is automatically invoked. Listing 9-13 presents a portion of the internal implementa-
tion of this event handler.

Listing 9-13: The OnOkButtonClick Method

private void OnOkButtonClick(object sender, EventArgs e)
{
string message = null;
if (!this.settings.Validate(out message))
base.ShowMessage(message);

else
{
string[]settingNamesAndValues =

new string[this.providerConfigurationSettingNames.Length * 2];
IDictionary settings = this.settings.GetSettings();
int index = 0;
foreach (string settingName in this.providerConfigurationSettingNames)
{
string settingValue = (string)settings[settingName];
if (settingValue == null)
settingValue = string.Empty;

settingNamesAndValues[index] = settingName;
settingNamesAndValues[index + 1] = settingValue;
index += 2;

}
PropertyBag argument = new PropertyBag();
argument[0] = this.friendlyNameTextBox.Text.Trim();

if (!this.inModificationMode)
argument[1] = this.GetProviderTypeFromTypeComboBox();

else
argument[1] = this.providerType;

argument[2] = settingNamesAndValues;
AddOrUpdateProvider(argument);

}
}

Next, I walk you through the implementation of the OnOkButtonClick method. This method first
invokes the Validate method on the provider configuration settings object:

string message = null;
if (!this.settings.Validate(out message))
base.ShowMessage(message);

Note that the OnOKButtonClick method passes an out string parameter into the Validate method.
Your custom provider configuration settings class’s implementation of the Validate method must
include the appropriate validation logic to validate the user inputs and return a Boolean value to specify
whether the validation succeeded. If the validation fails, the Validate method should assign an error

433

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 433

message to the out string parameter. As you can see, the OnOkButtonClick method uses the
ShowMessage method to display this error message to the end user.

If the validation succeeds, the OnOkButtonClick method first instantiates a new string array, double the
size of the array that contains the provider configuration settings names:

string[]settingNamesAndValues =
new string[this.providerConfigurationSettingNames.Length * 2];

Then, it calls the GetSettings method on the provider configuration settings object to return the
IDictionary collection that contains the setting names and values:

IDictionary settings = this.settings.GetSettings();

Next, it iterates through the strings in the providerConfigurationSettingNames array. Recall that
this array contains the names of the configuration settings of the providers of the selected provider-
based service. Note that the OnOkButtonClick method uses these names in this array as an index into
the IDictionary collection returned from the GetSettings method to access their associated values.
Thanks to the fact that the PropertyGrid control in the AddProviderForm task form automatically
updates the properties of the provider configuration settings object assigned to its SelectedObject
property with the user inputs, the IDictionary collection that this provider configuration settings
object returns contains the values that the end user has entered into the PropertyGrid control of the
AddProviderForm task form.

Note that both the name and value of the properties of the provider configuration settings object are
stored in the settingNamesAndValues:

int index = 0;
foreach (string settingName in this.providerConfigurationSettingNames)
{
string settingValue = (string)settings[settingName];
if (settingValue == null)
settingValue = string.Empty;

settingNamesAndValues[index] = settingName;
settingNamesAndValues[index + 1] = settingValue;
index += 2;

}

Next, it creates a PropertyBag collection:

PropertyBag argument = new PropertyBag();

Then, it retrieves the provider’s friendly name from the associated textbox and stores it in the
PropertyBag collection:

argument[0] = this.friendlyNameTextBox.Text.Trim();

Next it calls another method named GetProviderTypeFromTypeComboBox to retrieve the selected
provider type from the Type combo box and stores it in the PropertyBag collection:

if (!this.inModificationMode)
argument[1] = this.GetProviderTypeFromTypeComboBox();

434

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 434

Next, it stores the settingNamesAndValues array in the PropertyBag collection:

argument[2] = settingNamesAndValues;

Finally, it invokes another method named AddOrUpdateProvider passing in the PropertyBag collec-
tion to add a new provider in the underlying configuration file:

AddOrUpdateProvider(argument);

Workflow for Updating a Provider of a Provider-Based Service
When the user clicks the Edit link button in the task panel associated with the
ProviderConfigurationConsolidatedPage module list page, this module list page automatically
instantiates and launches the AddProviderForm task form shown in Figure 9-5. When the
ProviderConfigurationConsolidatedPage module list page is instantiating the AddProviderForm
task form, it passes the following three pieces of information into the constructor of this task form:

❑ The provider configuration settings object whose properties specify the configuration settings of
the provider being edited.

❑ The PropertyBag collection that contains the complete information about the selected
provider-based service.

❑ The PropertyBag collection that contains the complete information about the selected
provider, which is the provider the user has selected from the list of displayed providers. This
PropertyBag collection contains the following pieces of information about the selected
provider:

❑ Friendly name

❑ Type

❑ Parameters other than the friendly name and type

The AddProviderForm task form invokes the LoadSettings method on the provider configuration set-
tings object passing in the parameters of the selected provider other than its name and type. As just men-
tioned, the ProviderConfigurationConsolidatedPage module list page passes a PropertyBag
collection into the constructor of the AddProviderForm task form, which contains three items, where
the third item contains the parameters of the selected provider.

As you can see from the following excerpt from Listing 9-4, the LoadSettings method basically loads
the settings collection of the provider configuration settings object with the parameters of the selected
provider. Therefore, after this method is invoked, the properties of the provider configuration settings
object contain the values of the associated configuration settings of the selected provider.

public void LoadSettings(string[] parameters)
{
for (int i = 0; i < parameters.Length; i += 2)
{
this.Settings[parameters[i]] = parameters[i + 1];

}
}

435

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 435

The AddProviderForm task form then assigns this provider configuration settings object to the
SelectedObject property of the PropertyGrid control. This means that the PropertyGrid control
now displays the current configuration settings of the selected provider.

When the user is finally done with all the editing and clicks the OK button on the AddProviderForm
task form, the event handler shown in Listing 9-13 is automatically invoked.

IProviderConfigurationService
Next, I discuss the provider configuration service and its important role in the integrated providers
model. The provider configuration service, like any other service in the IIS 7 and ASP.NET integrated
infrastructure, implements an interface. This interface in this case is an interface named
IProviderConfigurationService. As Listing 9-14 shows, this interface exposes a single method
named ConfigureProvider that takes a single argument of type ProviderFeature.

Listing 9-14: The IProviderConfigurationService Interface

public interface IProviderConfigurationService
{
bool ConfigureProvider(ProviderFeature feature);

}

The caller of the ConfigureProvider method (I discuss shortly who the caller is) must pass a provider
feature representing a particular provider-based service into this method to have this method configure
its providers, hence the name ConfigureProvider. The integrated providers model comes with a sin-
gle implementation of the IProviderConfigurationService named
ProviderConfigurationModule as shown in Listing 9-15.

Listing 9-15: The ProviderConfigurationModule Class

public sealed class ProviderConfigurationModule : Module,
IProviderConfigurationService

{
protected override void Initialize(IServiceProvider serviceProvider,

ModuleInfo moduleInfo)
{
base.Initialize(serviceProvider, moduleInfo);
IControlPanel service =

(IControlPanel)serviceProvider.GetService(typeof(IControlPanel));
ModulePageInfo itemPageInfo =

new ModulePageInfo(this, typeof(ProviderConfigurationConsolidatedPage),
"Providers", "Providers", null, null);

service.RegisterPage(ControlPanelCategoryInfo.ApplicationDevelopment,
itemPageInfo);

service.RegisterPage(ControlPanelCategoryInfo.AspNet, itemPageInfo);

IServiceContainer container =
(IServiceContainer)this.GetService(typeof(IServiceContainer));

if (container != null)
container.AddService(typeof(IProviderConfigurationService), this);

}

436

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 436

bool IProviderConfigurationService.ConfigureProvider(ProviderFeature feature)
{
Connection service = (Connection)this.GetService(typeof(Connection));
if (!string.IsNullOrEmpty(feature.SelectedProvider))
{
ProviderConfigurationModuleProxy proxy =
(ProviderConfigurationModuleProxy)service.CreateProxy(this,

typeof(ProviderConfigurationModuleProxy));

PropertyBag infoBag = new PropertyBag();
infoBag[0] = feature.SectionName;
infoBag[1] = feature.SelectedProviderPropertyName;
infoBag[2] = feature.ProviderCollectionPropertyName;
infoBag[3] = feature.ProviderBaseType;
infoBag[4] = feature.ProviderConfigurationSettingNames;

if (proxy.SelectProvider(infoBag, feature.SelectedProvider))
return true;

return false;
}

((INavigationService)this.GetService(
typeof(INavigationService))).Navigate(service,

service.ConfigurationPath,
typeof(ProviderConfigurationConsolidatedPage),
feature);

return true;
}

}

As Listing 9-15 shows, the ProviderConfigurationModule class not only implements the
IProviderConfigurationService interface, but also inherits from the Module base class. This
means that the ProviderConfigurationModule is both a module and a provider configuration
service. Recall that a module is a class that inherits from the Module base class and registers one
or more module pages with the IIS 7 and ASP.NET integrated graphical management system. As
you can see from the ProviderConfigurationModule module’s implementation of the
Initialize method, ProviderConfigurationModule is the module that registers the
ProviderConfigurationConsolidatedPage module list page. In other words, the same module
that registers the ProviderConfigurationConsolidatedPage module list page also acts as a
provider configuration service.

Next, I walk you through the ProviderConfigurationModule class’s implementation of the
Initialize method of the Module base class and the ConfigureProvider method of the
IProviderConfigurationService interface. I begin with the coverage of the implementation
of the Initialize method.

As you can see from Listing 9-15, the Initialize method first invokes the GetService method to
access the control panel service:

IControlPanel service =
(IControlPanel)serviceProvider.GetService(typeof(IControlPanel));

437

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 437

Next, Initialize instantiates a ModulePageInfo module page info to represent the
ProviderConfigurationConsolidatedPage module list page:

ModulePageInfo itemPageInfo =
new ModulePageInfo(this, typeof(ProviderConfigurationConsolidatedPage),

"Providers", "Providers", null, null);

Then, it invokes the RegisterPage method twice on the control panel service to register the
ProviderConfigurationConsolidatedPage module list page under the application development
and ASP.NET categories:

service.RegisterPage(ControlPanelCategoryInfo.ApplicationDevelopment,itemPageInfo);
service.RegisterPage(ControlPanelCategoryInfo.AspNet, itemPageInfo);

Next, it invokes the GetService method to access the service container:

IServiceContainer container =
(IServiceContainer)this.GetService(typeof(IServiceContainer));

Then, it adds the ProviderConfigurationModule module as the provider configuration service to this
service container under the Type object that represents the IProviderConfigurationService inter-
face. As you’ll see shortly, this will allow the clients of this provider configuration service to use this
Type object as the key to access the service.

if (container != null)
container.AddService(typeof(IProviderConfigurationService), this);

Before walking through the ProviderConfigurationModule class’s implementation of the
ConfigureProvider method of the IProviderConfigurationService interface, you need to have a
good understanding of when, where, and why the ConfigureProvider method is invoked.

As you’ll see later, as part of the implementation of your custom provider-based service, you must
implement a module page that provides the clients of your service with the appropriate user interface to
graphically configure your service. Figure 9-8 presents an example of such a module page. The module
page shown in this figure is a module page named RolesPage, which provides the clients of the Roles
provider-based service with the appropriate user interface to graphically configure this service.

Configuring a provider-based service involves three types of configurations:

❑ Adding, removing, renaming, and updating providers of the service

❑ Setting the default provider of the service

❑ Specifying configuration settings other than adding, removing, renaming, and updating
providers and setting the default provider

Here we’re only interested in the first two types of configurations because they involve the invocation
the ConfigureProvider method of the ProviderConfigurationModule module, which is the
current topic of our discussions. I begin our discussions with the first type of configuration. As
discussed earlier, adding, removing, renaming, and updating providers must be done from the
ProviderConfigurationConsolidatedPage module list page shown in Figure 9-2. Therefore the

438

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 438

module page that provides the clients of a provider-based service with the appropriate user interface to
graphically configure the service must include a link button labeled “Providers” in its associated task
panel to allow the clients to navigate to the ProviderConfigurationConsolidatedPage module list
page to add, remove, rename, and update providers of the service.

For example, the task panel associated with the RolesPage module page shown in Figure 9-8 contains
a Providers link button to allow the clients of the Roles provider-based service to navigate to the
ProviderConfigurationConsolidatedPage module list page to add, remove, rename, and update
providers of the Roles provider-based service.

As you’ll see later in this chapter, the ConfigureProvider method of
ProviderConfigurationModule contains the logic that uses the navigation service to navigate to the
ProviderConfigurationConsolidatedPage module list page. Therefore, a module page such as
RolesPage shown in Figure 9-8, which provides the clients of a particular provider-based service with
the appropriate user interface to configure the service, can register an event handler for the Click event
of the Providers link button and have this event handler invoke the ConfigureProvider method of
ProviderConfigurationModule to navigate to the ProviderConfigurationConsolidatedPage
module list page.

Invoking the ConfigureProvider method on the ProviderConfigurationModule instance requires a
module page such as RolesPage to have access to this instance. This shouldn’t be a problem because as
you saw in Listing 9-15, the Initialize method of this instance adds itself as a provider configuration
service to the service container. This makes the ProviderConfigurationModule instance available to a
module page such as RolesPage that provides the clients of a particular provider-based service with the
appropriate user interface to configure the service:

container.AddService(typeof(IProviderConfigurationService), this);

For example, the RolesPage module page shown in Figure 9-8 registers an event handler named
ConfigureRoleProvider for the Click event of the Providers link button. Listing 9-16 presents the
internal implementation of this event handler.

Listing 9-16: The ConfigureRoleProvider Method

private void ConfigureRoleProvider()
{
ProviderFeature providerFeature = new RolesProviderConfigurationFeature(this);
this.ProviderConfigurationService.ConfigureProvider(providerFeature);

}

As you can see, this event handler first instantiates a RolesProviderConfigurationFeature
to represent the Roles provider-based service and then invokes the ConfigureProvider method
on the ProviderConfigurationService property. As Listing 9-17 shows, the
ProviderConfigurationService property calls the GetService method passing in the Type object
that represents the IProviderConfigurationService interface to access and return the provider con-
figuration service registered under this Type object. Because the Initialize method registers the
ProviderConfigurationModule instance as the provider configuration service under this Type
object (see Listing 9-15), the GetService method basically returns a reference to this
ProviderConfigurationModule instance.

439

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 439

Listing 9-17: The ProviderConfigurationService Property

private IProviderConfigurationService providerConfigurationService;
private IProviderConfigurationService ProviderConfigurationService
{
get
{
if (this.providerConfigurationService == null)
this.providerConfigurationService = (IProviderConfigurationService)

base.GetService(typeof(IProviderConfigurationService));

return this.providerConfigurationService;
}

}

Keep in mind that we’re discussing two types of configurations involving the invocation of the
ConfigureProvider method of the ProviderConfigurationModule module. So far, I’ve covered the
first type of configuration, which is adding, removing, renaming, and updating providers of a service.
Next, I discuss the second type of configuration.

As should be clear by now, you can register as many providers as you want with a given provider-
based service. However, the service will use only the provider that is registered as the default provider.
Therefore, the module page such as RolesPage that provides the clients of a provider-based service
with the appropriate user interface to graphically configure the service must contain a link button
labeled “Set Default Provider …” in its associated task panel. When the user clicks this link button, the
module page must create and launch a task form that contains a combo box that displays the list of
providers registered for the provider-based service.

For example, when you click the “Set Default Provider …” link button in the task panel associated with
the RolesPage module page shown in Figure 9-8, this module page launches the RolesSettingsForm
task form shown in Figure 9-9. Note that the RolesSettingsForm task form contains a combo box that
displays the list of providers registered for the Roles provider-based service.

When the user selects a provider from this combo box and clicks OK, the callback for the OK button
must use a proxy to set the value of the default provider attribute on the underlying configuration sec-
tion to the friendly name of the provider that the user has selected from the combo box.

As you’ll see shortly, the ConfigureProvider method of the ProviderConfigurationModule mod-
ule contains the logic that invokes the appropriate method of the appropriate proxy to set the value of
the default provider attribute on a specified configuration section to the friendly name of a specified
provider. Therefore, the event handler for the Click event of the OK button of a task form such as
RolesSettingsForm, which displays the list of providers registered for a particular provider-based
service, can call the ConfigureProvider method of the ProviderConfigurationModule module to
have this method set the value of the default provider attribute on the underlying configuration section
to the friendly name of the provider that the user has selected from the combo box.

For example, the event handler registered for the Click event of the OK button on the RolesSettingsForm
is a method named OnAccept. Listing 9-18 presents the internal implementation of this event handler.

440

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 440

Listing 9-18: The OnAccept Method

protected override void OnAccept()
{
base.StartAsyncTask(new DoWorkEventHandler(this.OnWorkerDoWork),

new RunWorkerCompletedEventHandler(this.OnWorkerCompleted));
base.UpdateTaskForm();

}

As you can see, the OnAccept event handler invokes the StartAsyncTask method, passing a delegate
of type DoWorkEventHandler, which wraps a method named OnWorkerDoWork, and a delegate of type
RunWorkerCompletedEventHandler, which wraps a method named OnWorkerCompleted. As should
be clear by now, the StartAsyncTask method allows you to invoke the method wrapped by the
DoWorkEventHandler delegate in an asynchronous fashion to improve responsiveness and perform-
ance. Listing 9-19 presents the internal implementation of the OnWorkerDoWork method.

Listing 9-19: The OnWorkerDoWork Method

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
if (this.hasChanges)
{
string selectedProvider = (string)this.providerComboBox.SelectedItem;
ProviderFeature providerFeature =

new RolesProviderConfigurationFeature(rolesPage, selectedProvider);
this.providerConfigurationService.ConfigureProvider(providerFeature);

}
}

The OnWorkerDoWork method begins by accessing the friendly name of the provider that the user has
selected from the combo box. Recall that the RolesSettingsForm task form contains a combo box that
displays the providers registered for the Roles provider-based service (see Figure 9-9):

string selectedProvider = (string)this.providerComboBox.SelectedItem;

Next, OnWorkerDoWork creates a RolesProviderConfigurationFeature provider feature to repre-
sent the Roles provider-based service. Note that OnWorkerDoWork passes two parameters into the con-
structor of the RolesProviderConfigurationFeature. The first parameter references the RolesPage
module page (see Figure 9-8). The second parameter is a string that contains the friendly name of the
provider that the user wants to be used as the default provider:

ProviderFeature providerFeature =
new RolesProviderConfigurationFeature(rolesPage, selectedProvider);

Finally, OnWorkerDoWork invokes the ConfigureProvider method on the provider configuration serv-
ice, passing in the reference to the provider feature that represents the Roles provider-based service to
have this method set the defaultProvider attribute on the <rolesManager> configuration section in
the underlying configuration file to the friendly name of the selected provider:

this.providerConfigurationService.ConfigureProvider(providerFeature);

441

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 441

Needless to say, the providerConfigurationService field of the RolesSettingsForm task form ref-
erences the ProviderConfigurationModule module.

In summary, there are two occasions where the ConfigureProvider method of the
ProviderConfigurationModule module is invoked. The first occasion is when the user of a
provider-based service clicks the Providers link button in the task panel associated with a module
page such as RolesPage. As just discussed, clicking the Providers link button automatically invokes
the ConfigureProvider method of the ProviderConfigurationModule module to have this
method use the navigation service to navigate to the ProviderConfigurationConsolidatedPage
module list page.

The second occasion is when the user of a provider-based service selects a provider from the list of
providers displayed in the combo box of a task form such as RolesSettingsForm and clicks the OK
button in this task form. As just discussed, clicking OK automatically triggers a call into the
ConfigureProvider method of the ProviderConfigurationModule module to have this method use
the proxy to set the default provider attribute on the underlying configuration section to the friendly
name of the selected provider.

Now that you have a good understanding of when, where, and why the ConfigureProvider method
of the ProviderConfigurationModule module is invoked, we’re ready to dive into the details of the
implementation of this method.

As Listing 9-15 shows, this method begins by calling the GetService method to access the connection
service:

Connection service = (Connection)this.GetService(typeof(Connection));

Next, the ConfigureProvider method checks whether the SelectedProvider property
of the ProviderFeature object passed into the method has been set. Recall from Listing 9-19 that
the SelectedProvider property of the ProviderFeature object is only set when the
ConfigureProvider method is invoked to set the default provider attribute on the underlying
configuration section to the friendly name of the selected provider.

If the SelectedProvider property of the ProviderFeature object has indeed been set, the
ConfigureProvider method rightly assumes that its caller is trying to set the default provider attribute
on the underlying configuration section to the friendly name of the selected provider. Therefore, the
ConfigureProvider method takes these steps to set the default provider:

1. Instantiates the ProviderConfigurationModuleProxy proxy. This is the proxy that facilitates
the communications between the ProviderConfigurationConsolidatedPage module list
page and the back-end server class.

ProviderConfigurationModuleProxy proxy =
(ProviderConfigurationModuleProxy)service.CreateProxy(this,

typeof(ProviderConfigurationModuleProxy));

2. Instantiates a PropertyBag collection:

PropertyBag infoBag = new PropertyBag();

442

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 442

3. Populates the PropertyBag collection with:

❑ The configuration section name of the provider-based service that the provider feature
passed into the ConfigureProvider method represents:

infoBag[0] = feature.SectionName;

❑ The name of the attribute on this configuration section that specifies the default
provider:

infoBag[1] = feature.SelectedProviderPropertyName;

❑ The name of the Collection XML element of this configuration section that contains the
Add XML elements, which register providers for this provider-based service:

infoBag[2] = feature.ProviderCollectionPropertyName;

❑ The fully qualified name of the provider base type from which all providers of the
provider-based service inherit:

infoBag[3] = feature.ProviderBaseType;

❑ A string array that contains the names of all attributes (other than the name and type
attributes) on the Add XML elements that register providers. These attributes basically
specify the configuration settings of these providers.

infoBag[4] = feature.ProviderConfigurationSettingNames;

4. Invokes the SelectProvider method on the proxy, passing in the PropertyBag collection and
the friendly name of the selected provider to set this provider as the default provider in the
underlying configuration file:

if (proxy.SelectProvider(infoBag, feature.SelectedProvider))
return true;

If the SelectProvider property of the ProviderFeature object passed into the
ConfigureProvider method has not been set, the method rightly assumes that its caller is
trying to navigate to the ProviderConfigurationConsolidatedPage module list page. Therefore,
the ConfigureProvider method needs to navigate from the current module page to the
ProviderConfigurationConsolidatedPage module list page. First, it invokes the GetService
method to access the navigation service. Then it calls the Navigate method on the navigation service to
navigate to the ProviderConfigurationConsolidatedPage module list page:

((INavigationService)this.GetService(
typeof(INavigationService))).Navigate(

service, service.ConfigurationPath,
typeof(ProviderConfigurationConsolidatedPage),
feature);

Note that the ConfigureProvider method passes the ProviderFeature object as the navigation data
into the Navigate method. The Navigate method passes this ProviderFeature object to the
Initialize method of the ProviderConfigurationConsolidatedListPage module list page.

443

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 443

Listing 9-20 presents the internal implementation of the Initialize method of the
ProviderConfigurationConsolidatedPage module list page.

Listing 9-20: The Initialize Method of the ProviderConfigurationConsolidatedPage
Module List Page

protected override void Initialize(object navigationData)
{
if (navigationData != null)
{
ProviderFeature feature = navigationData as ProviderFeature;
if (feature != null)
this.selectedFeatureName = feature.FeatureName;

}
}

As you can see, this method takes an argument that references the navigation data. The navigation data
in this case is the provider feature that represents a provider-based service. The Initialize method
simply assigns the value of the FeatureName property of this provider feature to a private field named
selectedFeatureName. The ProviderConfigurationConsolidatedPage module list page sets the
selected provider of the Feature combo box to the provider whose friendly name is given by the
selectedFeatureName, and consequently the list view underneath this combo box automatically dis-
plays the list of providers registered for the selected provider-based service.

This allows the ProviderConfigurationCosolidatedPage module list page to automatically
display the list of providers for the provider-based service that invoked the ConfigureProvider
method of the ProviderConfigurationModule in the first place. For example, if the end user
clicks the Providers link button in the task panel associated with the RolesPage module page
to navigate to the ProviderConfigurationConsolidatedPage module list page, the
ProviderConfigurationConsolidatedPage module list page will automatically select the Roles
option from the Feature combo box and the list view underneath this combo box will automatically
display the list of providers registered for the Roles provider-based service.

Summary
This chapter provided in-depth coverage of the IIS 7 and ASP.NET integrated providers model, and you
also saw this model in action. The next chapter builds on what you’ve learned in this chapter to show
you how to extend the IIS 7 and ASP.NET integrated providers model to implement fully configurable
provider-based services.

444

Chapter 9: Understanding the Integrated Providers Model

52539c09.qxd:WroxPro 9/17/07 6:57 PM Page 444

Extending the Integrated
Providers Model

The previous chapter provided in-depth coverage of the IIS 7 and ASP.NET integrated providers
model where you learn a great deal about the internals of this model and its constituent compo-
nents. You also saw this model in action. This chapter builds on what you learned in the previous
chapter to teach you how to extend the integrated providers model to implement fully config-
urable provider-based services.

I begin the chapter by presenting a detailed step-by-step recipe for extending the integrated
providers model. Then I use this recipe to implement a fully configurable RSS provider-based
service that can generate RSS data from any type of data store.

Recipe
Follow these steps to extend the IIS 7 and ASP.NET integrated providers model to develop a fully
configurable provider-based service:

1. Implement a custom provider base class that defines the API through which your
provider-based service will interact with its providers. This API isolates your service from
the specifics of its providers, allowing it to interact with them in a generic fashion without
knowing their real types.

2. Implement a custom provider collection class that acts as a container for providers of your
service.

52539c10.qxd 9/17/07 10:04 PM Page 445

446

Chapter 10: Extending the Integrated Providers Model

3. Take the following steps to extend the IIS 7 and ASP.NET integrated configuration system to
add support for a new configuration section for your service to allow the clients of your service
to configure your service directly from configuration files:

a. Use the IIS 7 and ASP.NET integrated declarative schema extension markup language
to implement this configuration section.

b. Register this configuration section with the integrated configuration system.

4. Extend the IIS 7 and ASP.NET integrated imperative management system to add support for a
new set of imperative management classes to enable the clients of your service to configure your
service directly from managed code in a strongly-type fashion where they can benefit from the
Visual Studio IntelliSense and compiler type-checking supports and the well-known object-
oriented programming benefits.

5. Implement a service class that performs the following tasks:

a. Uses the new imperative management classes to retrieve the required configuration set-
tings, including the registered providers from the configuration section that configures
your provider-based service in the specified configuration file at a specified configura-
tion hierarchy level

b. Instantiates and initializes the registered providers

c. Defines the API that services a specific type of data from any type of data store

6. Implement one or more providers. Recall that your provider-based service uses each provider to
service a specific type of data from a specific type of data store. Keep in mind that each provider
must inherit your custom provider base class from Step 1.

7. Extend the integrated graphical management system to add graphical management support for
your provider-based service to allow the clients of your service to configure your service directly
from the IIS 7 Manager. This involves two sets of managed code: client-side and server-side.

Take these steps to implement the client-side managed code:

1. Implement a custom provider configuration settings class that inherits from the
ProviderConfigurationSettings base class. This custom provider configuration settings
class must expose the attributes (other than the name and type attributes) on the Add XML ele-
ment that registers a provider as strongly-typed properties. These attributes basically specify the
configuration settings (other than name and type) of the provider that the Add XML element
registers with provider-based service.

2. Implement a custom provider feature class that inherits the ProviderFeature base class. Your
custom provider feature must override the Settings property, among other properties, of the
ProviderFeature base class to return an instance of your custom provider configuration set-
tings class.

3. Implement a custom class whose constructor takes a PropertyBag collection as its argument
and exposes the content of this collection as strongly-typed properties. This PropertyBag col-
lection contains all configurable aspects of your provider-based service excluding its providers.
The client-side managed code normally receives this PropertyBag object from the server.

4. Implement a custom module service proxy class that inherits the ModuleServiceProxy base
class to facilitate the communications between your client-side managed code and the server.

52539c10.qxd 9/17/07 10:04 PM Page 446

5. Implement a module page that provides the clients of your provider-based service with the
appropriate user interface to configure all configurable aspects of your service excluding
adding, removing, renaming, and updating providers.

6. Add the following link buttons to the task panel associated with this module page:

❑ A link button labeled “Set Default Provider ...” for configuring the default provider of
your provider-based service

❑ A link button for navigating to the IIS 7 Manager’s
ProviderConfigurationConsolidatePage module list page where the clients can
add, remove, rename, and update providers

❑ A link button for enabling or disabling your provider-based service

7. Implement a task form that allows the clients of your provider-based service to specify the
default provider for your service. End users click the “Set Default Provider …” link button to
launch this task form.

8. Implement a custom module class that inherits from the Module base class to register your
module page with the IIS 7 and ASP.NET integrated infrastructure. This custom module class
must also create an instance of your custom provider feature and register this instance with the
extensibility manager service under the Type object that represents the ProviderFeature type.

Take these steps to implement the server-side managed code:

1. Implement a custom module service class that inherits the ModuleService base class. This class
is the server-side class that the client-side managed code interacts with.

2. Implement a custom configuration module provider class that inherits from the
ConfigurationModuleProvider base class to register your custom module and custom mod-
ule service classes with the IIS 7 and ASP.NET integrated infrastructure.

3. Register your custom configuration module provider class with the administration.config file.

The rest of this chapter uses this recipe to develop a provider-based RSS service that will allow compo-
nents such as RssHandler to generate RSS data from any type of data store. Before diving into the
implementation of your custom provider-based RSS service, you need to take care of some preliminary
setup.

Launch Visual Studio and add a blank solution named RssSol. Next add a new class library project
named Rss to this solution. Right-click the Rss project in the Solution Explorer panel of Visual Studio
and select the Properties option from the popup menu to launch the Properties dialog. Select the
Application tab and specify Rss as both the Assembly name and Default namespace. Then, follow the
steps discussed in Chapter 7 to have Visual Studio automatically:

❑ Compile the Rss project into a strongly-named assembly.

❑ Add the assembly to the Global Assembly Cache (GAC).

❑ Launch the IIS 7 Manager after each build.

Now add a directory named Base to your Rss project.

447

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 447

Custom Provider Base Class
Following the recipe, this section develops a custom provider base class named RssProvider that
derives from the ProviderBase base class and defines the API that every RSS provider must imple-
ment. As you’ll see later, every RSS provider will be specifically designed to generate RSS from a specific
type of data store with a specific schema. For example, you will implement the following two RSS
providers:

❑ An RSS provider named SqlRssProvider that generates RSS from a SQL Server database with
a specific schema

❑ An RSS provider named XmlRssProvider that generates RSS from an XML document with a
specific schema

Both the SqlRssProvider and XmlRssProvider RSS providers will derive from the RssProvider base
class and implement the API that this base class defines. As you’ll see later, the custom RSS service will
use this API to interact with the configured RSS provider, be it SqlRssProvider or XmlRssProvider.
In other words, the RssProvider base class allows your custom RSS service to use the same API to
interact with all types of RSS providers.

Listing 10-1 contains the code for the RssProvider base class. Add a new source file named
RssProvider.cs to the Base directory and add the code shown in this code listing to this source file.

Listing 10-1: The RssProvider Base Class

using System.Configuration.Provider;
using System.IO;

namespace Rss.Base
{
public abstract class RssProvider : ProviderBase
{
public abstract void LoadRss(Channel channel, Stream stream);

}
}

As you can see from Listing 10-1, the API that the RssProvider base class defines consists of a single
method named LoadRss that takes two parameters. The first parameter references a Channel object and
the second parameter references a Stream object. Recall from Chapter 8 that this Stream object is nor-
mally nothing but the server response output stream. It is the responsibility of each RSS provider such
as SqlRssProvider and XmlRssProvider to implement this method to contain the logic that knows
how to generate the RSS document from the specified data store. For example, as you’ll see later, the
SqlRssProvider will implement the LoadRss method to contain the logic that generates the RSS docu-
ment from the SQL Server database with a specified schema. Or the XmlRssProvider will implement
the LoadRss method to contain the logic that generates the RSS document from the XML document with
a specified schema. It is the responsibility of each RSS provider to load the Stream passed into the
LoadRss method with the RSS document that it generates from the specified data store.

Listing 10-2 presents the implementation of the Channel class. Now add a new source file named
Channel.cs to the Base directory and add the code shown in this code listing to this source file.

448

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 448

Listing 10-2: The Channel Class

namespace Rss.Base
{
public class Channel
{
private string title;
private string description;
private string link;

public string Title
{
get { return title; }
set { title = value; }

}

public string Description
{
get { return description; }
set { description = value; }

}

public string Link
{
get { return link; }
set { link = value; }

}
}

}

Custom Provider Collection
The next order of business is to develop a custom provider collection named RssProviderCollection
that derives from the ProviderCollection base class, as shown in Listing 10-3. Now add a new source
file named RssProviderCollection.cs to the Base directory and add the code shown in this code
listing to this source file.

Listing 10-3: The RssProviderCollection Class

using System.Configuration.Provider;
using System;

namespace Rss.Base
{
public class RssProviderCollection : ProviderCollection
{
public new RssProvider this[string name]
{
get { return (RssProvider)base[name]; }

}

449

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 449

Listing 10-3: (continued)

public override void Add(ProviderBase provider)
{
if (provider == null)
throw new ArgumentNullException("provider");

if (!(provider is RssProvider))
throw new ArgumentException("Invalid provider type", "provider");

base.Add(provider);
}

}
}

The ProviderCollection base class implements an indexer that returns a reference to the provider
with the specified friendly name. However, this base class returns the specified provider as an object
of type ProviderBase. The RssProviderCollection implements a new indexer that returns a refer-
ence to the provider with the specified name but with one difference, that is, it casts the provider to
RssProvider type before it returns it. This allows the clients of the RssProviderCollection to return
a strongly-typed object from the collection.

The ProviderCollection base class exposes a method named Add that allows the clients of the collec-
tion to add new providers to the collection. This base class’s implementation of the Add method allows
its clients to add any provider of type ProviderBase to this collection. As Listing 10-3 shows, the
RssProviderCollection overrides the Add method of the ProviderCollection base class to include
the logic that raises an exception if the client of the collection attempts to add a provider of a type other
than the RssProvider type. This ensures that the RssProviderCollection only contains providers of
type RssProvider such as SqlRssProvider and XmlRssProvider.

Extending the Integrated
Configuration System

The clients of your provider-based RSS service must be allowed to perform the following tasks in a spec-
ified configuration file at a specified configuration hierarchy level without writing a single line of code:

❑ Register new types of RSS providers such as SqlRssProvider or XmlRssProvider with your
provider-based RSS service.

❑ Configure your provider-based RSS service to use a specified type of RSS provider.

❑ Enable or disable your provider-based RSS service.

❑ Specify the channel information, including its title, description, and link. As the highlighted por-
tion of the following excerpt from Listing 9-1 shows, the implementation of the RssHandler pre-
sented in Chapter 8 hard-codes the channel information. The clients of the provider-based RSS
service should be able to declaratively specify the channel information in a configuration file.

public RssHandler()
{

450

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 450

channelTitle = "New Articles On mysite.com";
channelLink = "http://www.mysite.com";
channelDescription = "The list of newly published articles on mysite.com";
. . .

}

To make all the features I discussed possible you need to use the IIS 7 and ASP.NET integrated declara-
tive schema extension markup language to extend the IIS 7 and ASP.NET integrated configuration sys-
tem to add support for a new configuration section named <rss>. You also need to register this
configuration section with the IIS 7 and ASP.NET integrated configuration system.

In general, every provider-based service should use the integrated declarative schema extension markup
language to extend the integrated configuration system to add support for a configuration section to
allow its clients to configure the service from the configuration system.

This configuration section must contain a Collection XML element, which represents the collection that
contains the providers registered with the provider-based service. Even though you can choose any
name you want for this Collection XML element, it is typically named <providers>. This Collection
XML element allows the clients of a service to use an Add XML element to register a new provider with
the provider-based service. Even though you can choose any name you want for this Add XML element,
it is typically named <add>.

Listing 10-4 uses the XML constructs of the IIS 7 and ASP.NET integrated declarative schema extension
markup language to define your new <rss> configuration section. You must store this XML schema def-
inition in an XML file. Following the naming convention discussed in the previous chapters, name this
file RSS_schema.xml.

Listing 10-4: The Content of the RSS_schema.xml File

<?xml version="1.0" encoding="utf-8"?>
<configSchema>
<sectionSchema name="system.webServer/rss">
<attribute name="enabled" type="bool" defaultValue="true"/>
<attribute name="channelTitle" type="string" defaultValue="Unknown"/>
<attribute name="channelDescription" type="string" defaultValue="Unknown"/>
<attribute name="channelLink" type="string" defaultValue="Unknown"/>
<attribute name="defaultProvider" type="string"
validationType="requireTrimmedString" defaultValue="SqlRssProvider"/>
<element name="providers">
<collection addElement="add" removeElement="remove" clearElement="clear"
allowUnrecognizedAttributes="true">
<attribute name="name" required="true" isUniqueKey="true" type="string" />
<attribute name="type" required="true" type="string" />

</collection>
</element>

</sectionSchema>
</configSchema>

The RSS_schema.xml file, like any other schema file in the integrated configuration system, has a docu-
ment element named <configSchema>, which contains a child element named <sectionSchema>,
which defines the RSS configuration section. The RSS_schema.xml file uses the XML constructs of the

451

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 451

integrated declarative schema extension markup language to define the XML attributes and elements
that make up the RSS configuration section as follows:

❑ Uses an <attribute> XML element with a name attribute value of "enabled", a type attribute
value of "bool", and a defaultValue attribute value of "true" to define the enabled attrib-
ute of the <rss> containing XML element and the type and default value of this attribute. As
you can see, the RSS service is enabled by default.

<attribute name="enabled" type="bool" defaultValue="true"/>

❑ Uses an <attribute> XML element with a name attribute value of "channelTitle", a type
attribute value of "string", and a defaultValue attribute value of "Unknown" to define the
channelTitle attribute of the <rss> containing XML element and the type and default value
of this attribute.

<attribute name="channelTitle" type="string" defaultValue="Unknown"/>

❑ Uses an <attribute> XML element with name attribute value of "channelDescription", a
type attribute value of "string", and a defaultValue attribute value of "Unknown" to define
the channelDescription attribute of the <rss> containing XML element and the type and
default value of this attribute.

<attribute name="channelDescription" type="string" defaultValue="Unknown"/>

❑ Uses an <attribute> XML element with a name attribute value of "channelLink", a type
attribute value of "string", and a defaultValue attribute value of "Unknown" to define the
channelLink attribute of the <rss> containing XML element and the type and default value of
this attribute.

<attribute name="channelLink" type="string" defaultValue="Unknown"/>

❑ Uses an <attribute> XML element with a name attribute value of "defaultProvider", a type
attribute value of "string", and a defaultValue attribute value of "SqlRssProvider" to define
the defaultProvider attribute of the <rss> containing XML element and the type and default
value of this attribute. As you can see, the RSS service uses the SqlRssProvider by default. In
other words, the RSS service generates RSS documents from the specified SQL Server database with
specified schema by default. I discuss this database and its schema later in this chapter.

<attribute name="defaultProvider" type="string"
validationType="requireTrimmedString" defaultValue="SqlRssProvider"/>

❑ Defines the <providers> Collection XML element of the <rss> containing XML element. First,
it uses an <element> XML element with a name attribute value of "providers" to define the
Providers element itself. Then, it uses a <collection> XML element with an addElement attrib-
ute value of "add", a removeElement attribute value of "remove", and a clearElement
attribute value of "clear" to specify that the Providers element can contain zero or more
instances of the <add>, <remove>, and <clear> child elements. Each <add> child element adds
or registers an RSS provider such as SqlRssProvider with the RSS service. A <remove> child
element removes the RSS provider that a higher-level configuration file has registered with
the RSS service. A <clear> child element removes all the RSS providers that the higher-level
configuration files have registered with the RSS service. Note that the <collection> element
contains two <attribute> XML elements as follows:

❑ An <attribute> XML element with a name attribute value of "name" to define the
name attribute of the <add> child element. Note that the required attribute of this

452

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 452

<attribute> XML element is set to true to specify that the name attribute of an
<add> child element is mandatory. Also note that the isUniqueKey attribute of this
<attribute> XML element is set to true to specify that the name attribute of the
<add> child element uniquely identifies the provider being registered among other
providers. This allows the clients of the RSS provider-based service to use the name
attribute on the <remove> child element to specify the friendly name of the provider to
remove.

❑ An <attribute> XML element with a name attribute value of "type" to define the
type attribute of the <add> child element. Keep in mind that the value of the type
attribute of an <add> child element is a string that contains a comma-separated list of
up to five substrings, where only the first substring is mandatory. The first substring
contains the fully qualified name of the type of the provider being registered including
its complete namespace hierarchy. The remaining four substrings contain the informa-
tion about the assembly that contains the specified provider type.

Using the XML constructs of the integrated declarative schema extension markup language to define the
XML attributes and elements that make up the RSS configuration section is just half the story. The other
half is the registration process, which involves two steps. First, you must move the RSS_schema.xml file
to the following standard directory on your machine:

%WinDir%\System32\inetsrv\config\schema

Second, you must add the XML fragment shown in Listing 10-5 to the applicationHost.xml file
located in the following directory on your machine. You’ll need administrative privileges to edit this file.

%WinDir%\System32\inetsrv\config

Listing 10-5 uses a <section> XML element with the name attribute value of "rss" to register the RSS
configuration section. Note that this <section> XML element is the child element of the <sectionGroup>
XML element with the name attribute value of "system.webServer" to specify that the <rss> configu-
ration section belongs to the <system.webServer> configuration section group. Also note that the
allowDefinition attribute on this <section> XML element is set to the value of "Everywhere" to
specify that the <rss> configuration section can be added to configuration files at all configuration hier-
archy levels of the integrated configuration system. Also note that the overrideModeDefault attribute
on this <section> XML element is set to the value of "Allow" to specify that lower-level configuration
files are allowed to override the RSS configuration settings specified in higher-level configuration files.

Listing 10-5: The XML Fragment That Registers the rss Configuration Section

<configuration>
<configSections>
<sectionGroup name="system.webServer">
<section name="rss" allowDefinition="Everywhere"
overrideModeDefault="Allow" />

</sectionGroup>
</configSections>

</configuration>

453

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 453

Extending the Integrated Imperative
Management System

The previous section used the XML constructs of the integrated declarative schema extension markup
language to define the <rss> configuration section. Following the recipe, the next order of business is to
extend the integrated imperative management system to add support for new imperative management
classes that will allow the clients of your provider-based RSS service to configure the service directly
from managed code in a strongly-typed fashion.

In this section, you implement the following four imperative management classes:

❑ ProviderSettings

❑ ProviderSettingsCollection

❑ ProvidersHelper

❑ RssSection

Note that you don’t need to implement the first three classes every time you implement a custom
provider-based service. In other words, the implementation of these three classes presented in the fol-
lowing sections can be used as is with all types of custom provider-based services. Now add a new sub-
directory named ImperativeManagment to the Rss project. You will add the sources files for all four
imperative management classes to this subdirectory.

ProviderSettings
Listing 10-6 presents the implementation of the ProviderSettings imperative management class. Add
a new source file named ProviderSettings.cs to the ImperativeManagement directory of the Rss
project and add the code shown in this code listing to this source file. You also need to add a reference to
the Microsoft.Web.Adiministration.dll assembly located in the following directory on your
machine to this project:

%windir%\System32\inetsrv

Listing 10-6: The ProviderSettings Class

using System.Collections.Specialized;
using Microsoft.Web.Administration;
using System.Collections.Generic;

namespace Rss.ImperativeManagement
{
public class ProviderSettings : ConfigurationElement
{
public string Name
{
get { return (string)base["name"]; }
set { base["name"] = value; }

}

454

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 454

Listing 10-6: (continued)

public string Type
{
get { return (string)base["type"]; }
set { base["type"] = value; }

}

private NameValueCollection parameters;
public NameValueCollection Parameters
{
get
{
if (parameters == null)
{
parameters = new NameValueCollection();
IDictionary<string, string> rawAttributes = base.RawAttributes;
foreach (string attributeName in rawAttributes.Keys)
{
parameters.Add(attributeName, rawAttributes[attributeName]);

}
}
return parameters;

}
}

}
}

A ProviderSettings instance is an imperative representation of an Add XML element (the Add ele-
ment in the case of the RSS provider-based service is named <add>) that registers a provider with a
provider-based service. In other words, a ProviderSettings instance provides imperative access to the
attributes on the Add XML element that the instance represents. As a result, the ProviderSettings
class exposes three properties as follows:

❑ Name: This string property provides imperative access to the name attribute on the associated
Add XML element.

❑ Type: This string property provides imperative access to the type attribute on the associated
Add XML element.

❑ Parameters: This NameValueCollection property provides imperative access to the attrib-
utes other than name and type on the associated Add XML element. You can use the name of
each attribute as an index into this NameValueCollection to return the value of the attribute.

ProviderSettingsCollection
Listing 10-7 contains the code for the ProviderSettingsCollection class. Next add a new source file
named ProviderSettingsCollection.cs to the ImperativeManagement directory of the Rss proj-
ect and add the code shown in this code listing to this source file.

455

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 455

Listing 10-7: The ProviderSettingsCollection Class

using Microsoft.Web.Administration;
using System;

namespace Rss.ImperativeManagement
{
public class ProviderSettingsCollection :

ConfigurationElementCollectionBase<ProviderSettings>
{
public ProviderSettings Add(string name, string type)
{
ProviderSettings providerSettings = base.CreateElement();
providerSettings.Name = name;
providerSettings.Type = type;
return base.Add(providerSettings);

}

protected override ProviderSettings CreateNewElement(string elementTagName)
{
return new ProviderSettings();

}

public void Remove(string name)
{
base.Remove(this[name]);

}

public new ProviderSettings this[string name]
{
get
{
for (int i = 0; i < base.Count; i++)
{
ProviderSettings providerSettings = base[i];
if (string.Equals(providerSettings.Name, name,

StringComparison.OrdinalIgnoreCase))
return providerSettings;

}
return null;

}
}

}
}

As discussed earlier, the configuration section of every provider-based service must contain a Collection
XML element, which is normally named <providers>. The ProviderSettingsCollection is the
imperative representation of this Collection XML element. As a result, it exposes the following members:

❑ Add: This method takes the name and type of a provider, instantiates a ProviderSettings
object, and adds this object to the collection. In other words, the Add method is the imperative
equivalent of using an Add XML element to add a provider in the configuration file. The Add
XML element is normally named <add>.

456

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 456

457

Chapter 10: Extending the Integrated Providers Model

❑ Remove: This method takes the friendly name of a provider and removes the provider from the
collection. This is equivalent to using the Remove XML element in the configuration file. The
Remove XML element is normally named <remove>.

❑ Indexer: This indexer returns a reference to a ProviderSettings object with the specified name.

❑ CreateNewElement: ProviderSettingsCollection overrides the CreateNewElement
method of its base class to return an instance of the ProviderSettings class because this col-
lection is a collection of ProviderSettings objects.

ProvidersHelper
Listing 10-8 demonstrates the implementation of the ProvidersHelper helper class. Now add a new
source file named ProvidersHelper.cs to the ImperativeManagement directory of the Rss project
and add the code shown in this code listing to this source file. You also need to add references to
System.Web.dll and System.Configuration.dll assemblies because they respectively contain the
System.Web.Compilation.BuildManager and System.Configuration.Provider.ProviderBase
types.

Listing 10-8: The ProvidersHelper Helper Class

using System;
using System.Configuration.Provider;
using System.Collections.Specialized;
using System.Web.Compilation;

namespace Rss.ImperativeManagement
{
public static class ProvidersHelper
{
public static ProviderBase InstantiateProvider(

ProviderSettings providerSettings,
Type providerType)

{
string providerTypeInfo =

(providerSettings.Type == null) ? null : providerSettings.Type.Trim();
if (string.IsNullOrEmpty(providerTypeInfo))
throw new ArgumentException("Provider's type must be specified.");

Type providerTypeObj = BuildManager.GetType(providerTypeInfo, true, true);
if (!providerType.IsAssignableFrom(providerTypeObj))
throw new ArgumentException("Provider must implement type " +

providerType.ToString());

ProviderBase provider =
(ProviderBase)Activator.CreateInstance(providerTypeObj);

NameValueCollection parameters = providerSettings.Parameters;
NameValueCollection config =

new NameValueCollection(parameters.Count, StringComparer.Ordinal);
foreach (string attributeName in parameters)
{

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 457

Listing 10-8: (continued)

config[attributeName] = parameters[attributeName];
}

provider.Initialize(providerSettings.Name, config);
return provider;

}

public static void InstantiateProviders(
ProviderSettingsCollection configProviders,
ProviderCollection providers,
Type providerType)

{
foreach (ProviderSettings settings in configProviders)
{
providers.Add(InstantiateProvider(settings, providerType));

}
}

}
}

As discussed earlier, the configuration section associated with a provider-based service contains a
Collection XML element (typically named <providers>) that contains one or more Add XML elements
(typically named <add>), each of which registers a specified provider. The ProvidersHelper class is a
helper class that contains the logic that iterates through these Add XML elements, extracts the required
information from the attributes on each Add XML element, and instantiates and initializes the provider
that each Add XML element registers. Keep in mind that every ASP.NET provider directly or indirectly
inherits from the ProviderBase class. ASP.NET comes with a collection class named
ProviderCollection that acts as a container for ProviderBase objects.

As you can see from Listing 10-8, the InstantiateProviders method takes three parameters. The first
parameter is of type ProviderSettingsCollection, which references the
ProviderSettingsCollection collection that represents the Collection XML element of the configura-
tion section of the associated provider-based service, which is the RSS provider-based service in this
case. As discussed earlier, this collection contains one ProviderSettings object for each Add XML ele-
ment in this Collection XML element. The second parameter of the InstantiateProviders method is
of type ProviderCollection. The third parameter of this method is a Type object that represents the
type of the provider being instantiated.

As you can see from the following excerpt from Listing 10-8, the InstantiateProviders method iter-
ates through the ProviderSettings object in the ProviderSettingsCollection collection passed
into the method as its first argument. For each enumerated ProviderSettings object, it invokes
another method named InstantiateProvider, passing in the reference to the enumerated
ProviderSettings object to instantiate a ProviderBase object with the specified type and specified
settings. Next, it adds this ProviderBase object to the ProviderCollection collection passed into the
method as its second argument.

public static void InstantiateProviders(
ProviderSettingsCollection configProviders,
ProviderCollection providers,

458

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 458

Type providerType)
{
foreach (ProviderSettings settings in configProviders)
{
providers.Add(InstantiateProvider(settings, providerType));

}
}

Next, I walk you through the internal implementation of the InstantiateProvider method as shown
in Listing 10-8. This method first uses the Type property of the ProviderSetting object passed into it
as its first argument to access the value of the type attribute on the Add XML element that registers the
associated provider. Recall that this attribute contains a comma-separated list of up to five substrings,
where only the first substring is mandatory. The first substring contains the fully qualified name of the
type of the provider, including its complete containment namespace hierarchy. The remaining substrings
specify the assembly that contains this provider type.

string providerTypeInfo =
(providerSettings.Type == null) ? null : providerSettings.Type.Trim();

if (string.IsNullOrEmpty(providerTypeInfo))
throw new ArgumentException("Provider's type must be specified.");

Next, the InstantiateProvider method invokes a static method named GetType on a standard
ASP.NET class named BuildManager, passing in the value of the type attribute of the Add XML ele-
ment. Under the hood, the GetType method loads the assembly that contains the provider type if it
hasn’t already been loaded, and creates and returns a Type object that represents the type of the
provider:

Type providerTypeObj = BuildManager.GetType(providerTypeInfo, true, true);
if (!providerType.IsAssignableFrom(providerTypeObj))
throw new ArgumentException("Provider must implement type " +

providerType.ToString());

Next, it invokes a static method named CreateInstance on a standard .NET class named Activator,
passing in the Type object to dynamically instantiate an instance of the specified provider:

ProviderBase provider =
(ProviderBase)Activator.CreateInstance(providerTypeObj);

Next, it instantiates a NameValueCollection collection and populates this collection with the content
of the Parameters collection of the ProviderSettings object. Recall that the Parameters collection
contains the names and values of the attributes (other than the name and type attributes) on this Add
XML element. As discussed earlier, you can use the name of an attribute as an index into this collection
to access its value:

NameValueCollection parameters = providerSettings.Parameters;
NameValueCollection config =

new NameValueCollection(parameters.Count, StringComparer.Ordinal);
foreach (string attributeName in parameters)
{
config[attributeName] = parameters[attributeName];

}

459

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 459

Finally, it invokes the Initialize method on the provider, passing in two parameters. The first param-
eter is a string that contains the value of the name attribute on the Add XML element that registers the
specified provider. The second parameter references the NameValueCollection collection that contains
the names and values of the attributes (other than the name and type attributes) on this Add XML ele-
ment. As you’ll see later, every provider inherits the Initialize method from the ProviderBase class.

provider.Initialize(providerSettings.Name, config);

RssSection
Listing 10-9 presents the implementation of the RssSection class. Now add a new source file named
RssSection.cs to the ImperativeManagement directory of the Rss project and add the code shown in
this code listing to this source file.

Listing 10-9: The RssSection Class

using System;
using Microsoft.Web.Administration;

namespace Rss.ImperativeManagement
{
public class RssSection : ConfigurationSection
{
static RssSection()
{
RssSection.ProvidersAttribute = "providers";
RssSection.DefaultProviderAttribute = "defaultProvider";
RssSection.EnabledAttribute = "enabled";
RssSection.ChannelTitleAttribute = "channelTitle";
RssSection.ChannelDescriptionAttribute = "channelDescription";
RssSection.ChannelLinkAttribute = "channelLink";

}

public RssSection() { }

public string DefaultProvider
{
get
{
return (string)base[RssSection.DefaultProviderAttribute];

}
set
{
base[RssSection.DefaultProviderAttribute] = value;

}
}
public bool Enabled
{
get
{
return (bool)base[RssSection.EnabledAttribute];

}

460

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 460

461

Chapter 10: Extending the Integrated Providers Model

Listing 10-9: (continued)

set
{
base[RssSection.EnabledAttribute] = value;

}
}

public string ChannelTitle
{
get
{
return (string)base[RssSection.ChannelTitleAttribute];

}
set
{
base[RssSection.ChannelTitleAttribute] = value;

}
}

public string ChannelDescription
{
get
{
return (string)base[RssSection.ChannelDescriptionAttribute];

}
set
{
base[RssSection.ChannelDescriptionAttribute] = value;

}
}

public string ChannelLink
{
get
{
return (string)base[RssSection.ChannelLinkAttribute];

}
set
{
base[RssSection.ChannelLinkAttribute] = value;

}
}

public ProviderSettingsCollection Providers
{
get
{
if (this._providers == null)
{
this._providers = (ProviderSettingsCollection)

base.GetCollection(RssSection.ProvidersAttribute,
typeof(ProviderSettingsCollection));

}

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 461

Listing 10-9: (continued)

return this._providers;
}

}

private ProviderSettingsCollection _providers;
private static readonly string DefaultProviderAttribute;
private static readonly string EnabledAttribute;
private static readonly string ProvidersAttribute;
private static readonly string ChannelTitleAttribute;
private static readonly string ChannelDescriptionAttribute;
private static readonly string ChannelLinkAttribute;

}

}

The RssSection imperative management class allows imperative code such as C# or Visual Basic to
programmatically access and manipulate the XML attributes and elements that make up the <rss>
configuration section. As you’ll see later, this allows imperative code to load the contents of the
<rss> configuration section of a given configuration file at a given configuration hierarchy level into
an instance of the RssSection and use the methods and properties of this instance to imperatively
access and manipulate the values of these XML attributes and elements.

As you can see from Listing 10-9, this class exposes one property for each XML attribute or element that
makes up the <rss> configuration section where the DefaultProvider, Enabled, ChannelTitle,
ChannelDescription, and ChannelLink properties allow you to imperatively get and set the values of
the defaultProvider, enabled, channelTitle, channelDescription, and channelLink attributes,
respectively, and the Providers property allows you to imperatively access the providers specified in
the <providers> section Collection XML element of the <rss> containing XML element.

Implementing the Service Class
Listing 10-10 illustrates the implementation of the RssService class. Now add a new source file named
RssService.cs to the Base directory of the Rss project and add the code shown in this code listing to
this source file.

Listing 10-10: The RssService Class

using System;
using System.Configuration.Provider;
using System.Web;
using System.IO;
using Microsoft.Web.Administration;
using Rss.ImperativeManagement;

namespace Rss.Base
{
public class RssService
{
private static RssProvider provider = null;

462

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 462

Listing 10-10: (continued)

private static RssProviderCollection providers = null;
private static bool IsInitialized = false;

public RssProvider Provider
{
get { Initialize(); return provider; }

}

public RssProviderCollection Providers
{
get { Initialize(); return providers; }

}

public static void LoadRss(Stream stream)
{
Initialize();
Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

provider.LoadRss(channel, stream);
}

private static string channelTitle;
private static string channelDescription;
private static string channelLink;

private static void Initialize()
{
if (!IsInitialized)
{
ServerManager mgr = new ServerManager();
Configuration config =

mgr.GetWebConfiguration("Default Web Site",
HttpContext.Current.Request.ApplicationPath);

RssSection section =
(RssSection)config.GetSection("system.webServer/rss", typeof(RssSection));
channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
throw new ProviderException("Unable to load default RssProvider");

IsInitialized = true;
}

}
}

}

463

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 463

The RssService class exposes a method named Initialize whose main responsibility is to instantiate
and initialize the providers registered in the <providers> subelement of the <rss> configuration sec-
tion of the specified configuration file. The Initialize method first instantiates an instance of the
ServerManager class:

ServerManager mgr = new ServerManager();

Next, it invokes the GetWebConfiguration method on this ServerManager instance to load the con-
tents of the configuration file of the current application into a Configuration object. This
Configuration object allows the Initialize method to imperatively access the contents of the speci-
fied configuration file:

Configuration config =
mgr.GetWebConfiguration("Default Web Site",

HttpContext.Current.Request.ApplicationPath);

Next, the Initialize method invokes the GetSection method on this Configuration object to
return an RssSection object that provides imperative access to the contents of the <rss> configuration
section of the configuration file:

RssSection section =
(RssSection)config.GetSection("system.webServer/rss", typeof(RssSection));

Then, it uses the RssSection object to imperatively access the values of the channelDescription,
channelLink, and channelTitle attributes on the <rss> containing XML element and stores these
values in private fields with the same names for future reference:

channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;

Next, it creates an RssProviderCollection object and stores this object in a private field named
providers for future reference:

providers = new RssProviderCollection();

Then, it invokes the InstantiateProviders static method on the ProvidersHelper helper class dis-
cussed earlier to instantiate the providers in the <providers> subelement of the <rss> containing XML
element and load them into the RssProviderCollection collection.

ProvidersHelper.InstantiateProviders
(section.Providers, providers, typeof(RssProvider));

Next, it uses the value of the defaultProvider attribute on the <rss> containing XML element as an
index into the RssProviderCollection collection to return a reference to the default provider and
stores this reference in a private field named provider for future reference:

provider = providers[section.DefaultProvider];

464

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 464

Note that the Initialize method raises an exception if the <providers> subelement of the <rss>
containing XML element does not contain the default provider with the specified name.

if (provider == null)
throw new ProviderException("Unable to load default RssProvider");

Also note that the RssService class exposes a property of type RssProvider named Provider that
returns a reference to the default provider, that is, it returns the value of the provider private field. As
you can see from the following excerpt from Listing 10-9, the RssService class’s implementation of this
property first invokes the Initialize method to initialize the provider private field before it attempts
to return its value.

public RssProvider Provider
{
get { Initialize(); return provider; }

}

The RssService class also exposes a property named Providers that returns the
RssProviderCollection object stored in the providers private field. Note that this property first
invokes the Initialize method to initialize this private field before it attempts to return its value:

public RssProviderCollection Providers
{
get { Initialize(); return providers; }

}

Next, I walk you through the implementation of the LoadRss method of the RssService class as shown
in the following excerpt from Listing 10-9:

public static void LoadRss(Stream stream)
{
Initialize();
Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

provider.LoadRss(channel, stream);
}

As you can see, this method takes a single argument of type Stream. As discussed earlier, this Stream
object normally references the server response output stream. This method basically defines the API for
servicing RSS data.

You must always implement the methods and properties that make up the API of your custom provider-
based service as static members.

The LoadRss method first calls the Initialize method to ensure that the RssService has already
been initialized:

Initialize();

465

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 465

Next, it creates a Channel object and populates this object with the channel information:

Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

Finally, it delegates the responsibility of loading RSS data from the underlying data store to the config-
ured default RSS provider:

provider.LoadRss(channel, stream);

The provider-based RSS service just developed allows components such as the RssHandler HTTP han-
dler to retrieve RSS data from any type of data store. This section provides a new implementation of
RssHandler that delegates the responsibility of generating the RSS document from the underlying data
store to RssService component. Listing 10-11 contains the code for the new version of the RssHandler
HTTP handler. Now add a new source file named RssHandler.cs to the Base directory of the Rss proj-
ect and add the code shown in this code listing to this source file.

Listing 10-11: The New Version of the RssHandler HTTP Handler That Uses RssService

using System.Web;

namespace Rss.Base
{
public class RssHandler : IHttpHandler
{
bool IHttpHandler.IsReusable
{
get { return false; }

}

void IHttpHandler.ProcessRequest(HttpContext context)
{
context.Response.ContentType = "text/xml";
RssService.LoadRss(context.Response.OutputStream);

}
}

}

The ProcessRequest method of RssHandler sets the value of the ContentType property of the
Response to the string value text/xml to indicate to the requesting browser that the response contains
an XML document:

context.Response.ContentType = "text/xml";

The method then calls the LoadRss static method on the RssService and passes the OutputStream
of the Response into it. As discussed before, LoadRss uses the configured default RSS provider to gen-
erate the RSS document from the data retrieved from the data store and to load the document into the
OutputStream.

RssService.LoadRss(context.Response.OutputStream);

466

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 466

Implementing Custom Providers
The previous sections implemented the new provider-based RSS service, which is capable of generating
RSS data from any type of data store. As discussed, the provider-based RSS service uses each provider to
service RSS data from a specific type of data store. In this section, you develop two providers named
SqlRssProvider and XmlRssProvider that will allow the provider-based RSS service to service RSS
data from a SQL Server database with a specific schema and an XML document with a specific XML
schema, respectively.

SqlRssProvider
This section implements an RSS provider named SqlRssProvider that derives from the RssProvider
base class and generates RSS data from the SQL Server database discussed in the Chapter 8. Listing 10-12
contains the code for the SqlRssProvider class. Add a new source file named SqlRssProvider.cs to
the Base directory and add the code shown in this code listing to this source file.

Listing 10-12: The SqlRssProvider Class

using System;
using System.Data;
using System.Configuration;
using System.Collections.Specialized;
using System.Configuration.Provider;
using System.Data.SqlClient;
using System.IO;
using System.Collections;

namespace Rss.Base
{
public class SqlRssProvider : RssProvider
{
private string itemTitleField;
private string itemDescriptionField;
private string itemLinkField;
private string itemLinkFormatString;
private string connectionString;
private string commandText;
private CommandType commandType;

public override void Initialize(string name, NameValueCollection config)
{
if (config == null)
throw new ArgumentNullException("config");

if (string.IsNullOrEmpty(name))
name = "SqlRssProvider";

if (string.IsNullOrEmpty(config["description"]))
{
config.Remove("description");
config.Add("description",

"Retrieve RSS data from the SQL Server database");

467

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 467

Listing 10-12: (continued)

}
base.Initialize(name, config);

string connectionStringName = config["connectionStringName"];
if (string.IsNullOrEmpty(connectionStringName))
throw new ProviderException("Invalid connection string name");

connectionString =
ConfigurationManager.ConnectionStrings[connectionStringName].ConnectionString;
if (string.IsNullOrEmpty(connectionString))
throw new ProviderException("Connection string not found");

config.Remove("connectionStringName");

itemTitleField = config["itemTitle"];
if (string.IsNullOrEmpty(itemTitleField))
throw new ProviderException("Title field not found");

config.Remove("itemTitle");

itemDescriptionField = config["itemDescription"];
if (string.IsNullOrEmpty(itemDescriptionField))
throw new ProviderException("Description field not found");

config.Remove("itemDescription");

itemLinkField = config["itemLink"];
if (string.IsNullOrEmpty(itemLinkField))
throw new ProviderException("Link field not found");

config.Remove("itemLink");

itemLinkFormatString = config["itemLinkFormatString"];
config.Remove("itemLinkFormatString");

commandText = config["item"];
if (string.IsNullOrEmpty(commandText))
throw new ProviderException("Command text not found");

config.Remove("item");

string commandTypeText = config["itemInfo"];
if (string.IsNullOrEmpty(commandTypeText))
commandType = CommandType.Text;

else if (commandTypeText.ToLower() == "storedprocedure")
commandType = CommandType.StoredProcedure;

else
commandType = CommandType.Text;

config.Remove("itemInfo");

if (config.Count > 0)
{
string key = config.GetKey(0);
if (!string.IsNullOrEmpty(key))
throw new ProviderException("Unrecognized attribute");

}

468

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 468

Listing 10-12: (continued)

}

SqlDataReader GetDataReader()
{
SqlConnection con = new SqlConnection();
con.ConnectionString = connectionString;
SqlCommand com = new SqlCommand();
com.Connection = con;
com.CommandText = commandText;
com.CommandType = commandType;
con.Open();
return com.ExecuteReader(CommandBehavior.CloseConnection);

}

public override void LoadRss(Channel channel, Stream stream)
{
SqlDataReader reader = GetDataReader();

ArrayList items = new ArrayList();
Item item;
while (reader.Read())
{
item = new Item();
item.Title = (string)reader[itemTitleField];
item.Link = (string)reader[itemLinkField];
item.Description = (string)reader[itemDescriptionField];
item.LinkFormatString = itemLinkFormatString;
items.Add(item);

}
reader.Close();
RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);

}
}

}

Because the RssProvider base class derives from the ProviderBase class, SqlRssProvider imple-
ments both the LoadRss method of RssProvider and the Initialize method of ProviderBase as
discussed in the following sections.

Listing 10-13 presents the implementation of the Item class that the SqlRssProvider’s implementation
uses. Add a new source file named Item.cs to the Base directory of the Rss project and add the code
shown in this code listing to this source file.

Listing 10-13: The Item Class

namespace Rss.Base
{
public class Item
{
private string title;

469

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 469

470

Chapter 10: Extending the Integrated Providers Model

Listing 10-13: (continued)

private string description;
private string link;
private string linkFormatString;

public string Title
{
get { return title; }
set { title = value; }

}

public string Description
{
get { return description; }
set { description = value; }

}

public string Link
{
get { return link; }
set { link = value; }

}

public string LinkFormatString
{
get { return linkFormatString; }
set { linkFormatString = value; }

}
}

}

Listing 10-14 presents the implementation of the RssHelper class that the SqlRssProvider’s imple-
mentation uses. Add a new source file named RssHelper.cs to the Base directory of the Rss project
and add the code shown in this code listing to this source file.

Listing 10-14: The RssHelper Class

using System;
using System.Configuration;
using System.Collections.Specialized;
using System.IO;
using System.Xml;

namespace Rss.Base
{
public class RssHelper
{
public static void GenerateRss(Channel channel, Item[] items, Stream stream)
{
XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

52539c10.qxd 9/17/07 10:04 PM Page 470

Listing 10-14: (continued)

using (XmlWriter writer = XmlWriter.Create(stream, settings))
{
writer.WriteStartDocument();
writer.WriteStartElement("rss");
writer.WriteAttributeString("version", "2.0");
writer.WriteStartElement("channel");
writer.WriteElementString("title", channel.Title);
writer.WriteElementString("link", channel.Link);
writer.WriteElementString("description", channel.Description);
foreach (Item item in items)
{
writer.WriteStartElement("item");
writer.WriteElementString("title", item.Title);
writer.WriteElementString("description", item.Description);
writer.WriteElementString("link",

string.Format(item.LinkFormatString, item.Link));
writer.WriteEndElement();

}
writer.WriteEndElement();
writer.WriteEndElement();
writer.WriteEndDocument();

}
}

}
}

Initialize
As Listing 10-12 shows, the Initialize method first performs the four tasks that the Initialize
method of any provider must perform:

1. It raises an exception if the NameValueCollection is null. Recall that this
NameValueCollection collection contains one item for each attribute on the <add> element
that registers the provider. As discussed earlier, you can use the name of an attribute as an index
into this collection to access its value.

if (config == null)
throw new ArgumentNullException("config");

2. It sets the friendly name of the provider if it hasn’t already been set.

if (string.IsNullOrEmpty(name))
name = "SqlRssProvider";

Your custom provider’s implementation of the Initialize method mustn’t set the value of the
friendly name of the provider if the page developer has already specified a value for the name
attribute on the <add> element that registers the provider. If your custom provider overrides
this value, it could break the page developer’s code if the code uses the friendly name of the
provider to access the provider. Here is an example. Let’s say the page developer has assigned

471

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 471

the string “MyProvider” as the value of the name attribute on the <add> element that registers the
SqlRssProvider:

<rss enabled="true" defaultProvider="MyProvider">
<providers>
<add name="MyProvider" type="CustomComponents.SqlRssProvider"
. . ./>

</providers>
</rss>

Now, let’s say the page developer uses this value as an index into the Providers collection of
the RssService to access the SqlRssProvider provider:

RssService service;
. . .
SqlRssProvider provider = service.Providers["MyProvider"];

This code would fail if your custom provider’s implementation of the Initialize method
overrides the friendly name of the provider.

Breaking the page developer’s code is not the only problem. As the following excerpt from
Listing 10-10 shows, the Initialize method of the RssService will also fail and raise an
exception because it uses the value of the defaultProvider attribute on the <rss> containing
XML element as an index into the Providers collection to access the default provider.

private static void Initialize()
{
if (!IsInitialized)
{
. . .

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
throw new ProviderException(

"Unable to load default RssProvider");
IsInitialized = true;

}
}

3. It sets the value of the description field if it hasn’t already been set:

if (string.IsNullOrEmpty(config["description"]))
{
config.Remove("description");
config.Add("description", "Retrieve RSS data from the SQL Server database");

}

4. It calls the Initialize method of the base class to allow the base class to initialize the name
and description properties.

base.Initialize(name, config);

472

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 472

Your custom provider must always delegate the responsibility of setting the name and description
properties to its base class as opposed to overriding the Name and Description properties.

The Initialize method of the SqlRssProvider, like the Initialize method of any other provider,
then iterates through each item in the NameValueCollection and performs the following tasks for each
item. Recall that each item represents an attribute (other than name and type attributes) on the <add>
element that registers the provider:

1. Uses the name of the attribute as an index into the NameValueCollection collection to access
the value of the attribute.

2. Uses the value to set the respective property of the provider.

3. Calls the Remove method of the NameValueCollection to remove the item from the collection.

The Initialize method follows this three-step pattern to set the values of the connectionString,
commandText, commandType, channelTitle, channelDescription, channelLink,
itemTitleField, itemDescriptionField, itemLinkField, and itemLinkFormatString private
fields of the SqlRssProvider. These fields are discussed in the following sections.

Connection String
The Initialize method sets the connectionString private field of the SqlRssProvider. First it uses
the connectionStringName string to index into the NameValueCollection to access the value of the
attribute named connectionStringName on the <add> element that registers the SqlRssProvider
provider. If the value is null or an empty string, the method raises a ProviderException exception
because SqlRssProvider needs this value to access the underlying data store.

string connectionStringName = config["connectionStringName"];
if (string.IsNullOrEmpty(connectionStringName))
throw new ProviderException("Invalid connection string name");

Next, it uses the value it just obtained as an index into the ConnectionStrings collection
of the ConfigurationManager class to access the connection string and assign this connection
string to the connectionString private field of the SqlRssProvider for future reference. The
ConnectionStrings collection represents the <connectionStrings> section of the configuration file.
The client’s of the RSS provider-based service must:

❑ Use an <add> element to register the required connection string within the
<connnectionStrings> section of the configuration file.

❑ Set the name attribute of the <add> element to the friendly name of the connection string.

❑ Assign the connection string to the connectionString attribute of the <add> element that reg-
isters the SqlRssProvider.

You’ll see an example of these three steps later in this chapter.

connectionString =
ConfigurationManager.ConnectionStrings[connectionStringName].ConnectionString;

if (string.IsNullOrEmpty(connectionString))
throw new ProviderException("Connection string not found");

473

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 473

Finally, the Intialize method removes the item associated with the connection string from the
NameValueCollection:

config.Remove("connectionStringName");

Command Text
The SqlRssProvider uses the connection string to connect to the underlying data store. The
command text, on the other hand, specifies the SQL Select statement or stored procedure that the
SqlRssProvider must use to retrieve the required data from the data store. To set the commandText
private field of the SqlRssProvider, the Initialize method uses the "item" string as an index
into the NameValueCollection to access the value of the item attribute on the <add> element that
registers the SqlRssProvider provider and assigns this value to the commandText private field.
If the value is null or an empty string, it raises a ProviderException exception because the
SqlRssProvider can’t operate without this value.

commandText = config["item"];
if (string.IsNullOrEmpty(commandText))
throw new ProviderException("Command text not found");

The method then removes the associated item from the NameValueCollection:

config.Remove("item");

Command Type
Because the commandText field can contain a SQL Select statement or stored procedure, the client of
the RSS provider-based service must set the value of the itemInfo attribute on the <add> element that
registers the SqlRssProvider to one of the following values:

❑ ”Text” (case insensitive) to specify that the item attribute contains a SQL Select statement

❑ ”StoredProcedure” (case insensitive) to specify that the item attribute contains a stored
procedure

The Initialize method then follows the same steps as for the commandText private field to set
the value of the commandType private field. The only difference is that the method must map the
string value that it retrieves from the NameValueCollection to its associated CommandType enu-
meration value as follows:

string commandTypeText = config["itemInfo"];
if (string.IsNullOrEmpty(commandTypeText))
commandType = CommandType.Text;

else if (commandTypeText.ToLower() == "storedprocedure")
commandType = CommandType.StoredProcedure;

else
commandType = CommandType.Text;

config.Remove("itemInfo");

474

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 474

RSS-Related Fields
SqlRssProvider exposes the following four private fields:

❑ itemTitle: The name of the datafield whose values are rendered within the opening and clos-
ing tags of the <title> child elements of the <item> elements of the RSS document

❑ itemDescription: The name of the datafield whose values are rendered within the opening
and closing tags of the <description> child elements of the <item> elements of the RSS
document

❑ itemLink: The name of the datafield whose values are rendered within the opening and closing
tags of the <link> child elements of the <item> elements

❑ itemLinkFormatString: Formats the values of the datafield whose name is given by
itemLink before they are rendered within the opening and closing tags of the <link> child
elements of the <item> elements

As the following excerpt from Listing 10-12 shows, the SqlRssProvider follows the same steps dis-
cussed in the previous sections to retrieve the values of the itemTitle, itemDescription, itemLink,
and itemLinkFormatString attributes on the <add> element that registers the provider and to assign
them to its associated private fields:

itemTitleField = config["itemTitle"];
if (string.IsNullOrEmpty(itemTitleField))
throw new ProviderException("Title field not found");

config.Remove("itemTitle");

itemDescriptionField = config["itemDescription"];
if (string.IsNullOrEmpty(itemDescriptionField))
throw new ProviderException("Description field not found");

config.Remove("itemDescription");

itemLinkField = config["itemLink"];
if (string.IsNullOrEmpty(itemLinkField))
throw new ProviderException("Link field not found");

config.Remove("itemLink");

itemLinkFormatString = config["itemLinkFormatString"];
config.Remove("itemLinkFormatString");

LoadRss
The LoadRss method of the SqlRssProvider basically contains the data access code that was part of
the implementation of the RssHandler class presented in the previous chapter. As you can see, this data
access code is moved from the client of the RSS service class to the SqlRssProvider provider allowing
the client to interact with all types of data stores.

Registering SqlRssProvider
Listing 10-15 shows how the client of the provider-based RSS service can declaratively register
SqlRssProvider with the RSS service without writing a single line of code.

475

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 475

Listing 10-15: Registering SqlRssProvider

<configuration>
<system.webServer>
<rss enabled="true" defaultProvider="SqlRssProvider" channelTitle="Title1"
channelDescription="Description1" channelLink="Link1">
<providers>
<add name="SqlRssProvider"
connectionStringName="myConnectionString"
item="Select * From Articles"
itemInfo="Text"
itemTitle="Title" itemDescription="Abstract"
itemLink="AuthorName"
type="Rss.Base.SqlRssProvider, Rss, Version=2.0.0.0,

Culture=Neutral, PublicKeyToken=a31626cc5fbb47c3" />
</providers>

</rss>
</system.webServer>

</configuration>

The client of the provider-based RSS service must add a new <add> child element within the opening
and closing tags of the <providers> Collection XML element and set its attribute values as follows:

❑ name: The client has the freedom of choosing any friendly name for the provider as long as it is
different from the friendly names of other registered providers. Listing 10-15 uses the string
value SqlRssProvider as the friendly name.

name="SqlRssProvider"

❑ type: The value of this attribute is a string that contains a comma-separated list of up to five
substrings, where only the first substring is mandatory. The first substring contains the fully
qualified name of the type of the provider including its complete namespace containment hier-
archy, Rss.Base.SqlRssProvider.

type="Rss.Base.SqlRssProvider"

❑ connectionStringName: The value of this attribute must be set to the value of the name attrib-
ute of the <add> element that the client adds to the <connectionStrings> section of the con-
figuration file as shown in the following code:

<configuration>
<connectionStrings>
<add name=”FriendlyName”
connectionString=”Data Source=ServerName;Initial Catalog=DatabaseName;pwd;uid”

</connectionStrings>
</configuration>

❑ item: The client must set the value of this attribute to a string that contains a SQL Select
statement or stored procedure name that selects the records that contains information about the
RSS items:

item="Select * From Articles"

476

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 476

❑ Item-related attributes: The client must set the values of the itemTitle, itemDescription,
and itemLink attributes to the names of the appropriate datafields:

itemTitle="Title" itemDescription="Abstract" itemLink="AuthorName"

Registering a provider doesn’t automatically tell the RSS service to use the provider, because more than
one RSS provider can be registered with the RSS service. The client must set the value of the
defaultProvider attribute of the <rss> element to the friendly name of the desired provider to
instruct the RSS service to use the specified provider.

<rss defaultProvider="SqlRssProvider">

Figures 10-1 and 10-2 present an example of a database that your SqlRssProvider supports. As you
can see, this database consists of the following columns:

❑ ArticleID: This is an integer data column that contains the primary key values of the data
records.

❑ Title: This is a varchar column that contains the article titles.

❑ AuthorName: This is a varchar column that contains the author names.

❑ Abstract: This is a varchar column that contains the article abstracts.

Figure 10-1

Figure 10-2

XmlRssProvider
As you saw in the previous section, the client of the provider-based RSS service declaratively plugs the
SqlRssProvider into the RSS service to have the service generate the RSS document from the specified
SQL Server database. This section develops an RSS provider named XmlRssProvider that the client can
declaratively plug into the RSS service to have the service generate the RSS document from the specified
XML file. Listing 10-16 presents the implementation of the XmlRssProvider. Add a new source file
named XmlRssProvider.cs to the Base directory of the Rss project and add the code shown in this
code listing to this source file.

477

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 477

Listing 10-16: The XmlRssProvider Class

using System;
using System.Configuration;
using System.Web;
using System.Collections.Specialized;
using System.Xml.XPath;
using System.Configuration.Provider;
using System.Xml;
using System.IO;
using System.Collections;

namespace Rss.Base
{
public class XmlRssProvider : RssProvider
{
private string itemTitleXPath;
private string itemDescriptionXPath;
private string itemLinkXPath;
private string itemLinkFormatString;
private string dataFile;
private string itemXPath;

public override void Initialize(string name, NameValueCollection config)
{
if (config == null)
throw new ArgumentNullException("config");

if (string.IsNullOrEmpty(name))
name = "XmlRssProvider";

if (string.IsNullOrEmpty(config["description"]))
{
config.Remove("description");
config.Add("description", "Retrieve RSS data from an XML document");

}
base.Initialize(name, config);

string connectionStringName = config["connectionStringName"];
if (string.IsNullOrEmpty(connectionStringName))
throw new ProviderException("Invalid connection string name");

dataFile =
ConfigurationManager.ConnectionStrings[connectionStringName].ConnectionString;
if (string.IsNullOrEmpty(dataFile))
throw new ProviderException("Data file not found");

config.Remove("connectionStringName");

itemTitleXPath = config["itemTitle"];
if (string.IsNullOrEmpty(itemTitleXPath))
throw new ProviderException("Title XPath not found");

config.Remove("itemTitle");

478

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 478

479

Chapter 10: Extending the Integrated Providers Model

Listing 10-16: (continued)

itemDescriptionXPath = config["itemDescription"];
if (string.IsNullOrEmpty(itemDescriptionXPath))
throw new ProviderException("Description XPath not found");

config.Remove("itemDescription");

itemLinkXPath = config["itemLink"];
if (string.IsNullOrEmpty(itemLinkXPath))
throw new ProviderException("Link XPath not found");

config.Remove("itemLink");

itemLinkFormatString = config["itemLinkFormatString"];
config.Remove("itemLinkFormatString");

itemXPath = config["item"];
if (string.IsNullOrEmpty(itemXPath))
throw new ProviderException("Item XPath not found");

config.Remove("item");

config.Remove("itemInfo");

if (config.Count > 0)
{
string key = config.GetKey(0);
if (!string.IsNullOrEmpty(key))
throw new ProviderException("Unrecognized attribute");

}
}

protected virtual XPathNodeIterator RetrieveData()
{
IXPathNavigable document =

new XPathDocument(HttpContext.Current.Server.MapPath(dataFile));
XPathNavigator nav = document.CreateNavigator();
nav.MoveToChild(XPathNodeType.Element);
return nav.Select(itemXPath);

}

public override void LoadRss(Channel channel, Stream stream)
{
XPathNodeIterator iter = RetrieveData();
ArrayList items = new ArrayList();
Item item;
while (iter.MoveNext())
{
item = new Item();
item.Title = iter.Current.SelectSingleNode(itemTitleXPath).Value;
item.Link = iter.Current.SelectSingleNode(itemLinkXPath).Value;
item.Description =

iter.Current.SelectSingleNode(itemDescriptionXPath).Value;
item.LinkFormatString = itemLinkFormatString;
items.Add(item);

}

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 479

Listing 10-16: (continued)

RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);
}

}
}

XmlRssProvider, like any other RSS provider, must implement the Initialize method of the
ProviderBase class and the LoadRss method of the RssProvider class as discussed in the following
sections.

Initialize
As Listing 10-16 shows, the Initialize method basically initializes the private fields of the
XmlRssProvider provider. The following table compares the member fields of XmlRssProvider and
SqlRssProvider.

SqlRssProvider XmlRssProvider

connectionString: Contains the information
needed to locate and connect to the database.

dataFile: Contains the information needed to
locate the XML file.

commandText: The SQL Select statement or
stored procedure that selects database records,
where each record corresponds to an <item>
element. Each database record contains the
strings that SqlRssProvider renders within
the opening and closing tags of the <title>,
<description>, and <link> subelements of its
associated <item> element.

itemXPath: The XPath expression that selects
XML nodes, where each node corresponds to an
<item> element. Each XML node contains the
strings that XmlRssProvider renders within the
opening and closing tags of the <title>,
<description>, and <link> subelements of its
associated <item> element.

itemTitleField: Used to select the database
field associated with the <title> subelement of
the <item> element.

itemTitleXPath: The XPath expression that is
used to select the child XML node associated
with the <title> subelement of the <item>
element.

itemDescriptionField: Used to select the
database field associated with the <descrip-
tion> subelement of the <item> element.

itemDescriptionXPath: The XPath expression
that is used to select the child XML node associ-
ated with the <description> subelement of the
<item> element.

itemLinkField: Used to select the database
field associated with the <link> subelement of
the <item> element.

itemLinkXPath: The XPath expression that is
used to select the child XML node associated
with the <link> subelement of the <item>
element.

480

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 480

Here is an example to help you understand the dataFile, itemTitleXPath, itemDescriptionXPath,
and itemLinkXPath fields of the XmlRssProvider RSS provider. Listing 10-17 shows an example of an
XML file that XmlRssProvider uses to generate the RSS document.

Listing 10-17: A Sample XML Document That XmlRssProvider Uses

<?xml version="1.0" encoding="utf-8" ?>
<Articles>
<Article title="What's new in ASP.NET 3.5?" authorName="Smith">
<Abstract>Describes the new ASP.NET 3.5 features</Abstract>

</Article>
<Article title="XSLT in ASP.NET Applications" authorName="Carey">
<Abstract>Shows how to use XSLT in your ASP.NET applications</Abstract>

</Article>
<Article title="XML programming" authorName="Smith">
<Abstract>Reviews .NET 2.0 XML programming features</Abstract>

</Article>
</Articles>

The following table shows examples of XPath expressions that the itemTitleXPath,
itemDescriptionXPath, and itemLinkXPath fields can contain. Notice the third column of the table
shows the current XML node. This is very important because XPath expressions are always evaluated
with respect to the current node.

Next, I show you the XML nodes that each XPath expression shown in the preceding table selects from
the XML document shown in Listing 10-17. The XPath expression //Article shown in the first row
of the table where the current node is <Articles> selects the following XML nodes:

<Article title="What's new in ASP.NET 3.5?" authorName="Smith">
<Abstract>Describes the new ASP.NET 3.5 features</Abstract>

</Article>
<Article title="XSLT in ASP.NET Applications" authorName="Carey">
<Abstract>Shows to use XSLT in your ASP.NET applications</Abstract>

</Article>
<Article title="XML programming" authorName="Smith">
<Abstract>Reviews .NET 2.0 XML programming features</Abstract>

</Article>

The XPath expression @title shown in the second row of the table selects the attribute node
title="ASP.NET " if the current node is the first <Article> element, the attribute node title="XSLT

Field Name Field Value XPath Expression Current XML Node

itemXPath //Article <Articles>

itemTitleXPath @title <Article>

itemDescriptionXPath Abstract/text() <Article>

itemLinkXPath @authorName <Article>

481

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 481

in ASP.NET" if the current node is the second <Article> element, and the attribute node title="XML
programming" if the current node is the third <Article> element.

The XPath expression Abstract/text() shown in the third row of the table selects the text node
“Reviews ASP.NET ” if the current node is the first <Article> element, the text node “Overview of
XSLT in ASP.NET” if the current node is the second <Article> element, and the text node “Reviews
.NET XML programming” if the current node is the third <Article> element.

The XPath expression @authorName shown in the fourth row of the table selects the attribute
node authorName="Smith" if the current node is the first <Article> element, the attribute node
authorName="Carey" if the current node is the second <Article> element, and the attribute
node authorName="Smith" if the current node is the third <Article> element.

LoadRss
Listing 10-18 contains the code for the LoadRss method.

Listing 10-18: The LoadRss Method of XmlRssProvider

public override void LoadRss(Channel channel, Stream stream)
{
XPathNodeIterator iter = RetrieveData();
ArrayList items = new ArrayList();
Item item;
while (iter.MoveNext())
{
item = new Item();
item.Title = iter.Current.SelectSingleNode(itemTitleXPath).Value;
item.Link = iter.Current.SelectSingleNode(itemLinkXPath).Value;
item.Description =

iter.Current.SelectSingleNode(itemDescriptionXPath).Value;
item.LinkFormatString = itemLinkFormatString;
items.Add(item);

}

RssHelper.GenerateRss(channel, (Item[])items.ToArray(typeof(Item)), stream);
}

The LoadRss method calls the RetrieveData method to access the XPathNodeIterator that contains
the retrieved XML nodes. This method is discussed in the next section. XPathNodeIterator allows you
to iterate through the retrieved XML nodes.

XPathNodeIterator iter = RetrieveData();

The method then iterates through the retrieved XML nodes. For each enumerated XML node, LoadRss
creates an Item object:

item = new Item();

The LoadRss method then calls the SelectSingleNode method for each node and passes the XPath
expression specified in the itemTitleXPath field into it. This method locates the XML node that the

482

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 482

XPath expression represents. LoadRss then assigns the value of this XML node to the Title property of
the Item object.

item.Title = iter.Current.SelectSingleNode(itemTitleXPath).Value;

LoadRss then calls the SelectSingleNode method for each node and passes the XPath expression
specified in the itemLinkXPath field into it. This method locates the XML node that the XPath expres-
sion represents. LoadRss then assigns the value of this XML node to the Link property of the Item
object.

item.Link = iter.Current.SelectSingleNode(itemLinkXPath).Value;

LoadRss also calls the SelectSingleNode method for each node and passes the XPath expression spec-
ified in the itemDescriptionXPath field into it. This method locates the XML node that this XPath
expression represents. LoadRss then assigns the value of this XML node to the Description property
of the Item object.

item.Description = iter.Current.SelectSingleNode(itemDescriptionXPath).Value;

RetrieveData
Listing 10-19 illustrates the implementation of the RetrieveData method.

Listing 10-19: The RetrieveData Method

protected virtual XPathNodeIterator RetrieveData()
{
IXPathNavigable document =

new XPathDocument(HttpContext.Current.Server.MapPath(dataFile));
XPathNavigator nav = document.CreateNavigator();
nav.MoveToChild(XPathNodeType.Element);
return nav.Select(itemXPath);

}

The RetrieveData method loads the XML file into an XPathDocument:

IXPathNavigable document =
new XPathDocument(HttpContext.Current.Server.MapPath(dataFile));

The method then calls the CreateNavigator method of the XPathDocument object to access its
XPathNavigator.

XPathNavigator nav = document.CreateNavigator();

The XPathNavigator contains an XPath engine and has been optimized for XPath queries. If
you need to do a lot of XPath queries, the XPathNavigator is the way to go. However, only classes
that implement the IXPathNavigable interface expose XPathNavigator. Currently .NET con-
tains three concrete implementations of this interface: XmlDocument, XPathDocument, and
XmlDataDocument.

483

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 483

484

Chapter 10: Extending the Integrated Providers Model

All three classes have one thing in common; they all load the entire XML document in memory to
make random node access possible. This is not a problem if your XML document is not too large.
However, it takes up lot of memory if your XML document is too big. In these cases, you should use the
XmlReader and XmlWriter classes instead.

If you need random read access, you should use XPathDocument because it is optimized for XPath
queries. You shouldn’t use XmlDocument because it uses the DOM data model, which is different
from the XPath data model. This data model mismatch degrades the XPath query performance of the
XmlDocument. If you need random read/write access, you should use XmlDocument. Because the
XmlRssProvider doesn’t change the XML document, it doesn’t need write access. That is why it
uses XPathDocument.

The RetrieveData method moves the navigator to the document (root) element of the XML document.
For example, in the case of the XML document shown in Listing 10-17, it moves to the <Articles>
element.

nav.MoveToChild(XPathNodeType.Element);

The method then calls the Select method of the navigator (keep in mind the navigator is located at the
root element, such as the <Articles> element) and passes the XPath expression specified in the
itemXPath field into it. As I mentioned, XPath expressions are always evaluated with respect to the cur-
rent node. Because the current node is the document or root element, the Select method evaluates the
XPath expression specified in the itemXPath field with respect to the document element.

return nav.Select(itemXPath);

To help you understand how this works, take another look at the XML document shown in Listing 10-17.
The call into the MoveToNext method takes the navigator to the <Articles> element of this XML docu-
ment. Suppose the client has set the value of the itemXPath field to the XPath expression //Article.
The call into the Select(“//Article”) method will select and return all the <Article> nodes in the
XML document:

<Article title="What's new in ASP.NET 3.5?" authorName="Smith">
<Abstract>Describes the new ASP.NET 3.5 features</Abstract>

</Article>
<Article title="XSLT in ASP.NET Applications" authorName="Carey">
<Abstract>Shows to use XSLT in your ASP.NET applications</Abstract>

</Article>
<Article title="XML programming" authorName="Smith">
<Abstract>Reviews .NET 2.0 XML programming features</Abstract>

</Article>

Registering XmlRssProvider
The highlighted portion of Listing 10-20 shows how the client of the RSS provider-based service must
register XmlRssProvider with the service.

Listing 10-20: Registering XmlRssProvider

<configuration>
<system.webServer>

52539c10.qxd 9/17/07 10:04 PM Page 484

Listing 10-20: (continued)

<rss enabled="true" defaultProvider="XmlRssProvider" channelTitle="Title1"
channelDescription="Description1" channelLink="Link1">

<providers>
<add name="XmlRssProvider" connectionStringName="myDataFile"
item="//Article" itemTitle="@title"
itemDescription="Abstract/text()"
itemLink="@authorName"
type="Rss.Base.XmlRssProvider, Rss, Version=2.0.0.0,

Culture=Neutral, PublicKeyToken=a31626cc5fbb47c3" />

<add name="SqlRssProvider" connectionStringName="myConnectionString"
item="Select * From Articles"
itemTitle="Title" itemDescription="Abstract"
itemLink="AuthorName"
type="Rss.Base.SqlRssProvider, Rss, Version=2.0.0.0,

Culture=Neutral, PublicKeyToken=a31626cc5fbb47c3" />
</providers>

</rss>
</system.webServer>

</configuration>

Extending the Integrated Graphical
Management System

In this section, you extend the IIS 7 and ASP.NET integrated graphical management system to add
graphical management support for the RSS provider-based service to allow the clients of the service to
configure it right from the IIS 7 Manager. However, before diving into the implementation details of
these graphical management extensions, let’s see what these new extensions look like in action.

The users of your RSS provider-based service will use the following workflow to configure the service
from the IIS 7 Manager:

1. Navigate to the ConnectionStringsPage module list page to add one or more connection
strings. This standard module list page of the IIS 7 Manager provides the appropriate user inter-
face for adding connection strings to, removing connection strings from, and updating connec-
tion strings in the <connectionStrings> section of the underlying configuration file.

2. Navigate to the ProviderConfigurationConsolidatedPage module list page to add one or
more RSS providers. This standard module list page of the IIS 7 Manager provides the appropri-
ate user interface for adding providers to, removing providers from, updating providers in, and
renaming providers in the Collection XML element of the configuration section of a specified
provider-based service. This Collection XML element is normally named <providers>.

3. Navigate to the RssPage module dialog page. As you’ll see later, this module dialog page pro-
vides the appropriate user interface to specify configuration settings other than adding, remov-
ing, renaming, and updating providers. Adding, removing, renaming, and updating providers
must be performed from the ProviderConfigurationConsolidatedPage module list page.

485

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 485

Next, I show you how the user can use this three-step workflow to configure the RSS provider-based
service. As Figure 10-3 shows, the workspace of the IIS 7 Manager contains an item named Connection
Strings.

Figure 10-3

If the user double-clicks the Connection Strings item or selects this item and clicks the Open Feature link
in the task panel, the IIS 7 Manager will navigate to the ConnectionStringsPage module list page
shown in Figure 10-4.

Figure 10-4

486

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 486

If the user clicks the Add link in the task panel associated with the ConnectionStringsPage module
list page, it will launch the Add Connection String task form shown in Figure 10-5.

Figure 10-5

The Add Connection String task form allows the user to add a new connection string to the
<connectionStrings> section of the underlying configuration file. Let’s say the user enters the text
MyDataFile as the friendly name for the new connection string, selects the Custom radio button because
she wants to add a connection string for the XmlRssProvider, which does not use the SQL Server as the
back-end data store, and finally enters the text App_Data/Articles.xml into the Custom textfield. As you
can see, in this case the connection string contains the virtual path of an XML file named Articles.xml
located in the App_Data directory of the Web application that uses your RSS provider-based service to gen-
erate the RSS document. Listing 10-17 presents an example of such an XML file. Finally the user clicks the
OK button to add the connection string to the <connectionStrings> section of the configuration file.

The user then clicks the Add link in the task panel associated with the ConnectionStringsPage mod-
ule list page to launch the Add Connection String task form once more (see Figure 10-6). This time
around the user wants to add a connection string for the SqlRssProvider.

Figure 10-6

487

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 487

Next, the user enters MySqlConnectionString as the friendly name for the new connection string as
shown in Figure 10-6, the name of the SQL Server that contains the ArticlesDB database in the Server
textfield, and ArticlesDB into the Database textfield. Figures 10-1 and 10-2 show an example of such
database. Finally, the user clicks the OK button to add the new connection string to the
<connectionStrings> section of the configuration file.

As Figure 10-7 shows, the ConnectionStringsPage module list page now displays both of the newly
added connection strings.

Figure 10-7

Keep in mind that we’re following a typical user as she’s using our three-step workflow to configure the
RSS provider-based service. So far I’ve covered the first step, which is adding the required connection
strings to the <connectionStrings> section of the configuration file. Next, I discuss the second step of
the workflow. As Figure 10-8 shows, the Default Web Site Home page contains an item named RSS.

If the user double-clicks the RSS item or if the user selects the item and clicks the Open Feature link in
the task panel, the IIS 7 Manager will navigate to the RssPage module dialog page shown in Figure 10-9.

As you can see, the RssPage module dialog page contains three textboxes where the user can enter the
channel information. Let’s say the user enters the values shown in Figure 10-9 and clicks the Apply link
in the task panel associated with the RssPage module dialog page. This will add an <rss> configuration
section with the specified channel information to the web.config file of the Default Web Site. This
wraps up the second step of the three-step workflow for configuring your RSS provider-based service.
Next, I discuss the third step.

488

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 488

Figure 10-8

Figure 10-9

Next, the user clicks the Configure RSS provider link in the task panel associated with the RssPage
module dialog page (see Figure 10-9) to navigate to the ProviderConfigurationConsolidatedPage
module list page shown in Figure 10-10. If the user selects RSS from the Feature combo box, she’ll get the
result shown in this figure.

489

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 489

Figure 10-10

As you can see, the list view underneath of the Feature combo box is empty. This makes sense because
the user hasn’t registered any providers for your RSS provider-based service yet. Now if the user
clicks the Add link in the task panel associated with the ProviderConfigurationConsolidatedPage
module list page, it will launch the AddProviderForm task form shown in Figure 10-11.

Figure 10-11

490

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 490

As you can see from Figure 10-11, the Type combo box contains the following two items:

❑ SqlRssProvider (Rss.Base.SqlRssProvider)

❑ XmlRssProvider (Rss.Base.XmlRssProvider)

Let’s say the user selects the XmlRssProvider (Rss.Base.XmlRssProvider) item because she wants to
add an RSS provider of type XmlRssProvider and enters the text MyXmlRssProvider as the friendly
name of the new provider into the Name textbox as shown in Figure 10-12.

Figure 10-12

As Figure 10-12 shows, the PropertyGrid control underneath the Name textbox consists of two cate-
gories of properties. The first category named Item Information contains item-related properties includ-
ing Item, ItemInfo, ItemDescription, ItemTitle, ItemLink, and ItemLinkFormatString. The
second category named Misc contains miscellaneous properties including ApplicationName,
ConnectStringName, and Description.

As you’ll see later, the properties shown in the PropertyGrid control in Figure 10-12 are the
properties of an instance of a custom provider configuration settings class named
RssProviderConfigurationSettings, which is assigned to the SelectedObject property of
this PropertyGrid control. This will all be clear later in this chapter.

Now back to Figure 10-12. Let’s say the user enters the values shown in this figure into the appropriate
textboxes of the AddProviderForm task form and clicks OK to add the new provider to the <providers>
Collection XML element of the <rss> configuration section in the underlying configuration file.

Next the user clicks the Add link in the task panel associated with the
ProviderConfigurationConsolidatedPage module list page shown in Figure 10-10 to launch the
AddProviderForm task form once again as shown in Figure 10-13.

491

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 491

Figure 10-13

The user selects the SqlRssProvider option from the Type combo box because this time around she wants
to add an RSS provider of type SqlRssProvider and enters the text MySqlRssProvider as the friendly
name of the new provider. Let’s say the user enters the values shown in Figure 10-13 into the associated
textboxes of the PropertyGrid control shown in Figure 10-13 and clicks OK to add the provider to the
underlying configuration file. As Figure 10-14 shows, the ProviderConfigurationConsolidatedPage
module list page now displays the MySqlRssProvider and MyXmlRssProvider providers.

Figure 10-14

Next, the user needs to go back to the RssPage module dialog page shown in Figure 10-9 to specify a
default provider for the RSS provider-based service. The user clicks the Set default provider link in the

492

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 492

task panel associated with the RssPage module dialog page to launch the Set default provider task form
shown in Figure 10-15, selects the MyXmlRssProvider option from the Default Provider combo box, and
clicks OK to specify the MyXmlRssProvider provider as the default provider of the RSS provider-based
service.

Figure 10-15

Now that you’ve seen these graphical management extensions in action, it’s time to dive into the imple-
mentation details of these extensions.

As discussed in the previous chapters, extending the IIS 7 and ASP.NET integrated graphical manage-
ment system requires adding two sets of managed code: client-side and server-side managed code.

Add a new directory named GraphicalManagement to the Rss project and add two subdirectories
named Client and Server to the GraphicalManagement directory. These two subdirectories will
respectively contain the classes that will make up the client-side and server-side managed code.

Client-Side Managed Code
Take these steps to implement the client-side managed code:

1. Implement a custom provider configuration settings class to represent the configuration settings
of an RSS provider.

2. Implement a custom provider feature class to represent your RSS provider-based service.

3. Implement a custom section PropertyBag wrapper class.

4. Implement a custom module service proxy.

5. Implement a custom module page.

6. Implement a custom task form.

7. Implement a custom module.

I walk you through each of these steps in this section.

Implementing a Custom Provider Configuration Settings Class
Following the recipe, first you need to implement a custom provider configuration settings class named
RssProviderConfigurationSettings that inherits from the ProviderConfigurationSettings base
class as shown in Listing 10-21. Add a new source file named RssProviderConfigurationSettings.cs
to the GraphicalManagement/Client directory of the Rss project and add the code shown in List-
ing 10-21 to this source file.

493

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 493

494

Chapter 10: Extending the Integrated Providers Model

You also need to add a reference to the Microsoft.Web.Management.dll assembly to the Rss project.
This assembly is located in the following directory on your machine:

%WinDir%\System32\inetsrv

Listing 10-21: The RssProviderConfigurationSettings Class

using Microsoft.Web.Management.Client.Extensions;
using Microsoft.Web.Management.Client;
using System.Collections.Generic;
using System.Collections;
using System.ComponentModel;

namespace Rss.GraphicalManagement.Client
{
public sealed class RssProviderConfigurationSettings :

ProviderConfigurationSettings
{
private Hashtable settings;
public RssProviderConfigurationSettings()
{
this.settings = new Hashtable();

}

public override bool Validate(out string message)
{
if (this.ConnectionStringName.Length == 0)
{
message = "Connection string name is required";
return false;

}

if (this.Item.Length == 0)
{
message = "Item is required";
return false;

}

if (this.ItemTitle.Length == 0)
{
message = "Item’s title is required";
return false;

}

if (this.ItemDescription.Length == 0)
{
message = "Item’s description is required";
return false;

}

if (this.ItemLink.Length == 0)
{
message = "Item’s link is required";
return false;

52539c10.qxd 9/17/07 10:04 PM Page 494

Listing 10-21: (continued)

}

message = string.Empty;
return true;

}

public string ApplicationName
{
get
{
if (this.settings["applicationName"] != null)
return (string)this.settings["applicationName"];

return string.Empty;
}

set { this.settings["applicationName"] = value; }
}

public string ConnectionStringName
{
get
{
if (this.settings["connectionStringName"] != null)
return (string)this.settings["connectionStringName"];

return string.Empty;
}

set { this.settings["connectionStringName"] = value; }
}

public string Description
{
get
{
if (this.settings["description"] != null)
return (string)this.settings["description"];

return string.Empty;
}

set { this.settings["description"] = value; }
}

[Category("Item Information")]
[Description("Selects the item records from the underlying data store")]
public string Item
{
get
{
if (this.settings["item"] != null)

495

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 495

Listing 10-21: (continued)

return (string)this.settings["item"];

return string.Empty;
}

set { this.settings["item"] = value; }
}

[Category("Item Information")]
[Description("Provides the select operation with extra information")]
public string ItemInfo
{
get
{
if (this.settings["itemInfo"] != null)
return (string)this.settings["itemInfo"];

return string.Empty;
}

set { this.settings["itemInfo"] = value; }
}

[Category("Item Information")]
[Description("Selects the title information from an item record")]
public string ItemTitle
{
get
{
if (this.settings["itemTitle"] != null)
return (string)this.settings["itemTitle"];

return string.Empty;
}

set { this.settings["itemTitle"] = value; }
}

[Category("Item Information")]
[Description("Selects the description information from an item record")]
public string ItemDescription
{
get
{
if (this.settings["itemDescription"] != null)
return (string)this.settings["itemDescription"];

return string.Empty;
}

set { this.settings["itemDescription"] = value; }
}

496

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 496

497

Chapter 10: Extending the Integrated Providers Model

Listing 10-21: (continued)

[Category("Item Information")]
[Description("Selects the link information from an item record")]
public string ItemLink
{
get
{
if (this.settings["itemLink"] != null)
return (string)this.settings["itemLink"];

return string.Empty;
}

set { this.settings["itemLink"] = value; }
}

[Category("Item Information")]
[Description("Specifies the link format string")]
public string ItemLinkFormatString
{
get
{
if (this.settings["itemLinkFormatString"] != null)
return (string)this.settings["itemLinkFormatString"];

return string.Empty;
}

set { this.settings["itemLinkFormatString"] = value; }
}

protected override IDictionary Settings
{
get { return this.settings; }

}
}

}

Note that the constructor of RssProviderConfigurationSettings instantiates a Hashtable named
settings. RssProviderConfigurationSettings also overrides the Settings property of its base class
to return a reference to this settings private field. Note that RssProviderConfigurationSettings
exposes the same properties as the PropertyGrid control in the AddProviderForm task form shown in
Figures 10-11 and 10-12. This is no coincidence because when this task form is launched, an instance of the
RssProviderConfigurationSettings class is assigned to the SelectedObject property of this
PropertyGrid control.

This also means that when the user edits the properties shown in this PropertyGrid control, the control
automatically updates the corresponding properties of the RssProviderConfigurationSettings
instance.

52539c10.qxd 9/17/07 10:04 PM Page 497

Also note that RssProviderConfigurationSettings overrides the Validate method of the
ProviderConfigurationSettings base class, to ensure that the end user has specified values for the
required properties. As discussed earlier, the event handler for the Click event of the OK button of the
AddProviderForm task form invokes the Validate method before it attempts to commit the changes to
the underlying configuration file.

Implementing a Custom Provider Feature
The next step in the recipe is to implement a custom provider feature named
RssProviderConfigurationFeature as shown in Listing 10-22. Next, add a new source file named
RssProviderConfigurationFeature.cs to the Client directory and add the code shown in
Listing 10-22 to this source file.

Listing 10-22: The RssProviderConfigurationFeature Class

using Microsoft.Web.Management.Client.Extensions;
using Microsoft.Web.Management.Client;

namespace Rss.GraphicalManagement.Client
{
public sealed class RssProviderConfigurationFeature : ProviderFeature
{
private RssPage owner;
private string selectedProvider;

public RssProviderConfigurationFeature() { }
internal RssProviderConfigurationFeature(RssPage owner)
{
this.owner = owner;

}

internal RssProviderConfigurationFeature(RssPage owner,
string selectedProvider)

{
this.owner = owner;
this.selectedProvider = selectedProvider;

}

public override string ConnectionStringAttributeName
{
get { return "connectionStringName"; }

}

public override bool ConnectionStringRequired
{
get { return true; }

}

public override string FeatureName
{
get { return "RSS"; }

}

498

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 498

Listing 10-22: (continued)

public override string ProviderBaseType
{
get { return "Rss.Base.RssProvider"; }

}

public override string ProviderCollectionPropertyName
{
get { return "providers"; }

}

public override string[] ProviderConfigurationSettingNames
{
get
{
return new string[] {

"applicationName", "description", "connectionStringName",
"item", "itemInfo", "itemTitle", "itemDescription",
"itemLink", "itemLinkFormatString"

};
}

}

public override string SectionName
{
get { return "system.webServer/rss"; }

}

public override string SelectedProvider
{
get
{
if (this.selectedProvider == null)
return string.Empty;

return this.selectedProvider;
}

}

public override string SelectedProviderPropertyName
{
get { return "defaultProvider"; }

}

public override ProviderConfigurationSettings Settings
{
get { return new RssProviderConfigurationSettings(); }

}
}

}

499

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 499

RssProviderConfigurationFeature performs the following tasks:

❑ Overrides the ConnectionStringAttributeName property of its base class to specify
"connectionStringName" as the name of the attribute — on an <add> that registers an RSS
provider — that specifies the connection string name.

❑ Overrides the ConnectionStringRequired property of its base class to return true to specify
that the connection string name is required.

❑ Overrides the FeatureName property of its base class to specify "RSS" as the feature name.
This name will appear in the Feature combo box that displays the list of available features or
provider-based services.

❑ Overrides the ProviderBaseType property of its base class to specify "Rss.Base.RssProvider"
as the fully qualified name of the provider base type from which all RSS providers inherit. As dis-
cussed earlier, this information is used to populate the Type combo box in the AddProviderForm
task form that displays the list of available provider types for a specified provider-based service.

❑ Overrides the ProviderCollectionPropertyName property of its base class to specify
"providers" as the name of the Collection XML element of the <rss> configuration section.
This is the Collection XML element that contains the Add XML elements (normally named
<add>) that clients use to add new RSS providers.

❑ Overrides the ProviderConfigurationSettingNames property of its base class to specify
"applicationName", "description", "connectionStringName", "item", "itemInfo",
"itemDescription", "itemTitle", "itemLink", and "itemLinkFormatString" as the
names of the attributes (other than name and type attributes) on the Add XML elements that
clients use to add new RSS providers. To put it differently, the
ProviderConfigurationSettingNames property returns an array that contains the names of
the configuration settings of an RSS provider, hence the name
ProviderConfigurationSettingNames.

❑ Overrides the SectionName property of its base class to specify "system.webServer/rss" as the
fully qualified name of the configuration section associated with the provider-based RSS service.

❑ Overrides the SelectedProvider property of its base class to return the friendly name of the
default provider.

❑ Overrides the SelectedProviderPropertyName property of its base class to specify
"defaultProvider" as the name of the attribute (on the configuration section) that specifies
the friendly name of the default provider.

❑ Overrides the Settings property of its base class to return an instance of the
RssProviderConfigurationSettings class.

Implementing a Custom Section PropertyBag Wrapper Class
As you’ll see later in this chapter, the client-side and server-side managed code use a PropertyBag col-
lection to exchange the channel information. The main problem with the PropertyBag collection is that
you can’t program against the collection in a strongly-typed fashion. That is why you need to implement
a class named RssSectionInfo to expose the content of this PropertyBag collection as strongly-typed
properties. This class will provide you with the following programming benefits:

❑ You can take advantage of Visual Studio IntelliSense support to catch problems as you’re coding.

500

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 500

❑ You can take advantage of the compiler’s type-checking support to catch problems as you’re
compiling.

❑ You can take advantage of the well-known object-oriented benefits.

Note that this PropertyBag collection contains the following three pieces of information:

❑ A string value that specifies the channel title

❑ A string value that specifies the channel description

❑ A string value that specifies the channel link

As Listing 10-23 shows, the constructor of the RssSectionInfo class takes a PropertyBag collection as
its argument as you would expect. Add a new source file named RssSectionInfo.cs to the Client
directory and add the code shown in Listing 10-23 to this source file.

Listing 10-23: The RssSectionInfo Class

using Microsoft.Web.Management.Server;

namespace Rss.GraphicalManagement.Client
{
public sealed class RssSectionInfo
{
private PropertyBag bag;

public RssSectionInfo(PropertyBag bag)
{
this.bag = bag.Clone();

}

public string ChannelTitle
{
get { return (string)this.bag[0]; }

}

public string ChannelDescription
{
get { return (string)this.bag[1]; }

}

public string ChannelLink
{
get { return (string)this.bag[2]; }

}

public bool ReadOnly
{
get { return (bool)this.bag[3]; }

}

public bool Enabled
{

501

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 501

Listing 10-23: (continued)

get { return (bool)this.bag[4]; }
}

}
}

Note that RssSectionInfo exposes the first, second, third, fourth, and fifth items in the PropertyBag
collection as strongly-typed properties named ChannelTitle, ChannelDescription, ChannelLink,
ReadOnly, and Enabled, respectively.

Implementing a Custom Module Service Proxy
Following the recipe, next you need to implement a proxy class named RssModuleServiceProxy that
inherits from the ModuleServiceProxy base class as shown in Listing 10-24. Add a new source file
named RssModuleServiceProxy.cs to the Client directory and add the code shown in this code list-
ing to this source file.

Listing 10-24: The RssModuleServiceProxy Class

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using Microsoft.Web.Management.Client;
using System.Web.Configuration;

namespace Rss.GraphicalManagement.Client
{
class RssModuleServiceProxy : ModuleServiceProxy
{
public void EnableRss()
{
base.Invoke("EnableRss", new object[0]);

}

public void DisableRss()
{
base.Invoke("DisableRss", new object[0]);

}

public PropertyBag GetSettings()
{
return (PropertyBag)base.Invoke("GetSettings", new object[0]);

}

public void UpdateChannelSettings(PropertyBag updatedChannelSettings)
{
base.Invoke("UpdateChannelSettings",

new object[] { updatedChannelSettings });
}

502

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 502

503

Chapter 10: Extending the Integrated Providers Model

Listing 10-24: (continued)

public PropertyBag GetProviders()
{
return (PropertyBag)base.Invoke("GetProviders", new object[0]);

}
}

}

As you can see, all methods of this proxy class call the Invoke method of the base class to invoke the
associated methods of the underlying server-side class.

Implementing a Custom Module Page
Listing 10-25 presents the declaration of the members of the RssPage module dialog page. Note that the
constructor of this class invokes the InitializeComponent method to create the user interface of the
module dialog page. I discuss the members of this module dialog page in the following sections. Now
go ahead and add a new source file named RssPage.cs to the Client directory and add the code
shown in Listing 10-25 to this source file. You also need to add references to the System.Windows
.Forms.dll and System.Drawing.dll assemblies to the Rss project.

Listing 10-25: The RssPage Module Page

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using Microsoft.Web.Management.Client;
using System.Web.Configuration;
using Microsoft.Web.Management.Client.Win32;
using System.Windows.Forms;
using System.ComponentModel;
using System.Collections;
using System.Drawing;

namespace Rss.GraphicalManagement.Client
{
class RssPage : ModuleDialogPage
{
public RssPage()
{
this.rssEnabled = true;
InitializeComponent();

}

private PropertyBag clone;
private Label channelTitleLabel;
private TextBox channelTitleTextBox;
private Label channelDescriptionLabel;
private TextBox channelDescriptionTextBox;
private Label channelLinkLabel;
private TextBox channelLinkTextBox;

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 503

Listing 10-25: (continued)

private bool hasChanges;
private PropertyBag bag;
private RssSectionInfo localInfo;
private bool errorGetSettings;
private bool rssEnabled;
private RssModuleServiceProxy serviceProxy;
private IProviderConfigurationService providerConfigurationService;
private PageTaskList taskList;
private bool readOnly;

private void InitializeComponent();
private void OnChannelTitleTextBoxTextBoxTextChanged(object sender,

EventArgs e);
private void OnChannelDescriptionTextBoxTextChanged(object sender,

EventArgs e);
private void OnChannelLinkTextBoxTextChanged(object sender, EventArgs e);
private void UpdateUIState();
protected override bool HasChanges { get; }
protected override bool CanApplyChanges { get; }
protected override void OnActivated(bool initialActivation);
private void GetSettings();
private void OnWorkerGetSettings(object sender, DoWorkEventArgs e);
private void OnWorkerGetSettingsCompleted(object sender,

RunWorkerCompletedEventArgs e);
private void InitializeUI();
private void ClearChannelSettings();
protected override bool ApplyChanges();
private void GetChannelValues();
protected override void CancelChanges();
private sealed class PageTaskList : TaskList { . . . }
private void EnableRss();
private void DisableRss();
private void ConfigureRssProvider();
internal void SetDefaultProvider();
protected override TaskListCollection Tasks { get; }
private IProviderConfigurationService ProviderConfigurationService { get; }
protected sealed override bool ReadOnly { get; }
protected bool RssEnabled { get; }
protected override bool CanRefresh { get; }
protected override void OnRefresh();

}
}

InitializeComponent
Listing 10-26 contains the code for the InitializeComponent method. The main job of this method is
to create the user interface of the RssPage module dialog page. Now replace the declaration of the
InitializeComponent method in the RssPage.cs file with the code shown in Listing 10-26.

504

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 504

505

Chapter 10: Extending the Integrated Providers Model

Listing 10-26: The InitializeComponent Method

private void InitializeComponent()
{
channelTitleLabel = new Label();
channelTitleTextBox = new TextBox();
channelDescriptionLabel = new Label();
channelDescriptionTextBox = new TextBox();
channelLinkLabel = new Label();
channelLinkTextBox = new TextBox();

base.SuspendLayout();

channelTitleLabel.Location = new Point(0, 30);
channelTitleLabel.Name = "channelTitleLabel";
channelTitleLabel.AutoSize = true;
channelTitleLabel.TabIndex = 0;
channelTitleLabel.Text = "Channel Title:";
channelTitleLabel.TextAlign = ContentAlignment.MiddleLeft;

channelTitleTextBox.Location = new Point(110, 30);
channelTitleTextBox.Name = "channelTitleTextBox";
channelTitleTextBox.Width = 250;
channelTitleTextBox.TabIndex = 1;
channelTitleTextBox.TextChanged +=

new EventHandler(OnChannelTitleTextBoxTextBoxTextChanged);

channelDescriptionLabel.Location = new Point(0, 80);
channelDescriptionLabel.Name = "channelDescriptionLabel";
channelDescriptionLabel.AutoSize = true;
channelDescriptionLabel.TabIndex = 2;
channelDescriptionLabel.Text = "Channel Description:";
channelDescriptionLabel.TextAlign = ContentAlignment.MiddleLeft;

channelDescriptionTextBox.Location = new Point(110, 80);
channelDescriptionTextBox.Name = "channelTitleTextBox";
channelDescriptionTextBox.Width = 250;
channelDescriptionTextBox.TabIndex = 3;
channelDescriptionTextBox.TextChanged +=

new EventHandler(OnChannelDescriptionTextBoxTextChanged);

channelLinkLabel.Location = new Point(0, 130);
channelLinkLabel.Name = "channelLinkLabel";
channelLinkLabel.AutoSize = true;
channelLinkLabel.TabIndex = 4;
channelLinkLabel.Text = "Channel Link:";
channelLinkLabel.TextAlign = ContentAlignment.MiddleLeft;

channelLinkTextBox.Location = new Point(110, 130);
channelLinkTextBox.Name = "channelLinkTextBox";
channelLinkTextBox.Width = 250;
channelLinkTextBox.TabIndex = 5;
channelLinkTextBox.TextChanged +=

new EventHandler(OnChannelLinkTextBoxTextChanged);

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 505

Listing 10-26: (continued)

AutoScroll = true;
base.AutoScaleMode = AutoScaleMode.Font;
base.AutoScaleDimensions = new SizeF(6f, 13f);
base.ClientSize = new System.Drawing.Size(0x1d8, 0x228);

base.Controls.Add(channelTitleLabel);
base.Controls.Add(channelTitleTextBox);
base.Controls.Add(channelDescriptionLabel);
base.Controls.Add(channelDescriptionTextBox);
base.Controls.Add(channelLinkLabel);
base.Controls.Add(channelLinkTextBox);

base.ResumeLayout(false);
}

Next, I walk you through the implementation of the InitializeComponent method. This method
begins by creating a textbox that allows the user to specify the channel title, a label to display the text
that appears next to this textbox, a textbox that allows the end user to specify the channel description, a
label to display the text that appears next to this textbox, a textbox that allows the end user to specify the
channel link, and a label to display the text that appears next to this text box.

channelTitleLabel = new Label();
channelTitleTextBox = new TextBox();
channelDescriptionLabel = new Label();
channelDescriptionTextBox = new TextBox();
channelLinkLabel = new Label();
channelLinkTextBox = new TextBox();

Next, the InitializeComponent method registers the OnChannelTitleTextBoxTextBoxTextChanged,
OnChannelDescriptionTextBoxTextChanged, and OnChannelLinkTextBoxTextChanged methods as
event handlers for the TextChanged events of the three textbox controls it just created:

channelTitleTextBox.TextChanged +=
new EventHandler(OnChannelTitleTextBoxTextBoxTextChanged);

channelDescriptionTextBox.TextChanged +=
new EventHandler(OnChannelDescriptionTextBoxTextChanged);

channelLinkTextBox.TextChanged +=
new EventHandler(OnChannelLinkTextBoxTextChanged);

Finally, the InitializeComponent method adds the label and textbox controls to the Controls collec-
tion of the RssPage module dialog page:

base.Controls.Add(channelTitleLabel);
base.Controls.Add(channelTitleTextBox);
base.Controls.Add(channelDescriptionLabel);
base.Controls.Add(channelDescriptionTextBox);

506

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 506

base.Controls.Add(channelLinkLabel);
base.Controls.Add(channelLinkTextBox);

Listing 10-27 presents the implementation of the callback methods for the TextChanged events of the
textbox controls. Note that all three methods invoke the UpdateUIState method, which in turn sets the
hasChanges Boolean field to true and calls the Update method to update the user interface. Replace
the declaration of these three methods and the UpdateUIState method in the RssPage.cs file with the
code shown in Listing 10-27.

Listing 10-27: The Callback Methods for the TextChanged Event of the Textbox
Controls

private void OnChannelTitleTextBoxTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void OnChannelDescriptionTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void OnChannelLinkTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void UpdateUIState()
{
this.hasChanges = true;
base.Update();

}

Also note that RssPage module dialog page overrides the HasChanges and CanApplyChanges proper-
ties of its base class to return the value of the hasChanges field. Replace the declaration of these two
properties in the RssPage.cs file with the code shown in Listing 10-28.

Listing 10-28: The HasChanges and CanApplyChanges Properties

protected override bool HasChanges
{
get { return this.hasChanges; }

}

protected override bool CanApplyChanges
{
get { return this.hasChanges; }

}

507

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 507

OnActivated
The RssPage module dialog page overrides the OnActivated method as shown in Listing 10-29.
If the module dialog page is being activated for the first time, the method first instantiates the
RssModuleServiceProxy proxy class and then calls the GetSettings method. Replace the declaration
of the OnActivated method in the RssPage.cs file with the code shown in Listing 10-29.

Listing 10-29: The OnActivated Method

protected override void OnActivated(bool initialActivation)
{
base.OnActivated(initialActivation);
if (initialActivation)
{
this.serviceProxy = (RssModuleServiceProxy)base.CreateProxy(

typeof(RssModuleServiceProxy));
this.GetSettings();

}
}

As you can see from Listing 10-30, the GetSettings method invokes the StartAsyncTask method,
passing in a delegate of type DoWorkEventHandler that represents the OnWorkerGetSettings
method, and a delegate of type RunWorkerCompletedEventHandler that represents the
OnWorkerGetSettingsCompleted method. Now replace the declaration of the GetSettings method
in the RssPage.cs file with the code shown in Listing 10-30.

Listing 10-30: The GetSettings Method

private void GetSettings()
{
base.StartAsyncTask("Getting settings...",

new DoWorkEventHandler(this.OnWorkerGetSettings),
new RunWorkerCompletedEventHandler(

this.OnWorkerGetSettingsCompleted));
this.hasChanges = false;

}

As Listing 10-31 shows, the OnWorkerGetSettings method simply invokes the GetSettings method
on the proxy object. Now replace the declaration of the OnWorkerGetSettings method in the
RssPage.cs file with the code shown in Listing 10-31.

Listing 10-31: The OnWorkerGetSettings Method

private void OnWorkerGetSettings(object sender, DoWorkEventArgs e)
{
e.Result = this.serviceProxy.GetSettings();

}

When the server response arrives, the OnWorkerGetSettingsCompleted method shown in List-
ing 10-32 is automatically invoked. This method first accesses the PropertyBag collection that contains
the server data:

this.bag = (PropertyBag)e.Result;

508

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 508

Next, it instantiates an RssSectionInfo object to expose the content of this PropertyBag collection as
strongly-typed properties and stores this object in a private field named localInfo:

this.localInfo = new RssSectionInfo(this.bag);

Then, it assigns the ReadOnly property of the localInfo object to the readOnly field. Recall that the
ReadOnly property reflects the value of the isLocked attribute on the <rss> configuration section:

this.readOnly = this.localInfo.ReadOnly;

Next, it assigns the Enabled property of the localInfo object to the rssEnabled field. Recall that the
Enabled property reflects the value of the enabled attribute on the <rss> configuration section:

this.rssEnabled = this.localInfo.Enabled;

Finally, it invokes the InitializeUI method:

this.InitializeUI();

Now replace the declaration of the OnWorkerGetSettingsCompleted method in the RssPage.cs file
with the code shown in Listing 10-32.

Listing 10-32: The OnWorkerGetSettingsCompleted Method

private void OnWorkerGetSettingsCompleted(object sender,
RunWorkerCompletedEventArgs e)

{
try
{
this.bag = (PropertyBag)e.Result;
this.localInfo = new RssSectionInfo(this.bag);
this.readOnly = this.localInfo.ReadOnly;
this.rssEnabled = this.localInfo.Enabled;
this.errorGetSettings = false;

}
catch (Exception exception1)
{
base.StopProgress();
base.DisplayErrorMessage(exception1.Message,

"DoWorkerGetSettingsCompleted");
this.errorGetSettings = true;

}
finally
{
if (this.bag != null)
this.InitializeUI();

this.hasChanges = false;
}

}

509

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 509

As Listing 10-33 shows, the InitializeUI method first calls the ClearChannelSettings method to
clear the textbox controls:

ClearChannelSettings();

Then, it populates these textbox controls with the channel information received from the server:

this.channelTitleTextBox.Text = localInfo.ChannelTitle;
this.channelDescriptionTextBox.Text = localInfo.ChannelDescription;
this.channelLinkTextBox.Text = localInfo.ChannelLink;

Now replace the declaration of the InitializeUI and ClearChannelSettings methods in the
RssPage.cs file with the code shown in Listing 10-33.

Listing 10-33: The InitializeUI and ClearChannelSettings Methods

private void InitializeUI()
{
if (localInfo == null)
return;

ClearChannelSettings();
this.channelTitleTextBox.Text = localInfo.ChannelTitle;
this.channelDescriptionTextBox.Text = localInfo.ChannelDescription;
this.channelLinkTextBox.Text = localInfo.ChannelLink;

}

private void ClearChannelSettings()
{
this.channelTitleTextBox.Clear();
this.channelDescriptionTextBox.Clear();
this.channelLinkTextBox.Clear();

}

ApplyChanges
The RssPage module dialog page overrides the ApplyChanges method to contain the logic that must be
run when the end user clicks the Apply link button on the task panel associated with the module dialog
page as shown in Listing 10-34. Now replace the declaration of the ApplyChanges method in the
RssPage.cs file with the code shown in this code listing.

Listing 10-34: The ApplyChanges Method

protected override bool ApplyChanges()
{
bool flag = false;
try
{
Cursor.Current = Cursors.WaitCursor;
GetChannelValues();
this.serviceProxy.UpdateChannelSettings(this.clone);
this.bag = this.clone;

510

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 510

Listing 10-34: (continued)

this.localInfo = new RssSectionInfo(this.bag);
flag = true;
this.hasChanges = false;

}
catch (Exception exception)
{
base.DisplayErrorMessage(exception.Message, "ApplyChanges");

}
finally
{
Cursor.Current = Cursors.Default;
base.Update();

}

return flag;
}

ApplyChanges first invokes the GetChannelValues method to extract the channel information from
the associated textbox controls:

GetChannelValues();

Then, it invokes the UpdateChannelSettings method on the proxy passing in the PropertyBag col-
lection that contains the extracted channel information to update the underlying configuration file:

this.serviceProxy.UpdateChannelSettings(this.clone);

As Listing 10-35 shows, GetChannelValues clones a new PropertyBag collection, extracts the values
the user had entered into the associated textbox controls, and stores these values into this PropertyBag
collection. Now replace the declaration of the GetChannelValues method in the RssPage.cs file with
the code shown in Listing 10-35.

Listing 10-35: The GetChannelValues Method

private void GetChannelValues()
{
this.clone = this.bag.Clone();
this.clone[0] = this.channelTitleTextBox.Text;
this.clone[1] = this.channelDescriptionTextBox.Text;
this.clone[2] = this.channelLinkTextBox.Text;

}

CancelChanges
The RssPage module page overrides the CancelChanges method to include the logic that must be run
when the end user clicks the Cancel link button on the task panel associated with the module page as
shown in Listing 10-36. This method first invokes the InitializeUI method discussed earlier and then
calls the Update method to update the user interface. Now replace the declaration of the
CancelChanges method in the RssPage.cs file with the code shown in Listing 10-36.

511

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 511

Listing 10-36: The CancelChanges Method

protected override void CancelChanges()
{
this.InitializeUI();
this.hasChanges = false;
base.Update();

}

PageTaskList
The RssPage module dialog page, like any other module page, contains a nested private class named
PageTaskList that inherits the TaskList base class as shown in Listing 10-37. Now replace the decla-
ration of the PageTaskList nested class in the RssPage.cs file with the code shown Listing 10-37.

Listing 10-37: The PageTaskList Class

private sealed class PageTaskList : TaskList
{
public PageTaskList(RssPage owner)
{
this.owner = owner;

}

public override ICollection GetTaskItems()
{
ArrayList list = new ArrayList();
if (!this.owner.errorGetSettings)
{
if (this.owner.RssEnabled)
{
if (!this.owner.ReadOnly)
list.Add(new MethodTaskItem("DisableRss", "Disable",

"EnableDisable", "Disables RSS"));
}

else
{
list.Add(new MessageTaskItem(MessageTaskItemType.Information,

"RssDisabledMessage", "RssDisabled"));
if (!this.owner.ReadOnly)
list.Add(new MethodTaskItem("EnableRss", "Enable",

"EnableDisable", "Enables RSS"));
}

}

if (!this.owner.ReadOnly &&
(this.owner.ProviderConfigurationService != null))

{
list.Add(new MethodTaskItem("SetDefaultProvider", "Set default provider",

"EnableDisable"));
list.Add(new TextTaskItem("Related Features", "Providers", true));
list.Add(new MethodTaskItem("ConfigureRssProvider",

512

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 512

513

Chapter 10: Extending the Integrated Providers Model

Listing 10-37: (continued)

"Configure RSS provider", "Providers",
"Configure RSS provider"));

}

return (TaskItem[])list.ToArray(typeof(TaskItem));
}

public void SetDefaultProvider()
{
this.owner.SetDefaultProvider();

}

public void ConfigureRssProvider()
{
this.owner.ConfigureRssProvider();

}

public void EnableRss()
{
this.owner.EnableRss();

}

public void DisableRss()
{
this.owner.DisableRss();

}

private RssPage owner;
}

Next, I walk you through the implementation of the GetTaskItems method. This method begins by
instantiating an ArrayList:

ArrayList list = new ArrayList();

If the RssPage module page had no problem downloading the configuration settings from the server,
GetTaskItems checks whether the RSS service is enabled. If so, and if the underlying configuration
section is not locked, the GetTaskItems method creates a MethodTaskItem task item to represent
the Disable link button on the task panel associated with the RssPage module page and adds this
MethodTaskItem task item to the ArrayList. Note that GetTaskItems registers the DisableRss
method as an event handler for the Click event of the Disable link button. As Listing 10-37 shows, the
DisableRss method of PageTaskList delegates to the DisableRss method of RssPage module dia-
log page.

if (this.owner.rssEnabled)
{
if (!this.owner.ReadOnly)
list.Add(new MethodTaskItem("DisableRss", "Disable",

"EnableDisable", "Disables RSS"));
}

52539c10.qxd 9/17/07 10:04 PM Page 513

If the RSS service is disabled, GetTaskItems first creates an informational MessageTaskItem task item
to display a message that informs the user that the service is disabled and adds this MessageTaskItem
task item to the ArrayList. Then, if the underlying configuration section is not locked, it creates a
MethodTaskItem task item to represent the Enable link button on the task panel associated with the
RssPage module dialog page and adds this MessageTaskItem task item to the ArrayList. Note that
GetTaskItem registers the EnableRss method as an event handler for Click event of the Enable link
button. As Listing 10-37 shows, the EnableRss method of PageTaskList delegates to the EnableRss
method of RssPage dialog page.

else
{
list.Add(new MessageTaskItem(MessageTaskItemType.Information,

"RssDisabledMessage", "RssDisabled"));
if (!this.owner.ReadOnly)
list.Add(new MethodTaskItem("EnableRss", "EnableTask",

"EnableDisable", "Enables RSS"));
}

Next, GetTaskItem checks whether both of the following two conditions are met:

❑ The underlying configuration section is not locked. Recall that the ReadOnly property of the
RssPage module dialog page reflects the value of the isLocked attribute on the <rss> configu-
ration section.

❑ The ProviderConfigurationService property of the RssPage module dialog has been set. I
discuss the significance of this property and what this property references later in this chapter.

If both of these conditions are met, the GetTaskItems method takes these steps:

1. Creates a MethodTaskItem task item to represent the “Set default provider” link button and
adds this MethodTaskItem task item to the ArrayList. Note that GetTaskItems registers the
SetDefaultProvider method as an event handler for the Click event of the “Set default
provider” link button. As Listing 10-37 shows, the SetDefaultProvider method delegates to
the SetDefaultProvider method of the RssPage module dialog page.

list.Add(new MethodTaskItem("SetDefaultProvider", "Set default provider",
"EnableDisable"));

2. Creates a TextTaskItem to represent the Related Features header text and adds this
TextTaskItem task item to the ArrayList.

list.Add(new TextTaskItem("Related Features", "Providers", true));

3. Creates a MethodTaskItem task item to represent the “Configure RSS provider” link button and
adds this MethodTaskItem task item to the ArrayList. Note that it also registers the
ConfigureRssProvider method as an event handler for the Click event of the “Configure
RSS provider” link button. As Listing 10-37 shows, the ConfigureRssProvider methods dele-
gate to the ConfigureRssProvider methods of the RssPage module dialog page.

list.Add(new MethodTaskItem("ConfigureRssProvider", "Configure RSS provider",
"Providers", "Configure RSS provider"));

514

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 514

Finally, GetTaskItems loads the content of the ArrayList into an array and returns this array, which
contains all the task items that the GetTaskItems method has added, to its caller.

return (TaskItem[])list.ToArray(typeof(TaskItem));

EnableRss
As Listing 10-38 shows, the EnableRss method of RssPage module dialog page invokes the EnableRss
method on the proxy to enable the RSS service in the underlying configuration file. Now replace the dec-
laration of the EnableRss method in the RssPage.cs file with the code shown in Listing 10-38.

Listing 10-38: The EnableRss Method

private void EnableRss()
{
try
{
Cursor.Current = Cursors.WaitCursor;
this.serviceProxy.EnableRss();

}

catch (Exception exception)
{
base.DisplayErrorMessage(exception, null);

}

finally
{
this.rssEnabled = true;
Cursor.Current = Cursors.Default;
this.Refresh();

}
}

DisableRss
As you can see from Listing 10-39, the DisableRss method first ensures that the end user does indeed
want to disable the RSS service and then invokes the DisableRss method on the proxy to disable the
service in the underlying configuration file. Now replace the declaration of the DisableRss method in
the RssPage.cs file with the code shown in Listing 10-39.

Listing 10-39: The DisableRss Method

private void DisableRss()
{
if (base.ShowMessage("Do you really want to disable RSS?",

MessageBoxButtons.YesNoCancel, MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2) == DialogResult.Yes)

{
try
{
Cursor.Current = Cursors.WaitCursor;

515

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 515

516

Chapter 10: Extending the Integrated Providers Model

Listing 10-39: (continued)

this.serviceProxy.DisableRss();
this.rssEnabled = false;

}

catch (Exception exception)
{
base.DisplayErrorMessage(exception, null);

}

finally
{
Cursor.Current = Cursors.Default;
this.Refresh();

}
}

}

ConfigureRssProvider
As Listing 10-40 illustrates, this method instantiates an RssProviderConfigurationFeature provider
feature and invokes the ConfigureProvider method on the ProviderConfigurationService prop-
erty, passing in this provider feature. Now replace the declaration of the ConfigureRssProvider
method in the RssPage.cs file with the code shown Listing 10-40.

Listing 10-40: The ConfigureRssProvider Method

private void ConfigureRssProvider()
{
this.ProviderConfigurationService.ConfigureProvider(

new RssProviderConfigurationFeature(this));
}

SetDefaultProvider
As Listing 10-41 shows, the SetDefaultProvider method of the RssPage module dialog page instanti-
ates an RssSettingsForm task form and displays it to the end user. As you’ll see later in this chapter,
this task form contains a combo box that displays the list of available providers to choose from. The end
user chooses a provider from the list and clicks the OK button on the task form to commit the changes
to the underlying configuration file. Now replace the declaration of the SetDefaultProvider method
in the RssPage.cs file with the code shown Listing 10-41.

Listing 10-41: The SetDefaultProvider Method

internal void SetDefaultProvider()
{
using (RssSettingsForm form =
new RssSettingsForm(base.Module, this, this.serviceProxy,

this.ProviderConfigurationService))
{
if ((base.ShowDialog(form) == DialogResult.OK) && form.HasChanges)

52539c10.qxd 9/17/07 10:04 PM Page 516

Listing 10-41: (continued)

this.Refresh();
}

}

Tasks
The RssPage module dialog page, like any other module page, overrides the Tasks property as shown
in Listing 10-42. Now replace the declaration of the Tasks property in the RssPage.cs file with the
code shown in Listing 10-42.

Listing 10-42: The Tasks Property

protected override TaskListCollection Tasks
{
get
{
if (this.taskList == null)
this.taskList = new PageTaskList(this);

TaskListCollection tasks = base.Tasks;
tasks.Add(this.taskList);
return tasks;

}
}

ProviderConfigurationService
The RssPage module dialog page exposes a property of type IProviderConfigurationService named
ProviderConfigurationService as shown in Listing 10-43. When this property is accessed for the first
time, it automatically calls the GetService method to access the provider configuration service and stores
this service in a private field. As discussed in the previous chapter, the provider configuration service
returned from the GetService method references the ProviderConfigurationModule instance that regis-
ters the ProviderConfigurationConsolidatedPage module list page with the IIS 7 and ASP.NET inte-
grated infrastructure (see Listing 9-17). Replace the declaration of the ProviderConfigurationService
property in the RssPage.cs file with the code shown in Listing 10-43.

Listing 10-43: The ProviderConfigurationService Property

private IProviderConfigurationService ProviderConfigurationService
{
get
{
if (this.providerConfigurationService == null)
this.providerConfigurationService =
(IProviderConfigurationService)base.GetService(

typeof(IProviderConfigurationService));

return this.providerConfigurationService;
}

}

517

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 517

ReadOnly
As you can see from Listing 10-44, the RssPage module dialog page overrides the ReadOnly property to
return the value of the readOnly field. Recall that this field reflects the value of the isLocked attribute
on the underlying <rss> configuration section. Now replace the declaration of the ReadOnly property
in the RssPage.cs file with the code shown Listing 10-44.

Listing 10-44: The ReadOnly Property

protected sealed override bool ReadOnly
{
get { return this.readOnly; }

}

Refreshing
The RssPage module dialog page overrides two refreshing related members as shown in Listing 10-45. The
CanRefresh property returns true to specify that this module dialog page is refreshable. The OnRefresh
method simply calls the GetSettings method discussed earlier. Now replace the declaration of the
CanRefresh property and OnRefresh method in the RssPage.cs file with the code shown Listing 10-45.

Listing 10-45: The CanRefresh and OnRefresh Members

protected override bool CanRefresh
{
get { return true; }

}

protected override void OnRefresh()
{
this.GetSettings();

}

RssEnabled
Listing 10-46 presents the implementation of the RssEnabled property. Now replace the declaration of
the RssEnabled property in the RssPage.cs file with the code shown in Listing 10-46.

Listing 10-46: The RssEnabled Property

protected bool RssEnabled
{
get { return this.rssEnabled; }

}

Implementing a Custom Task Form
Listing 10-47 presents the implementation of the RssSettingsForm task form. Next, add a new source
file named RssSettingsForm.cs to the Client directory and add the code shown in Listing 10-47 to
this source file.

518

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 518

Listing 10-47: The RssSettingsForm Task Form

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using Microsoft.Web.Management.Client;
using System.Web.Configuration;
using Microsoft.Web.Management.Client.Win32;
using System.Windows.Forms;
using System.ComponentModel;
using System.Collections;
using System.Drawing;

namespace Rss.GraphicalManagement.Client
{
internal sealed class RssSettingsForm : TaskForm
{
private bool canAccept;
private Panel contentPanel;
private bool hasChanges;
private ComboBox providerComboBox;
private IProviderConfigurationService providerConfigurationService;
private Label providerLabel;
private RssPage rssPage;
private RssModuleServiceProxy serviceProxy;

public RssSettingsForm(IServiceProvider serviceProvider, RssPage rssPage,
RssModuleServiceProxy serviceProxy,
IProviderConfigurationService providerConfigurationService)

: base(serviceProvider)
{
this.rssPage = rssPage;
this.serviceProxy = serviceProxy;
this.providerConfigurationService = providerConfigurationService;
this.InitializeComponent();
this.Text = "Set default provider";
this.GetProviders();
this.UpdateUIState();
this.hasChanges = false;

}

private void GetProviders()
{
try
{
Cursor.Current = Cursors.WaitCursor;
PropertyBag providers = this.serviceProxy.GetProviders();
if (providers != null)
{
string b = (string)providers[1];
string[] textArray = (string[])providers[2];
this.providerComboBox.Enabled = !((bool)providers[0]);
foreach (string text2 in textArray)

519

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 519

Listing 10-47: (continued)

{
int num = this.providerComboBox.Items.Add(text2);
if (string.Equals(text2, b, StringComparison.OrdinalIgnoreCase))
this.providerComboBox.SelectedIndex = num;

}
}

}
catch (Exception exception)
{
this.DisplayErrorMessage(exception, null);

}

finally
{
this.Cursor = Cursors.Default;

}
}

private void InitializeComponent()
{
this.contentPanel = new ManagementPanel();
this.providerLabel = new Label();
this.providerComboBox = new ComboBox();
this.contentPanel.SuspendLayout();
base.SuspendLayout();
this.contentPanel.Controls.Add(this.providerLabel);
this.contentPanel.Controls.Add(this.providerComboBox);
this.contentPanel.Dock = DockStyle.Fill;
this.contentPanel.Location = new Point(0, 0);
this.contentPanel.Name = "contentPanel";
this.contentPanel.Size = new Size(0x114, 90);
this.contentPanel.TabIndex = 0;
this.providerLabel.Location = new Point(0, 0);
this.providerLabel.Name = "providerLabel";
this.providerLabel.AutoSize = true;
this.providerLabel.TabIndex = 0;
this.providerLabel.TextAlign = ContentAlignment.MiddleLeft;
this.providerLabel.Text = "Default Provider";
this.providerComboBox.Anchor = AnchorStyles.Right | AnchorStyles.Left |

AnchorStyles.Top;
this.providerComboBox.Location = new Point(0, 0x10);
this.providerComboBox.Name = "providerComboBox";
this.providerComboBox.Size = new Size(0x114, 0x15);
this.providerComboBox.DropDownStyle = ComboBoxStyle.DropDownList;
this.providerComboBox.TabIndex = 1;
this.providerComboBox.SelectedIndexChanged +=
new EventHandler(this.OnProviderComboBoxSelectedIndexChanged);

base.ClientSize = new Size(300, 100);
base.AutoScaleMode = AutoScaleMode.Font;
base.Name = "RssSettingsForm";
this.contentPanel.ResumeLayout(false);
this.contentPanel.PerformLayout();

520

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 520

521

Chapter 10: Extending the Integrated Providers Model

Listing 10-47: (continued)

base.SetContent(this.contentPanel);
base.ResumeLayout(false);

}

protected override void OnAccept()
{
base.StartAsyncTask(new DoWorkEventHandler(this.OnWorkerDoWork),
new RunWorkerCompletedEventHandler(this.OnWorkerCompleted));

base.UpdateTaskForm();
}

private void OnProviderComboBoxSelectedIndexChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void OnWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
base.UpdateTaskForm();
if (e.Error != null)
this.DisplayErrorMessage(e.Error, null);

else
{
base.DialogResult = DialogResult.OK;
base.Close();

}
}

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{
if (this.hasChanges)
this.providerConfigurationService.ConfigureProvider(
new RssProviderConfigurationFeature(this.rssPage,

(string)this.providerComboBox.SelectedItem));
}

private void UpdateUIState()
{
this.hasChanges = true;
this.canAccept = !string.IsNullOrEmpty(this.providerComboBox.Text);
base.UpdateTaskForm();

}

protected override bool CanAccept
{
get
{
if (!base.BackgroundJobRunning)
return this.canAccept;

return false;

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 521

Listing 10-47: (continued)

}
}

protected override bool CanShowHelp
{
get { return false; }

}

public bool HasChanges
{
get { return this.hasChanges; }

}
}

}

Constructor
Next, I walk you through the implementation of the members of the RssSettingsForm task form. As
Listing 10-47 shows, the constructor of this task form takes four parameters: the first parameter refer-
ences the service provider, the second parameter references the RssPage module dialog page associated
with the task form, the third parameter references the RssModuleServiceProxy proxy, and the fourth
parameter references the provider configuration service. The constructor stores the references to the
RssPage module dialog page, service proxy, and provider configuration service in private fields for
future reference.

this.rssPage = rssPage;
this.serviceProxy = serviceProxy;
this.providerConfigurationService = providerConfigurationService;

Next, it invokes the InitializeComponent method to create the user interface of the task form:

this.InitializeComponent();

Then, it invokes the GetProviders method to download the list of available provider types from the
underlying configuration file:

this.GetProviders();

Finally, it invokes the UpdateUIState method:

this.UpdateUIState();

InitializeComponent
As Listing 10-47 shows, the InitializeComponent method first creates a ManagementPanel control:

this.contentPanel = new ManagementPanel();

522

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 522

523

Chapter 10: Extending the Integrated Providers Model

Then, it creates the Type combo box that displays the list of available provider types and the label that
displays the text that appears next to this combo box:

this.providerLabel = new Label();
this.providerComboBox = new ComboBox();

Next, it adds this combo box and its associated label to the Controls collection of the
ManagementPanel control:

this.contentPanel.Controls.Add(this.providerLabel);
this.contentPanel.Controls.Add(this.providerComboBox);

Then, it registers the OnProviderComboBoxSelectedIndexChanged method as an event handler for
the SelectedIndexChanged event of the Type combo box:

this.providerComboBox.SelectedIndexChanged +=
new EventHandler(this.OnProviderComboBoxSelectedIndexChanged);

Finally, it calls the SetContent method to specify the ManagementPanel control as the content control:

base.SetContent(this.contentPanel);

GetProviders
As Listing 10-47 shows, GetProviders first invokes the GetProviders method on the service proxy to
download a PropertyBag collection that contains the list of available provider types:

PropertyBag providers = this.serviceProxy.GetProviders();

Then, it retrieves the friendly name of the default provider from this PropertyBag collection:

string b = (string)providers[1];

Next, it retrieves the string array that contains the names of the available provider types:

string[] textArray = (string[])providers[2];

Then, it retrieves the Boolean value that specifies whether the underlying configuration section is locked,
and uses that to determine whether to enable the Type combo box that displays the list of available
provider types:

this.providerComboBox.Enabled = !((bool)providers[0]);

Finally, it iterates through the names of the downloaded provider types and adds each one to the Items
collection of the Type combo box. Note that GetProviders ensures that the selected item of the Type
combo box is the default provider type:

foreach (string text2 in textArray)
{
int num = this.providerComboBox.Items.Add(text2);

52539c10.qxd 9/17/07 10:04 PM Page 523

if (string.Equals(text2, b, StringComparison.OrdinalIgnoreCase))
this.providerComboBox.SelectedIndex = num;

}

OnAccept
The RssSettingsForm task form overrides the OnAccept method to include the logic that must execute
when the end user clicks the OK button on the task form. As you can see, this method invokes the
StartAsyncTask method, passing in a DoWorkEventHandler delegate that wraps the
OnWorkerDoWork method and a RunWorkerCompletedEventHandler delegate that wraps the
OnWorkerCompleted method.

protected override void OnAccept()
{
base.StartAsyncTask(new DoWorkEventHandler(this.OnWorkerDoWork),
new RunWorkerCompletedEventHandler(this.OnWorkerCompleted));

base.UpdateTaskForm();
}

The OnWorkerDoWork method first checks whether the RssSettingsForm task form has any changes to
commit to the underlying configuration file. If so, it instantiates an
RssProviderConfigurationFeature object and passes this object into the ConfigureProvider
method of the provider configuration service.

private void OnWorkerDoWork(object sender, DoWorkEventArgs e)
{ss
if (this.hasChanges)
this.providerConfigurationService.ConfigureProvider(
new RssProviderConfigurationFeature(this.rssPage,

(string)this.providerComboBox.SelectedItem));
}

Recall from the previous section that the provider configuration service in this case is the
module that registers the ProviderConfigurationConsolidatedPage module page with the
IIS 7 and ASP.NET integrated infrastructure. Note that when the OnWorkerDoWork method
invokes the RssProviderConfigurationFeature constructor to instantiate the
RssProviderConfigurationFeature object, it passes the value of the SelectedItem property of the
Type combo box into this constructor. As discussed in the previous chapter, specifying the selected
provider signals the ConfigureProvider method that the caller is trying to set the default provider in
the underlying configuration file. As such, this method uses the service proxy to set the default provider
of the <rss> configuration section to the selected provider. Recall that if the ConfigureProvider
method is invoked without specifying a selected provider, the method assumes that the caller is trying to
navigate to the ProviderConfigurationConsolidatedPage module list page. As such, it uses the
navigation service to navigate to this page.

Implementing a Custom Module
Following the recipe, next you need to implement a custom module named RssModule to register your
RssPage module dialog page with the IIS 7 and ASP.NET integrated infrastructure as shown in
Listing 10-48. Add a new source file named RssModule.cs to the Client directory and add the code
shown in Listing 10-48 to this source file.

524

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 524

Listing 10-48: The RssModule Module

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using Microsoft.Web.Management.Client;
using System.Web.Configuration;
using Microsoft.Web.Management.Client.Extensions;

namespace Rss.GraphicalManagement.Client
{
public class RssModule : Module
{
public RssModule() { }

protected override void Initialize(IServiceProvider serviceProvider,
ModuleInfo moduleInfo)

{
base.Initialize(serviceProvider, moduleInfo);
Connection service =

(Connection)serviceProvider.GetService(typeof(Connection));
ModulePageInfo itemPageInfo =

new ModulePageInfo(this, typeof(RssPage), "RSS",
"Generates RSS document.");

IControlPanel panel =
(IControlPanel)serviceProvider.GetService(typeof(IControlPanel));

panel.RegisterPage(itemPageInfo);
IExtensibilityManager manager =

(IExtensibilityManager)serviceProvider.GetService(
typeof(IExtensibilityManager));

if (manager != null)
{
RssProviderConfigurationFeature extension =

new RssProviderConfigurationFeature();
manager.RegisterExtension(typeof(ProviderFeature), extension);

}
}

protected override bool IsPageEnabled(ModulePageInfo pageInfo)
{
Connection service = (Connection)this.GetService(typeof(Connection));
if ((service.ConfigurationPath.PathType != ConfigurationPathType.Site) &&

(service.ConfigurationPath.PathType !=
ConfigurationPathType.Application))

return false;

return base.IsPageEnabled(pageInfo);
}

public override Version MinimumFrameworkVersion
{
get { return Module.FxVersion20; }

}
}

}

525

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd:WroxPro 9/20/07 4:03 PM Page 525

As Listing 10-48 shows, the RssModule module overrides the Initialize method of the base class.
First, it accesses the connection service:

Connection service = (Connection)serviceProvider.GetService(typeof(Connection));

Next, it instantiates a ModulePageInfo module page info to represent the RssPage module dialog page:

ModulePageInfo itemPageInfo =
new ModulePageInfo(this, typeof(RssPage), "RSS", "Generates RSS document.");

Then, it accesses the control panel service:

IControlPanel panel =
(IControlPanel)serviceProvider.GetService(typeof(IControlPanel));

Next, it calls the RegisterPage method on the control panel service to register your RssPage module
dialog page:

panel.RegisterPage(itemPageInfo);

Next, it accesses the extensibility manager service:

IExtensibilityManager manager =
(IExtensibilityManager)serviceProvider.GetService(

typeof(IExtensibilityManager));

Then, it instantiates an RssProviderConfigurationFeature provider feature and registers it with the
extensibility manager service under the key that references the Type object that represents the
ProviderFeature type:

RssProviderConfigurationFeature extension = new RssProviderConfigurationFeature();
manager.RegisterExtension(typeof(ProviderFeature), extension);

Server-Side Managed Code
Now you’ve implemented the managed code for the client, but you still need to add the code for the
server-side. Take these steps to implement the server-side managed code:

1. Implement a custom module service.

2. Implement a custom configuration module provider.

I discuss these two steps in the following sections.

Implementing a Custom Module Service
Next, you need to implement a custom module service named RssModuleService as shown in
Listing 10-49. The RssModuleService module service exposes the methods that the client-side man-
aged code can invoke to interact with the underlying configuration file. Next add a new source file
named RssModuleService.cs to the GraphicalManagement/Server directory of the Rss project and
add the code shown in Listing 10-49 to this source file.

526

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 526

Listing 10-49: The RssModuleService Class

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using System.Web.Configuration;
using Rss.ImperativeManagement;

namespace Rss.GraphicalManagement.Server
{
public class RssModuleService : ModuleService
{
public RssModuleService() { }
private RssSection GetSection()
{
if (base.ManagementUnit.Configuration == null)
base.RaiseException("Configuration error");

RssSection section1 =
(RssSection)base.ManagementUnit.Configuration.GetSection(

"system.webServer/rss", typeof(RssSection));
if (section1 == null)
base.RaiseException("Configuration error");

return section1;
}

[ModuleServiceMethod(PassThrough = true)]
public void EnableRss()
{
RssSection section1 = this.GetSection();
if (!section1.Enabled)
{
section1.Enabled = true;
base.ManagementUnit.Update();

}
}

[ModuleServiceMethod(PassThrough = true)]
public void DisableRss()
{
RssSection section1 = this.GetSection();
if (section1.Enabled)
{
section1.Enabled = false;
base.ManagementUnit.Update();

}
}

[ModuleServiceMethod(PassThrough = true)]
public PropertyBag GetProviders()
{
PropertyBag bag1 = new PropertyBag();

527

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 527

Listing 10-49: (continued)

RssSection section1 = this.GetSection();
Rss.ImperativeManagement.ProviderSettingsCollection

collection1 = section1.Providers;
if (collection1 == null)
base.RaiseException("Configuration error");

string[] textArray1 = new string[collection1.Count];
for (int num1 = 0; num1 < textArray1.Length; num1++)
{
textArray1[num1] = collection1[num1].Name;

}

bag1[0] = section1.IsLocked;
bag1[1] = section1.DefaultProvider;
bag1[2] = textArray1;
return bag1;

}

[ModuleServiceMethod(PassThrough = true)]
public PropertyBag GetSettings()
{
PropertyBag bag1 = new PropertyBag();
RssSection section1 = this.GetSection();
bag1[0] = section1.ChannelTitle;
bag1[1] = section1.ChannelDescription;
bag1[2] = section1.ChannelLink;
bag1[3] = section1.IsLocked;
bag1[4] = section1.Enabled;
return bag1;

}

[ModuleServiceMethod(PassThrough = true)]
public void UpdateChannelSettings(PropertyBag updatedChannelSettings)
{
RssSection section1 = this.GetSection();
section1.ChannelTitle = (string)updatedChannelSettings[0];
section1.ChannelDescription = (string)updatedChannelSettings[1];
section1.ChannelLink = (string)updatedChannelSettings[2];
base.ManagementUnit.Update();

}
}

}

Enabling and Disabling the RSS Service
As Listing 10-49 shows, the RssModuleService module service exposes a method named EnableRss.
This method first accesses the RssSection object that provides imperative access to the <rss> configu-
ration section:

RssSection section1 = this.GetSection();

528

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 528

Then, it checks whether the Enabled property of this RssSection object is set to true. Keep in mind
that this property maps to the enabled attribute on the <rss> configuration section. If the Enabled
property is not set to true, it sets the value of this property to true and calls the Update method to
commit the changes to the underlying configuration file:

section1.Enabled = true;
base.ManagementUnit.Update();

As you can see from Listing 10-49, the RssModuleService module service also exposes a method
named DisableRss whose implementation is very similar to EnableRss.

GetProviders
As Listing 10-49 shows, the RssModuleService module service exposes a method named
GetProviders. First, it instantiates a PropertyBag collection:

PropertyBag bag1 = new PropertyBag();

Next, it accesses the RssSection object that provides imperative access to the <rss> configuration
section:

RssSection section1 = this.GetSection();

Then, it accesses the ProviderSettingsCollection object that represents the <providers> subele-
ment of the <rss> configuration section:

Rss.ImperativeManagement.ProviderSettingsCollection
collection1 = section1.Providers;

Next, it instantiates a string array:

string[] textArray1 = new string[collection1.Count];

Then, it iterates through the ProviderSettings objects in the ProviderSettingsCollection collec-
tion, and stores the value of the Name property of each ProviderSettings object in the string array.
Keep in mind that each ProviderSettings object provides imperative access to a particular <add> ele-
ment in the <providers> subelement. The Name property of a ProviderSettings object maps to the
name attribute on the <add> element that the object represents:

for (int num1 = 0; num1 < textArray1.Length; num1++)
{
textArray1[num1] = collection1[num1].Name;

}

Next, it stores the value of the IsLocked property of the RssSection object in the PropertyBag collec-
tion. Recall that the IsLocked property maps to the isLocked attribute on the <rss> configuration
section:

bag1[0] = section1.IsLocked;

529

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 529

530

Chapter 10: Extending the Integrated Providers Model

Then, it stores the value of the DefaultProvider property of the RssSection object in the
PropertyBag collection. Recall that the DefaultProvider property maps to the defaultProvider
attribute on the <rss> configuration section.

bag1[1] = section1.DefaultProvider;

Next, it stores the string array containing the friendly names of the available providers in the
PropertyBag collection:

bag1[2] = textArray1;

Finally, it returns the PropertyBag collection to its caller:

return bag1;

GetSettings
As Listing 10-49 shows, the GetSettings method of the RssModuleService module service first
instantiates a PropertyBag collection:

PropertyBag bag1 = new PropertyBag();

Then, it accesses the RssSection object that represents the <rss> configuration section:

RssSection section1 = this.GetSection();

Next, it stores the values of the ChannelTitle, ChannelDescription, ChannelLink, IsLocked, and
Enabled properties of the RssSection object in the PropertyBag collection. Note that these properties
map to the channelTitle, channelDescription, channelLink, isLocked, and enabled attributes
on the <rss> configuration section:

bag1[0] = section1.ChannelTitle;
bag1[1] = section1.ChannelDescription;
bag1[2] = section1.ChannelLink;
bag1[3] = section1.IsLocked;
bag1[4] = section1.Enabled;

Finally, it returns the PropertyBag collection containing the preceding configuration settings to its
caller:

return bag1;

UpdateChannelSettings
As Listing 10-49 shows, the UpdateChannelSettings method of the RssModuleService module
service takes a PropertyBag collection containing channel settings as its argument. First,
UpdateChannelSettings accesses the RssSection object that represents the <rss> configuration
section:

RssSection section1 = this.GetSection();

52539c10.qxd 9/17/07 10:04 PM Page 530

Next, it retrieves the first, second, and third items in the PropertyBag collection and respectively
assigns them to the ChannelTitle, ChannelDescription, and ChannelLink properties of the
RssSection object. Keep in mind that these properties map to the channelTitle,
channelDescription, and channelLink attributes on the <rss> configuration section, respectively.

section1.ChannelTitle = (string)updatedChannelSettings[0];
section1.ChannelDescription = (string)updatedChannelSettings[1];
section1.ChannelLink = (string)updatedChannelSettings[2];

Finally, it invokes the Update method to commit the changes made to the properties of the RssSection
object to the underlying configuration file:

base.ManagementUnit.Update();

Implementing a Custom Configuration Module Provider
Following the recipe, Listing 10-50 implements a custom configuration module provider named
RssModuleProvider to register your RssModule module and RssModuleService module service with
the IIS 7 and ASP.NET integrated infrastructure. Add a new source file named RssModuleProvider.cs
to the GraphicalMangement/Server directory of the Rss project and add the code shown in
Listing 10-50 to this source file.

Listing 10-50: The RssModuleProvider Module Provider

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using System.Web.Configuration;
using System.Reflection;

namespace Rss.GraphicalManagement.Server
{
public class RssModuleProvider : ConfigurationModuleProvider
{
private static string ConfigurationReadOnlyDelegationMode;
internal static readonly DelegationState ConfigurationReadOnlyDelegationState;
private static string ConfigurationReadWriteDelegationMode;
internal static readonly DelegationState ConfigurationReadWriteDelegationState;

static RssModuleProvider()
{
ConfigurationReadOnlyDelegationMode = "ConfigurationReadOnly";
ConfigurationReadWriteDelegationMode = "ConfigurationReadWrite";
ConfigurationReadOnlyDelegationState =
new DelegationState(ConfigurationReadOnlyDelegationMode,

"Resources.ConfigurationReadOnlyDelegationStateText",
"Resources.ConfigurationReadOnlyDelegationStateToolTip");

ConfigurationReadWriteDelegationState =
new DelegationState(ConfigurationReadWriteDelegationMode,

"Resources.ConfigurationReadWriteDelegationStateText",
"Resources.ConfigurationReadWriteDelegationStateToolTip");

}

531

Chapter 10: Extending the Integrated Providers Model

(Continued)

52539c10.qxd 9/17/07 10:04 PM Page 531

Listing 10-50: (continued)

public RssModuleProvider() { }

public override DelegationState GetChildDelegationState(string path)
{
DelegationState childDelegationState = base.GetChildDelegationState(path);
if (childDelegationState ==

SimpleDelegatedModuleProvider.ReadWriteDelegationState)
return ConfigurationReadWriteDelegationState;

if (childDelegationState ==
SimpleDelegatedModuleProvider.ReadOnlyDelegationState)

return ConfigurationReadOnlyDelegationState;

return childDelegationState;
}

public override ModuleDefinition GetModuleDefinition(
IManagementContext context)

{
AssemblyName assemblyName =

typeof(Rss.GraphicalManagement.Client.RssModule).Assembly.GetName();

return new ModuleDefinition(base.Name,
"Rss.GraphicalManagement.Client.RssModule, " + assemblyName.FullName);

}

public override DelegationState[] GetSupportedChildDelegationStates(
string path)

{
DelegationState[] supportedChildDelegationStates =

base.GetSupportedChildDelegationStates(path);
for (int i = 0; i < supportedChildDelegationStates.Length; i++)
{
if (supportedChildDelegationStates[i] ==

SimpleDelegatedModuleProvider.ReadOnlyDelegationState)
supportedChildDelegationStates[i] = ConfigurationReadOnlyDelegationState;

else if (supportedChildDelegationStates[i] ==
SimpleDelegatedModuleProvider.ReadWriteDelegationState)

supportedChildDelegationStates[i] =
ConfigurationReadWriteDelegationState;

}
return supportedChildDelegationStates;

}

public override void SetChildDelegationState(string path,
DelegationState state)

{

532

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 532

if (state == ConfigurationReadOnlyDelegationState)
base.SetChildDelegationState(path,

SimpleDelegatedModuleProvider.ReadOnlyDelegationState);

else if (state == ConfigurationReadWriteDelegationState)
base.SetChildDelegationState(path,

SimpleDelegatedModuleProvider.ReadWriteDelegationState);

else
base.SetChildDelegationState(path, state);

}

public override bool SupportsScope(ManagementScope scope)
{
if ((scope != ManagementScope.Application) &&

(scope != ManagementScope.Site))
return (scope == ManagementScope.Server);

return true;
}

protected sealed override string ConfigurationSectionName
{
get { return "system.webServer/rss"; }

}

public override string FriendlyName
{
get { return "RSS"; }

}

public override Type ServiceType
{
get { return typeof(RssModuleService); }

}
}

}

As Listing 10-50 shows, the RssModuleProvider module provider overrides the
GetModuleDefinition method, where it instantiates and returns a ModuleDefinition object, passing
in the assembly-qualified name of the RssModule module to register this module with the integrated
infrastructure:

public override ModuleDefinition GetModuleDefinition(
IManagementContext context)

{
AssemblyName assemblyName =

typeof(Rss.GraphicalManagement.Client.RssModule).Assembly.GetName();

return new ModuleDefinition(base.Name,
"Rss.GraphicalManagement.Client.RssModule, " + assemblyName.FullName);

}

533

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 533

As Listing 10-50 shows, the RssModuleProvider module provider overrides the ServiceType prop-
erty to return the Type object that represents the RssModuleService module service to register this
module service with the integrated infrastructure:

public override Type ServiceType
{
get { return typeof(RssModuleService); }

}

The RssModuleProvider module provider overrides the ConfigurationSectionName property to
specify "system.webServer/rss" as the fully qualified name of the configuration section associated
with the RSS service:

protected sealed override string ConfigurationSectionName
{
get { return "system.webServer/rss"; }

}

The RssModuleProvider module provider overrides the FriendlyName property to specify "RSS"
as the friendly name of the RSS service. This friendly name appears in the Feature combo box that dis-
plays the list of available provider-based services in the ProviderConfigurationConsolidatedPage
module list page discussed earlier.

public override string FriendlyName
{
get { return "RSS"; }

}

As Listing 10-50 shows, the RssModuleProvider module provider also exposes a few delegation-
related members. The IIS 7 and ASP.NET integrated infrastructure comes with a class named
DelegationState, shown in Listing 10-51. As the name implies, this class specifies the delegation
state, which includes three pieces of information: delegation mode, text, and description. Note that the
DelegationState class exposes these pieces of information as three read-only properties named Mode,
Text, and Description.

Listing 10-51: The DelegationState Class

public class DelegationState
{

private string description;
private string mode;
private string text;

public DelegationState(string mode, string text, string description)
{
if (string.IsNullOrEmpty(mode))
throw new ArgumentNullException("mode");

if (string.IsNullOrEmpty(text))
throw new ArgumentNullException("text");

534

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 534

Listing 10-51: (continued)

if (string.IsNullOrEmpty(description))
throw new ArgumentNullException("description");

this.mode = mode;
this.text = text;
this.description = description;

}

public string Description
{
get { return this.description; }

}

public string Mode
{
get { return this.mode; }

}

public string Text
{
get { return this.text; }

}
}

As you can see from Listing 10-51, the static constructor of RssModuleProvider instantiates two instances
of the DelegationState class and stores them in the ConfigurationReadOnlyDelegationState and
ConfigurationReadWriteDelegationState static fields:

static RssModuleProvider()
{
ConfigurationReadOnlyDelegationMode = "ConfigurationReadOnly";
ConfigurationReadWriteDelegationMode = "ConfigurationReadWrite";

ConfigurationReadOnlyDelegationState =
new DelegationState(ConfigurationReadOnlyDelegationMode,

"Resources.ConfigurationReadOnlyDelegationStateText",
"Resources.ConfigurationReadOnlyDelegationStateToolTip");

ConfigurationReadWriteDelegationState =
new DelegationState(ConfigurationReadWriteDelegationMode,

"Resources.ConfigurationReadWriteDelegationStateText",
"Resources.ConfigurationReadWriteDelegationStateToolTip");

}

Finally, you need to add the boldfaced portions of Listing 10-52 to the administration.config file to
register the RssModuleProvider module provider with the integrated infrastructure.

535

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 535

Listing 10-52: The administration.config Configuration File

<configuration>
<moduleProviders>

. . .
<add name="RssModuleProvider"

type="Rss.GraphicalManagement.Server.RssModuleProvider, Rss,
Version=2.0.0.0, Culture=Neutral, PublicKeyToken=a31626cc5fbb47c3" />
. . .

</moduleProviders>
. . .
<location path=".">
<modules>
. . .
<add name="RssModuleProvider"/>
. . .

</modules>
</location>

</configuration>

Summary
This chapter presented you with a detailed step-by-step recipe for extending the IIS 7 and ASP.NET inte-
grated providers model and used this recipe to extend this model to implement a fully configurable RSS
provider-based service that allows you to generate RSS data from any type of data store.

The next chapter moves on to the IIS 7 and ASP.NET integrated tracing and diagnostics infrastructure
where you learn how to use this infrastructure to instrument your managed code with tracing.

536

Chapter 10: Extending the Integrated Providers Model

52539c10.qxd 9/17/07 10:04 PM Page 536

Integrated Tracing
and Diagnostics

As the previous chapters of this book show, the IIS 7 and ASP.NET integrated programming envi-
ronment enables you to implement many of your application requirements in a .NET-compliant
language such as C# or Visual Basic. For example, you learned how to use managed code to
extend the integrated request processing pipeline to plug in a new managed module, handler, or
handler factory, how to extend the integrated configuration system to add a new configuration
section, how to extend the integrated imperative management system to add new imperative man-
agement classes, how to extend the integrated graphical management system to add new graphi-
cal management components such as module pages, task forms, and so on, and how to extend the
integrated providers model to add support for new configurable provider-based services.

This chapter shows you how to use the IIS 7 and ASP.NET integrated tracing and diagnostics
infrastructure to instrument your managed code with tracing to enable tracking of the execution of
your managed code. You learn how to emit trace events from within your managed code, how to
route these trace events to the IIS 7 tracing infrastructure, and how to configure the Failed Request
Tracing module to consume these trace events.

Integrated Tracing Components
Tracing is a diagnostic system that enables you to trace the execution of your managed code at
runtime. The IIS 7 and ASP.NET integrated tracing infrastructure is based on the .NET
Framework’s tracing system, which uses the best software design practices to ensure design mod-
ularity, extensibility, and configurability. One of the main characteristics of such a modular
approach to tracing is that different tasks are assigned to different components, where each com-
ponent is specifically designed to perform a specific task.

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 537

A careful analysis of tracing reveals that it involves the following tasks:

❑ The task of emitting trace events. The component assigned to this task is known as a trace source.
This component is called a trace source because it is the source of trace event emission. The
.NET Framework comes with a trace source named TraceSource, which exposes tracing meth-
ods that you can use to emit trace events from within your managed code. It is highly recom-
mended that you use the new TraceSource class instead of the old Trace class.

❑ The task of determining whether a specified trace event should be emitted. The component
assigned to this task is known as a switch. All switches directly or indirectly inherit from the
Switch base class. This base class defines the API through which a trace source interacts with
its attached switch. The TraceSource trace source internally uses an instance of a switch
named SourceSwitch to determine whether to emit a specified trace event.

❑ The task of listening for trace events and outputting them to the appropriate medium. The com-
ponent assigned to this task is known as a trace listener. All trace listeners directly or indirectly
inherit from the TraceListener base class. This base class defines the API through which a
trace source interacts with its attached trace listeners in a generic fashion without knowing their
real types. When you’re programming in the IIS 7 and ASP.NET integrated environment, you
should use a trace listener named IisTraceListener. This trace listener routes trace events
to the IIS 7 tracing infrastructure where they can be consumed by the Failed Request Tracing
module.

❑ The task of determining whether to output a specified trace event. The component assigned
to this task is known as a trace filter. All trace filters directly or indirectly inherit from the
TraceFilter base class. This base class defines the API through which a trace listener interacts
with its attached trace filter in a generic fashion without knowing its real type. There are two
standard trace filters named EventTypeFilter and SourceFilter that you can use to filter
the trace events that the IisTraceListener routes to the IIS 7 tracing infrastructure. You can
also implement your own custom trace filters and plug them into the IIS 7 and ASP.NET inte-
grated tracing infrastructure.

You must perform two sets of tasks to instrument your managed code if you want to route your traces to
the IIS 7 tracing infrastructure and to consume them in the Failed Request Tracing module. The first set
of tasks must be performed from within your code, whereas the second set of tasks could be performed
from the configuration file or your code.

Here is the first set of tasks, which must be performed from within your code:

1. Instantiate a TraceSource instance with a unique name. Large applications made up of many
different components normally instantiate a separate TraceSource instance for each compo-
nent to differentiate trace events emitted from different components. Keep in mind that each
trace event contains the name of the trace source that emitted the trace event. Having a separate
TraceSource instance for each component makes it a whole lot easier to read the application’s
trace output files and to make sense of their contents because you can easily tell which trace
events come from which components of the application.

You should store the TraceSource instance in a static field or property to make it available to
the rest of the code.

In large applications made up of many different components, each with its own trace source,
storing the trace source of a component in a static field or property allows different subsystems

538

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 538

of the same component to use the same trace source to emit trace events to help differentiate
trace events emitted from different subsystems of a component from those emitted from other
components of the application.

2. Use the tracing methods of the trace source to add as many trace events as you need at as many
different places in the code as you need. A large application could contain numerous trace
events.

3. Ensure that the conditional compilation symbol “TRACE” is defined before the code is compiled.
This conditional compilation symbol instructs the compiler to include tracing method calls in
the compiled assembly. If this symbol is not defined, the compiler will simply ignore these trac-
ing method calls, which means that your code will not trace any events.

These three steps are the only required steps that you must take from within your code to instrument
your code with tracing. The rest of the necessary steps can be taken from within your code or from the
configuration file. I recommend that you do the remaining steps in the configuration file to avoid hard-
coding these steps and to ensure the configurability and customizability of the tracing capabilities of
your code.

Here are the remaining steps that you must take to instrument your code with tracing:

1. Declaratively (from within the configuration file) or imperatively (from within your code)
instantiate, initialize, and attach a switch to the trace source. At runtime, when a tracing method
of the trace source is finally invoked to trace a specified event, the method internally consults
with the attached switch to determine whether the specified event should be traced.

In larger applications where more than one trace source is used, two or more of these trace sources could
share the same switch. Such a switch is known as a shared switch. Changing the settings of a shared
switch will affect all the trace sources that use that switch.

As discussed earlier, you call the tracing methods of a trace source to add as many trace events
as necessary at as many points in the code as necessary. In other words, you end up adding
numerous trace events to your application. By attaching different switches to a trace source, you
can control which of these numerous trace events should be traced. Just because you’ve added
all those trace events to your code does not mean that you have to output all of them. Imagine
how complex the output trace file of a large application would be and how hard it would be to
make sense of the contents of the file if the application emitted all the trace events that the
developers have added to the code.

2. Declaratively (from within the configuration file) or imperatively (from within your code)
instantiate, initialize, and attach an IisTraceListener trace listener to the trace source. At
runtime, when a tracing method of the trace source is invoked to trace a specified event, the
method internally consults with the attached switch to determine whether the specified event
should be traced. If the attached switch approves the emission of the event, the trace source
sends the event to the attached trace listener.

In larger applications where more than one trace source is used, two or more trace sources could share
the same trace listener. Such a trace listener is known as a shared trace listener. Changing the settings
of a shared trace listener will affect the outputted traces of all the trace sources that share that listener.

539

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 539

3. Declaratively (from within the configuration file) or imperatively (from within your code)
instantiate, initialize, and attach a trace filter to the trace listener. At runtime, when the trace lis-
tener receives a trace event, it consults with the attached trace filter to determine whether to
route the event to the IIS 7 tracing infrastructure.

You use this recipe to instrument your provider-based RSS service with tracing to track the flow of its
execution.

Tasks Performed from within Your Code
As just discussed, the recipe consists of two sets of tasks, and the first set must be performed from
within your code. This section discusses and uses the tasks that must be performed from within
your code.

Instantiating a Trace Source
TraceSource is a .NET tracing class that exposes methods that you can use within your code to add
trace events. The following table describes the constructors of this class:

The name of a trace source uniquely identifies the trace source among other trace sources. If your
application uses a single trace source, you should use the name of your application as the name of the
trace source. Otherwise, use the name of the component that uses the trace source as the name of
the trace source.

Because the name of a trace source appears as part of a tracing message, you can easily differentiate the
traces of your application or a specific component of your application from the traces of other applica-
tions or other components of your application.

The TraceSource class exposes a public read-only property of type string named Name that returns
the name of the trace source.

Note that the second constructor of the TraceSource class takes an enumeration parameter of type
SourceLevels. To understand what the SourceLevels parameter does, you need to study the
TraceEventType enumeration as defined in Listing 11-1.

Constructor Description

TraceSource (string name) Instantiates a trace source with the specified
name.

TraceSource(string name, SourceLevels
defaultLevel)

Instantiates a trace source with the specified
name and specified source level.

540

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 540

Listing 11-1: The TraceEventType Enumeration

public enum TraceEventType
{
Critical = 1,
Error = 2,
Information = 8,
Resume = 0x800,
Start = 0x100,
Stop = 0x200,
Suspend = 0x400,
Transfer = 0x1000,
Verbose = 0x10,
Warning = 4

}

As the name suggests, the members of the TraceEventType enumeration represent different trace event
types that your code can emit. The following table describes these members:

Member When to Emit

Critical Emit a Critical trace event type when an irrecoverable error occurs.

Error Emit an Error trace event type when a recoverable error occurs.

Warning Emit a Warning trace event type when something unusual but not necessarily an
error occurs.

Information Emit an Information trace event type when something right but of particular
interest occurs.

Verbose Emit a Verbose trace event type when something right but of particular interest
occurs where the code emits a big chunk of data.

Resume Emit a Resume trace event type when your code is about to resume the execution
of a specified logical operation.

Start Emit a Start trace event type when your code is about to start the execution of a
specified logical operation.

Stop Emit a Stop trace event type when your code is about to end the execution of a
specified logical operation.

Suspend Emit a Suspend trace event type when your code is about to suspend the execution
of a specified logical operation.

Transfer Emit a Transfer trace event type when your code is about to transfer control from
a specified logical operation to another logical operation.

541

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 541

The Critical, Error, Warning, Information, and Verbose event types are known as severity event
types because they represent the severity of the trace event. Obviously the Critical event type has the
highest level of severity because an irrecoverable error has occurred. The Verbose event type, on the
other hand, has the lowest level of severity because something right has occurred and we want to pro-
vide more information about it.

The Resume, Start, Stop, Suspend, and Transfer event types are known as activity event types. These
event types are based on the idea that you can divide your application into a set of logical operations or
activities. The activity event types let you know when the application resumes, starts, stops, and sus-
pends a specified logical operation or transfers control from one logical operation to another. This is yet
another way to differentiate traces coming from different parts of your application.

Listing 11-2 presents the definition of the SourceLevels enumeration. Note that this enumeration type
is annotated with the Flags metadata attribute. This means that you can use bitwise operations between
the members of this enumeration.

Listing 11-2: The SourceLevels Enumeration

[Flags]
public enum SourceLevels
{
ActivityTracing = 0xff00,
All = -1,
Critical = 1,
Error = 3,
Information = 15,
Off = 0,
Verbose = 0x1f,
Warning = 7

}

The following table describes the members of the SourceLevels enumeration.

Member Description

ActivityTracing Pass this SourceLevels enumeration value as the second argument
to the constructor of the TraceSource class to trace only events of types
Stop, Start, Suspend, Transfer, and Resume. Recall that these event
types are known as activity event types. In other words, passing the
ActivityTracing enumeration value as the second argument into the con-
structor of the TraceSource class tells this class that you’re interested only
in tracing activity event types.

All Pass this SourceLevels enumeration value as the second argument to the
constructor of the TraceSource class to trace all types of events.

Off Pass this SourceLevels enumeration value as the second argument to
the constructor of the TraceSource class to disable tracing any type of
event.

542

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 542

543

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

As discussed earlier, the second constructor of the TraceSource class takes a SourceLevels enumera-
tion value as its second argument. This enumeration value determines which types of events to trace. In
other words, you’re telling the trace source which events to trace. This seems to contradict what I said
earlier in this chapter. As discussed earlier, it is the responsibility of the switch attached to the trace
source — not the trace source itself — to determine which events to trace.

There is no contradiction. If you do instantiate, initialize, and attach a switch to the trace source,
the trace source simply ignores the SourceLevels enumeration value passed into its constructor.
However, if you do not attach a switch to the trace source, the trace source internally instantiates a
switch and passes this SourceLevels enumeration value to the switch. In other words, by passing this
SourceLevels enumeration value into the constructor of the trace source, you’re in effect setting the
source level of the underlying switch. As you’ll see later, the switch uses this source level to determine
which events should be traced.

Following the recipe, modify the implementation of the RssService provider-based service to instanti-
ate a TraceSource trace source and store it in a static field named traceSource to make it available to
other components. Listing 11-3 presents a new version of the RssService.

Listing 11-3: The RssService Class

using System;
using System.Configuration.Provider;
using System.Web;
using System.IO;

Member Description

Critical Pass this SourceLevels enumeration value as the second argument to the
constructor of the TraceSource class to trace only events of type Critical.

Error Pass this SourceLevels enumeration value as the second argument to the
constructor of the TraceSource class to trace only events of types Critical
and Error.

Warning Pass this SourceLevels enumeration value as the second argument to the
constructor of the TraceSource class to trace only events of types
Critical, Error, and Warning.

Information Pass this SourceLevels enumeration value as the second argument to the
constructor of the TraceSource class to trace only events of types
Critical, Error, Warning, and Information.

Verbose Pass this SourceLevels enumeration value as the second argument
to the constructor of the TraceSource class to trace only events of types
Critical, Error, Warning, Information, and Verbose. Recall that these
types of events are known as severity event types. Therefore, passing the
Verbose enumeration value as the second argument into the constructor of
the TraceSource class tells this class that you’re interested only in tracing
severity event types.

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 543

Listing 11-3: (continued)

using Microsoft.Web.Administration;
using Rss.ImperativeManagement;
using System.Web.Hosting;
using System.Diagnostics;

namespace Rss.Base
{
public class RssService
{
private static RssProvider provider = null;
private static RssProviderCollection providers = null;
private static bool IsInitialized = false;

private static TraceSource traceSource = null;
public static TraceSource TraceSource
{
get
{
Initialize();
return traceSource;

}
}

public RssProvider Provider
{
get { Initialize(); return provider; }

}

public RssProviderCollection Providers
{
get { Initialize(); return providers; }

}

public static void LoadRss(Stream stream)
{
Initialize();
Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

provider.LoadRss(channel, stream);
}

private static string channelTitle;
private static string channelDescription;
private static string channelLink;

private static void Initialize()
{
if (!IsInitialized)
{

544

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 544

Listing 11-3: (continued)

traceSource = new TraceSource(“myTraceSource”);
traceSource.TraceEvent(TraceEventType.Start, 0,

“[RSS SERVICE] START Initialize”);

ServerManager mgr = new ServerManager();
Configuration config =
mgr.GetWebConfiguration(HostingEnvironment.SiteName,

HttpContext.Current.Request.ApplicationPath);

RssSection section =
(RssSection)config.GetSection(“system.webServer/rss”, typeof(RssSection));
channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;
traceSource.TraceInformation(

“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
{
ProviderException ex =

new ProviderException(“Unable to load default RssProvider”);
traceSource.TraceData(TraceEventType.Critical, 0, ex);
throw ex;

}

IsInitialized = true;
traceSource.TraceEvent(TraceEventType.Stop, 0,

“[RSS SERVICE] END Initialize”);
}

}
}

}

As the boldfaced portion of this code listing shows, RssService exposes a property of type
TraceSource named TraceSource. As you’ll see throughout this chapter, the rest of the components of
the provider-based RSS service will use the trace source that this property returns to trace events. Note
that the TraceSource class is instantiated only once, that is, when the Initialize method of the
RssService class is invoked:

traceSource = new TraceSource(“myTraceSource”);

As discussed earlier, the TraceSource constructor takes a string argument that specifies the name of the
trace source, which is “myTraceSource” in this case. Keep in mind that the trace source name is case
sensitive.

545

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 545

Adding Trace Events
Following the recipe, the next order of business is to use the tracing methods of the trace source that you
instantiated in the previous section to add trace events to your provider-based RSS service and its
related components. However, first you need to gain a good understanding of the tracing methods of the
TraceSource class, as discussed in the following sections.

TraceEvent
The TraceSource class comes with three overloads of the TraceEvent method as shown in Listing 11-4.
Note that all three methods are annotated with the ConditionalAttribute metadata attribute, which
is discussed later in this chapter.

Listing 11-4: The TraceEvent Overloads

[ConditionalAttribute(“TRACE”)]
public void TraceEvent(TraceEventType eventType, int id);

[ConditionalAttribute(“TRACE”)]
public void TraceEvent(TraceEventType eventType, int id, string message);

[ConditionalAttribute(“TRACE”)]
public void TraceEvent(TraceEventType eventType, int id, string format,

params object[] args);

The first overload of the TraceEvent method takes two parameters. The first parameter is of type
TraceEventType, and specifies the type of the trace event being added. The second parameter is an
integer value that specifies the numeric identifier of the trace event being added. This numeric identifier
means what you want it to mean. For example, you may decide that all trace events that mark the begin-
ning of the execution of methods in your application should have the numeric identifier of 4. The
numeric identifier is just one way to differentiate one group of traces from other groups in the trace out-
put file.

The second overload of the TraceEvent method takes the same two parameters as the first overload
plus a third parameter that contains a message. As a matter of fact, the first overload under the hood
uses an empty string as the message.

The third overload takes the same two parameters as the first overload plus two more parameters. The
third parameter contains a format string with zero or more format items, and the fourth parameter con-
tains an array of objects to be formatted. This overload allows you to use the objects of your application
to provide more information about its flow of execution. Since the fourth parameter is preceded by the
keyword “params”, you can pass the objects to format as separate arguments into the method. You’ll see
an example of this later in this chapter.

TraceData
The TraceData method is just like the TraceEvent method with one notable difference. It allows
you to attach an extra object to the trace event being emitted. For example, you can use this method to
attach an exception object to a trace event. The TraceSource class comes with two overloads of the
TraceData method, as shown in Listing 11-5. Again notice that both overloads are annotated with the
ConditionalAttribute(“TRACE”) metadata attribute, which is discussed later in this chapter.

546

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 546

Listing 11-5: The TraceData Method

[Conditional(“TRACE”)]
public void TraceData(TraceEventType eventType, int id, object data);

[Conditional(“TRACE”)]
public void TraceData(TraceEventType eventType, int id, params object[] data);

Note that the first two parameters of these two overloads are the same as the first two parameters of the
TraceEvent method. The third parameter references the object being attached in the case of the first
overload and an array of objects being attached in the case of the second overload. This means that the
second overload allows you to attach multiple objects. Since the fourth parameter is preceded by the
keyword “params”, you can pass the objects to format as separate arguments into the method. You’ll see
an example of this later in this chapter.

TraceInformation
As Listing 11-6 shows, the TraceSource class comes with two overloads of the TraceInformation
method.

Listing 11-6: The TraceInformation Method

[Conditional(“TRACE”)]
public void TraceInformation(string message)
{
this.TraceEvent(TraceEventType.Information, 0, message, null);

}

[Conditional(“TRACE”)]
public void TraceInformation(string format, params object[] args)
{
this.TraceEvent(TraceEventType.Information, 0, format, args);

}

As you can see, the first overload under the hood invokes the following overload of the TraceEvent
method, passing in the TraceEventType.Information as the trace event type, 0 as the trace event
numeric identifier, and the specified event message as the event message:

[ConditionalAttribute(“TRACE”)]
public void TraceEvent(TraceEventType eventType, int id, string message);

In other words, the first overload of the TraceInformation method allows you to emit a trace event of
type Information with the specified event message.

As Listing 11-6 shows, the second overload of the TraceInformation method under the hood invokes
the following overload of the TraceEvent method, passing in the TraceEventType.Information
as the trace event type, 0 as the trace event numeric identifier, the specified format string as the format
string, and the specified array of objects as the array of objects being formatted:

[ConditionalAttribute(“TRACE”)]
public void TraceEvent(TraceEventType eventType, int id, string format,

params object[] args);

547

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 547

Therefore, you can think of these two overloads of the TraceInformation method as shortcut methods
saving you from having to invoke the underlying TraceEvent overloads.

TraceTransfer
The TraceSource class comes with a method named TraceTransfer as follows:

[Conditional(“TRACE”)]
public void TraceTransfer(int id, string message, Guid relatedActivityId);

This method emits a trace event of type TraceEventType.Transfer with the specified trace event
numeric identifier and specified message. Note that this method also takes a third argument of type
Guid that contains what is known as a related activity identifier. As discussed earlier, you can assign dif-
ferent identifiers to different logical operations or activities of your application. This is yet another way
to differentiate one group of traces from other groups in the trace output file.

Next, you use the tracing methods of the trace source that you instantiated for your provider-based RSS
service to add trace events to your service as shown in the highlighted portions of Listing 11-7.

Listing 11-7: The RssService Class

. . .
namespace Rss.Base
{
public class RssService
{

. . .

private static TraceSource traceSource = null;
public static TraceSource TraceSource
{
get
{

Initialize();
return traceSource;

}
}

. . .

private static void Initialize()
{

if (!IsInitialized)
{

traceSource = new TraceSource(“myTraceSource”);
traceSource.TraceEvent(TraceEventType.Start, 0,

“[RSS SERVICE] START Initialize”);

. . .

RssSection section =
(RssSection)config.GetSection(“system.webServer/rss”, typeof(RssSection));
channelDescription = section.ChannelDescription;

548

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 548

Listing 11-7: (continued)

channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;
traceSource.TraceInformation(

“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

. . .

if (provider == null)
{

ProviderException ex =
new ProviderException(“Unable to load default RssProvider”);

traceSource.TraceData(TraceEventType.Critical, 0, ex);
throw ex;

}

IsInitialized = true;
traceSource.TraceEvent(TraceEventType.Stop, 0,

“[RSS SERVICE] END Initialize”);
}

}
}

}

Listing 11-7 calls the TraceEvent method on the trace source to add a trace event of type Start with a
numeric identifier of 0 and a descriptive message to mark the beginning of the execution of the
Initialize method:

traceSource.TraceEvent(TraceEventType.Start, 0, “[RSS SERVICE] START Initialize”);

Next, it invokes the TraceInformation method on the trace source to add a trace event that contains
the channel information. Note that it passes four parameters into the TraceInformation method: the
first parameter is a format string with three format items, and the remaining three parameters specify
the objects being formatted, which are the channel information, link, and title in this case.

traceSource.TraceInformation(
“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

If the underlying configuration section does not specify a default provider, Listing 11-7 invokes the
TraceData method on the trace source to add a trace event. Note that this code listing passes three
parameters into this tracing method. The first parameter specifies that the trace event is of type
Critical because the provider-based RSS service did not recover from the associated error. You’ve
passed a numeric identifier of 0 as the second parameter. The third parameter is a reference to the actual
ProviderException object.

traceSource.TraceData(TraceEventType.Critical, 0, ex);

549

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 549

Finally, Listing 11-7 invokes the TraceEvent method on the trace source to add a trace event of type
Stop and a message to mark the end of the execution of the Initialize method:

traceSource.TraceEvent(TraceEventType.Stop, 0,
“[RSS SERVICE] END Initialize”);

Defining the Conditional Compilation Symbol “TRACE”
As you saw earlier, all tracing methods are annotated with a metadata attribute named
ConditionalAttribute(“TRACE”). When a method is annotated with the
ConditionalAttribute(“ConditionalCompilationSymbol”) metadata attribute, the C#, J#, and
VB compilers do not compile the calls into this method unless the conditional compilation symbol
passed in the ConditionalAttribute metadata attribute is defined. In this case, the conditional compi-
lation symbol is “TRACE”. Therefore, you must make sure that the “TRACE” conditional compilation
symbol is defined. Otherwise none of the trace events that you added in the previous section would
make it to the compiled assembly.

There are four different ways to define this symbol:

❑ Use the /define:TRACE switch if you’re compiling your code from the command line

❑ Take these steps if you’re compiling your code from Visual Studio:

1. In the Solution Explorer, right-click the project node that contains your code.

2. Select Properties from the menu to launch the Properties page.

3. Select the Build tab.

4. Check the Define TRACE constant checkbox.

❑ Set the TRACE environment variable, that is, set TRACE=1.

❑ Add the #define TRACE statement to the source code.

Tasks Performed from the
Configuration File

As discussed earlier, you must perform two sets of tasks to instrument your code with tracing. The first
set of tasks must be performed from within your code; these were discussed in the previous section. The
second set contains those tasks that can be performed either from the code or the configuration file, and
are discussed in this section. Even through the tasks in the second set can be performed both in the code
and the configuration file, I highly recommend that you perform these tasks from the configuration file.

Instantiating and Attaching a Switch
As discussed earlier, a switch is a component that contains the logic that determines whether a specified
trace source should trace a specified event. You may be wondering why this logic is not directly
included in the trace source itself. The answer to this question is twofold. First, it is not a good design

550

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 550

practice to have the same component perform two different tasks. Actually emitting a trace event is a
different task from determining whether the trace event should be emitted. Second, a switch is a config-
urable component, that is, it can be configured from the configuration file. This allows you to attach a
different switch to the same trace source to change the logic that determines which events should be
traced without making any code changes. It’s all done through the configuration file. We’re interested in
a special type of switch named SourceSwitch.

Before diving into the internals of this switch, let’s see how you can attach a switch to a trace source
in the configuration file. All tracing-related items in the configuration file go under a section named
<system.diagnostics>. This section contains a subelement named <sources> where you must spec-
ify the trace sources that you want to work with. Recall that trace sources are added imperatively from
within the code. In other words, you cannot add a new trace source from the configuration file. Your
application code must already contain every trace source that you specify in the <sources> section.

The <sources> section contains zero or more <source> elements, where each <source> element speci-
fies a particular trace source that you want to work with in the configuration file. You must set the name
attribute on a <source> element to the name of the trace source that the element represents. For exam-
ple, the <sources> element in the following configuration fragment contains a <source> subelement
whose name attribute is set to the value “myTraceSource” (shown in boldface), which is the name of
the trace source that the bottom boldfaced portion of Listing 11-3 instantiates:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” . . .>
. . .

</source>
</sources>

</system.diagnostics>
</configuration>

In general, there are two types of switches: local and shared. A shared switch is a switch that two or
more trace sources can share. This means that if you change the settings on a shared switch, it will affect
all trace sources that use that switch. A local switch is a switch that attaches to a single trace source. As a
result, any change in the settings of a local switch affects only the trace source to which it is attached.

The <system.diagnostics> section comes with a subelement named <switches> where you can
add shared switches. To add a shared switch, simply add a new <add> subelement to the <switches>
element and set its name and value attributes. These two attributes specify the name and value of
the switch that the <add> element represents. The name of a switch is a string that uniquely identifies
that switch among other switches. A switch uses its value to determine which trace events should be
traced. Because we’re only interested in switches of type SourceSwitch, this value is a member of the
SourceLevels enumeration.

For example, the <switches> element in the following configuration fragment contains an <add> ele-
ment that represents a switch named “mySwitch” with the value “Error”. This switch will only let
trace events of type Critical and Error pass through and will block all other types of trace events:

<configuration>
<system.diagnostics>

551

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 551

<sources>
<source name=”myTraceSource” . . .>
...

</source>
</sources>
<switches>
<add name=”mySwitch” value=”Error”/>

</switches>
</system.diagnostics>

</configuration>

Adding an <add> subelement that represents a shared switch with a specified name and value to the
<switches> element does not mean that the trace sources will automatically use that switch. To have a
trace source use a shared switch defined in the <switches> section, you must attach the shared switch
to the trace source. To attach a shared switch to a trace source, simply set the switchName attribute on
the <source> element to the value of the name attribute of the <add> element that represents the shared
switch, as shown in the boldfaced portions of the following configuration fragment:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
...

</source>
</sources>
<switches>
<add name=”mySwitch” value=”Error”/>

</switches>
</system.diagnostics>

</configuration>

Next, I show you how to define a local switch for a trace source. The <source> element that represents a
trace source with a specified name supports two attributes named switchType and switchValue.
Because we’re only interested in switches of type SourceSwitch, and because this switch type is the
default switch type, we don’t need to worry about setting the value of the switchType attribute. You
must set the value of the switchValue attribute to the appropriate SourceLevels enumeration value.
The local switch uses this enumeration value to determine which events should be traced. The boldfaced
portion of the following configuration fragment defines a local switch that only lets traces of type
Critical and Error pass through and blocks all other traces:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchValue=”Error”>
...

</source>
</sources>

</system.diagnostics>
</configuration>

552

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 552

Under the Hood of SourceSwitch
The SourceSwitch class, like any other switch, inherits from the Switch base class. This base class
exposes the following three important properties:

❑ DisplayName: A public read-only property that maps to the name attribute on the <add>
subelement of the <switches> element that represents the switch in the configuration file.

❑ Value: A protected read-only property that maps to the value attribute on the <add> subele-
ment of the <switches> element that represents the switch in the configuration file.

❑ SwitchSetting: A protected virtual read/write integer property that gets or sets the current
setting of the switch. This integer value reflects the value of the Value property.

The Switch base class exposes a protected virtual method named OnValueChanged, which is invoked
every time the value of the switch changes. For example, when you change the value of the value attrib-
ute on the <add> element that represents the switch in the configuration file, the OnValueChanged
method is automatically invoked under the hood. Listing 11-8 presents the Switch class’s implementa-
tion of this method.

Listing 11-8: The OnValueChanged method of the Switch Base Class

protected virtual void OnValueChanged()
{
this.SwitchSetting = int.Parse(this.Value, CultureInfo.InvariantCulture);

}

As you can see, the base class’s implementation simply parses the value of the Value property into an
integer and assigns this integer to the SwitchSetting property. In other words, the base class’s imple-
mentation assumes that the value assigned to the value attribute on the <add> element that represents
the switch in the configuration file or the value assigned to the switchValue attribute on the <source>
element that represents the associated trace source is an integer.

A subclass of the Switch base class such as SourceSwitch can override the OnValueChanged method
to use a different logic to map the value of the Value property to the SwitchSetting property.
Listing 11-9 presents the SourceSwitch class’s implementation of the OnValueChanged method.

Listing 11-9: The OnValueChanged Method of the SourceSwitch Class

protected override void OnValueChanged()
{
base.SwitchSetting = (int) Enum.Parse(typeof(SourceLevels), base.Value, true);

}

As you can see, the SourceSwitch class’s implementation does not directly map the Value property to
the SwitchSetting property. Instead, it first parses the value of the Value property to a SourceLevels
enumeration value, casts this enumeration value to an integer type, and finally assigns this integer
to the SwitchSetting property. In other words, the SourceSwitch class’s implementation of the
OnValueChanged method assumes that the value assigned to the value attribute on the <add> element
that represents the SourceSwitch in the configuration file or the value of the switchValue attribute on
the <source> element that represents the associated trace source is a SourceLevels enumeration value.

553

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 553

Recall that each member of the SourceLevels enumeration type specifies which type of trace events to
emit. Therefore, you can use the value attribute on the <add> element that represents a shared
SourceSwitch switch or the switchValue attribute on the <source> element that represents the asso-
ciated trace source to instruct this switch which events to trace.

The SourceSwitch class exposes a method named ShouldTrace as shown in Listing 11-10.

Listing 11-10: The ShouldTrace Method of SourceSwitch

public bool ShouldTrace(TraceEventType eventType)
{
return ((base.SwitchSetting & eventType) != 0);

}

As you can see, this method takes a trace event type as its argument and performs a bitwise AND opera-
tion between its argument and the SwitchSettings property value to determine whether the current
setting supports the specified trace event type. If so, it returns true to signal its associated trace source to
trace the specified event. As you’ll see later in this chapter, the tracing methods of the TraceSource
class internally invoke the ShouldTrace method on the attached SourceSwitch to determine whether
to trace the specified event. If the ShouldTrace method returns false, these tracing methods simply
return without tracing the event.

The SourceSwitch class exposes a public property named Levelthat allows you to get or set the value
of the SwitchSetting property as a strongly-typed property as shown in Listing 11-11. Therefore, you
have two ways to specify the level of a SourceSwitch:

❑ Declaratively via the configuration file by setting the value of the value attribute on the <add>
element that represents the SourceSwitch if the switch is a shared switch and by setting the
value of the switchValue attribute on the <source> element that represents the associated
trace source if the switch is a local switch.

❑ Imperatively via setting the value of the Level property from within your code.

Listing 11-11: The Level Property of SourceSwitch

public SourceLevels Level
{
get { return (SourceLevels) base.SwitchSetting; }
set { base.SwitchSetting = (int) value; }

}

Imperatively Instantiating and Attaching a Switch
The previous sections showed you how to declaratively instantiate and attach a shared or local switch to
a trace source in the configuration file without writing a single line of code. This section shows you how
to do the same thing in code.

Listing 11-12 presents a version of the provider-based RssService that imperatively instantiates and
attaches a local switch to your trace source.

554

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 554

Listing 11-12: Imperative Instantiation and Attaching of a Local Switch

using System;
using System.Configuration.Provider;
using System.Web;
using System.IO;
using Microsoft.Web.Administration;
using Rss.ImperativeManagement;
using System.Web.Hosting;
using System.Diagnostics;

namespace Rss.Base
{
public class RssService
{
private static RssProvider provider = null;
private static RssProviderCollection providers = null;
private static bool IsInitialized = false;

private static TraceSource traceSource = null;
public static TraceSource TraceSource
{
get
{
Initialize();
return traceSource;

}
}

public RssProvider Provider
{
get { Initialize(); return provider; }

}

public RssProviderCollection Providers
{
get { Initialize(); return providers; }

}

public static void LoadRss(Stream stream)
{
Initialize();
Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

provider.LoadRss(channel, stream);
}

private static string channelTitle;
private static string channelDescription;
private static string channelLink;

555

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 555

556

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-12: (continued)

private static void Initialize()
{
if (!IsInitialized)
{
traceSource = new TraceSource(“myTraceSource”);
SourceSwitch mySwitch = new SourceSwitch(“mySwitch”);
mySwitch.Level = SourceLevels.Error;
traceSource.Switch = mySwitch;

traceSource.TraceEvent(TraceEventType.Start, 0,
“[RSS SERVICE] START Initialize”);

ServerManager mgr = new ServerManager();
Configuration config =
mgr.GetWebConfiguration(HostingEnvironment.SiteName,

HttpContext.Current.Request.ApplicationPath);

RssSection section =
(RssSection)config.GetSection(“system.webServer/rss”, typeof(RssSection));
channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;
traceSource.TraceInformation(

“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
{
ProviderException ex =

new ProviderException(“Unable to load default RssProvider”);
traceSource.TraceData(TraceEventType.Critical, 0, ex);
throw ex;

}

IsInitialized = true;
traceSource.TraceEvent(TraceEventType.Stop, 0,

“[RSS SERVICE] END Initialize”);
}

}
}

}

As you can see from the boldfaced portion of Listing 11-12, the Initialize method first instantiates the
trace source as usual:

traceSource = new TraceSource(“myTraceSource”);

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 556

557

Chapter 11: Integrated Tracing and Diagnostics

Next, it instantiates a SourceSwitch named mySwitch:

SourceSwitch mySwitch = new SourceSwitch(“mySwitch”);

Then, it sets the switch level to SourceLevels.Error to instruct the switch that you’re only interested
in tracing events of type Critical and Error:

mySwitch.Level = SourceLevels.Error;

Finally, it assigns the newly instantiated switch to the Switch property of the trace source:

traceSource.Switch = mySwitch;

Imperative instantiation and attaching of a shared switch is very similar to a local switch. You still have
to instantiate your shared switch and set its Level property. The only difference is that you assign the
same switch to the Switch property of two or more trace sources. In other words, two or more trace
sources share that same switch.

Instantiating and Attaching an IisTraceListener
As discussed in the previous sections, you use the TraceEvent, TraceData, and TraceTransfer trac-
ing methods of the TraceSource class to emit trace events from within your code. As the name implies,
the TraceSource class is the trace event source, that is, it is the emission source of trace events. This
raises the following question: Where does an emitted trace event go? It depends on the configured trace
listener. As the name suggests, a trace listener is an object that listens for trace events. In other words, the
TraceSource object emits the trace events and the configured trace listener catches these trace events.
What the configured trace listener does with a trace event that it catches depends entirely on the imple-
mentation of the trace listener. For example, as you’ll see later, the IisTraceListener trace listener
routes a captured trace event to the IIS 7 tracing infrastructure.

All trace listeners directly or indirectly inherit from the TraceListener base class. As Listing 11-13
shows, the TraceListener base class exposes the same tracing methods that a trace source exposes.
This is because the tracing methods of a trace source under the hood delegate to the associated methods
of the configured trace listener.

Listing 11-13: The Tracing Methods of the TraceListener Base Class

public virtual void TraceData(TraceEventCache eventCache, string source,
TraceEventType eventType, int id, params object[] data);

public virtual void TraceData(TraceEventCache eventCache, string source,
TraceEventType eventType, int id, object data);

public virtual void TraceEvent(TraceEventCache eventCache, string source,
TraceEventType eventType, int id);

public virtual void TraceEvent(TraceEventCache eventCache, string source,
TraceEventType eventType, int id, string message);

public virtual void TraceEvent(TraceEventCache eventCache, string source,

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 557

Listing 11-13: (continued)

TraceEventType eventType, int id, string format, params object[] args);

public virtual void TraceTransfer(TraceEventCache eventCache, string source,
int id, string message, Guid relatedActivityId);

Note that the tracing methods of the TraceListener base class have the same signature as the corre-
sponding tracing methods of the trace source, except for one notable difference. All tracing methods of
the TraceListener base class take an instance of a class named TraceEventCache as their first argu-
ment. The associated trace source creates this instance and passes it into these methods as their first
argument. These methods internally use this TraceEventCache object for performance optimization. In
other words, all trace events are cached in this TraceEventCache object.

The tracing methods of a trace listener write the specified trace event to a specified output. The type of
output depends on the type of trace listener. For example, the tracing methods of the
FileLogTraceListener trace event listener write trace events to a specified file. We’re interested in a
trace listener named IisTraceListener. The tracing methods of this trace listener route the trace
events to the IIS tracing infrastructure where it can be captured by trace event consumers, such as the
Failed Request Tracing module.

In general, there are two types of trace listeners: local and shared. A shared trace listener attaches to
more than one trace source. As such, a shard trace listener outputs traces coming from all the trace
sources to which it is attached. Any changes in the settings of a shared trace listener will affect all the
trace sources that use that trace listener. A local trace listener attaches to a single trace source and out-
puts only traces coming from that trace source.

There are two ways to instantiate and to attach trace listeners to trace sources: declaratively via the con-
figuration file and imperatively via code. As discussed earlier, it is highly recommended that you do this
declaratively from the configuration file.

The <system.diagnostics> section contains a subelement named <sharedListeners>. To add a new
shared trace listener you must add a new <add> subelement to the <sharedListeners> element and
sets its name and type attributes. The name attribute specifies the name of the shared trace listener and
the type attribute specifies the complete information about the trace listener type. For example, the
boldfaced portion of the following configuration fragment adds an IisTraceListener shared trace lis-
tener named myListener:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
...

</source>
</sources>
<switches>
<add name=”mySwitch” value=”Error”/>

</switches>
<sharedListeners>
<add name=”myListener” type=”System.Web.IisTraceListener”>

558

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 558

. . .
</add>

</sharedListeners>
</system.diagnostics>

</configuration>

Adding a shared trace listener to the <sharedListeners> section does not mean that the trace sources
specified in the configuration file will automatically use this shared trace listener. You must explicitly
attach the shared trace listener to each trace source that you want to use the listener. The <source> ele-
ment that represents a trace source in the configuration file contains a child element named <listen-
ers>. To attach a shared listener to a trace source you must add an <add> child element to the
<listeners> section of the <source> element that represents the trace source in the configuration file
and set its name attribute to the value of the name attribute of the <add> element that adds the trace lis-
tener to the <sharedListeners> section. For example, the top boldfaced portion of the following con-
figuration fragment attaches the shared listener defined in the bottom boldfaced portion:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
<listeners>
<add name=”myListener” />

</listeners>
</source>

</sources>
<switches>
<add name=”mySwitch” value=”Error”/>

</switches>
<sharedListeners>
<add name=”myListener” type=”System.Web.IisTraceListener”>
. . .

</add>
</sharedListeners>

</system.diagnostics>
</configuration>

To attach a local trace listener to a trace source, you must add an <add> child element to the <listen-
ers> child element of the <source> element that represents the trace source in the configuration file
and set its name and type attributes. For example, the boldfaced portion of the following configuration
fragment instantiates and attaches an IisTraceListener local trace listener named myListener to the
trace source named myTraceSource:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
<listeners>
<add name=”myListener” type=”System.Web.IisTraceListener”>
. . .

</add>
</listeners>

</source>

559

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 559

</sources>
<switches>
<add name=”mySwitch” value=”Error”/>

</switches>
</system.diagnostics>

</configuration>

So far, you’ve learned how to declaratively instantiate and attach a shared or local trace listener to a
trace source from the configuration file. Next, I show you how to do this from code. Listing 11-14 pres-
ents a new version of the RssService that imperatively instantiates and attaches a local trace listener to
your trace source.

Listing 11-14: Imperative Instantiation and Attaching of a Trace Listener

using System;
using System.Configuration.Provider;
using System.Web;
using System.IO;
using Microsoft.Web.Administration;
using Rss.ImperativeManagement;
using System.Web.Hosting;
using System.Diagnostics;

namespace Rss.Base
{
public class RssService
{
private static RssProvider provider = null;
private static RssProviderCollection providers = null;
private static bool IsInitialized = false;

private static TraceSource traceSource = null;
public static TraceSource TraceSource
{
get
{
Initialize();
return traceSource;

}
}

public RssProvider Provider
{
get { Initialize(); return provider; }

}

public RssProviderCollection Providers
{
get { Initialize(); return providers; }

}

public static void LoadRss(Stream stream)
{

560

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 560

561

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-14: (continued)

Initialize();
Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

provider.LoadRss(channel, stream);
}

private static string channelTitle;
private static string channelDescription;
private static string channelLink;

private static void Initialize()
{
if (!IsInitialized)
{
traceSource = new TraceSource(“myTraceSource”);
SourceSwitch mySwitch = new SourceSwitch(“mySwitch”);
mySwitch.Level = SourceLevels.Error;
traceSource.Switch = mySwitch;

IisTraceListener myListener = new IisTraceListener();
myListener.Name = “myListener”;
traceSource.Listeners.Add(myListener);

traceSource.TraceEvent(TraceEventType.Start, 0,
“[RSS SERVICE] START Initialize”);

ServerManager mgr = new ServerManager();
Configuration config =
mgr.GetWebConfiguration(HostingEnvironment.SiteName,

HttpContext.Current.Request.ApplicationPath);

RssSection section =
(RssSection)config.GetSection(“system.webServer/rss”, typeof(RssSection));
channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;
traceSource.TraceInformation(

“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
{
ProviderException ex =

new ProviderException(“Unable to load default RssProvider”);

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 561

Listing 11-14: (continued)

traceSource.TraceData(TraceEventType.Critical, 0, ex);
throw ex;

}

IsInitialized = true;
traceSource.TraceEvent(TraceEventType.Stop, 0,

“[RSS SERVICE] END Initialize”);
}

}
}

}

As you can see from the boldfaced portion of Listing 11-14, Initialize first instantiates an
IisTraceListener:

IisTraceListener myListener = new IisTraceListener();

It names the trace listener “myListener”:

myListener.Name = “myListener”;

It adds the trace listener to the Listeners collection of the trace source to attach the trace listener to the
trace source:

traceSource.Listeners.Add(myListener);

Instantiating and attaching a shared trace listener to a trace source is very similar to a local trace listener.
You still have to instantiate the trace listener and set its Name property. The only difference is that you
add this trace listener to the Listeners collection property of more than one trace source.

Instantiating and Attaching a Trace Filter
Following the recipe, the next order of business is to instantiate and attach a trace filter to the trace lis-
tener. As discussed earlier, a trace filter filters the events that its associated trace listener traces. All trace
filters directly or indirectly inherit from a base class named TraceFilter. Listing 11-15 presents the
implementation of this base class. This base class defines the API that the TraceListener base class
uses to interact with the configured trace filter in a generic fashion without knowing its real type. This
allows the same trace listener to interact with different types of trace filters.

Listing 11-15: The TraceFilter Base Class

public abstract class TraceFilter
{
internal string initializeData;

internal bool ShouldTrace(TraceEventCache cache, string source,
TraceEventType eventType, int id,
string formatOrMessage)

562

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 562

563

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-15: (continued)

{
return this.ShouldTrace(cache, source, eventType, id, formatOrMessage,

null, null, null);
}

internal bool ShouldTrace(TraceEventCache cache, string source,
TraceEventType eventType, int id,
string formatOrMessage, object[] args)

{
return this.ShouldTrace(cache, source, eventType, id, formatOrMessage,

args, null, null);
}

internal bool ShouldTrace(TraceEventCache cache, string source,
TraceEventType eventType, int id,
string formatOrMessage, object[] args, object data1)

{
return this.ShouldTrace(cache, source, eventType, id, formatOrMessage,

args, data1, null);
}

public abstract bool ShouldTrace(TraceEventCache cache, string source,
TraceEventType eventType, int id,
string formatOrMessage, object[] args,
object data1, object[] data);

}

As you can see, the TraceFilter base class exposes four overloads of the ShouldTrace method. Note
that the first three overloads are marked as internal, whereas the last overload is marked as public. As
you’ll see later in this chapter, the tracing methods of the TraceListener base class use the internal
overloads. Also note that the internal overloads of the ShouldTrace method delegate to the public
overload of this method, which is marked as abstract. Every trace filter must implement this abstract
method to include the necessary logic to determine whether the trace event with the specified event
type, numeric identifier, format string or message, array of objects to be formatted, and attached data
objects should be traced.

The .NET Framework comes with two standard implementations of the TraceFilter base class:
EventTypeFilter and SourceFilter, as discussed in the following sections.

EventTypeFilter
The EventTypeFilter filters trace events based on their event types. Listing 11-16 presents the imple-
mentation of the EventTypeFilter class.

Listing 11-16: The EventTypeFilter Class

public class EventTypeFilter : TraceFilter
{
private SourceLevels level;

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 563

Listing 11-16: (continued)

public EventTypeFilter(SourceLevels level)
{
this.level = level;

}

public override bool ShouldTrace(TraceEventCache cache, string source,
TraceEventType eventType, int id,
string formatOrMessage, object[] args,
object data1, object[] data)

{
return ((eventType & ((TraceEventType) ((int) this.level))) !=

((TraceEventType) 0));
}

public SourceLevels EventType
{
get { return this.level; }
set { this.level = value; }

}
}

The constructor of the EventTypeFilter takes an argument of type SourceLevels enumeration and
stores it in a private field. Note that the EventType read/write property gets or sets the value of this pri-
vate field. In other words, you can use the EventType property to imperatively change the source level
of an EventTypeFilter filter after your instantiate the filter.

The EventTypeFilter class, like any other trace filter, inherits from the TraceFilter base class and
implements its ShouldTrace abstract method. As Listing 11-16 shows, the EventTypeFilter class’s
implementation of the ShouldTrace method simply performs a bitwise AND operation between the
event type of the specified trace event and the source level of the filter. If the current source level sup-
ports the specified event type, the ShouldTrace method returns true to signal its associated trace lis-
tener that the specified trace event should be traced.

Next, I show you how to instantiate and attach an EventTypeFilter filter to a trace listener. In general,
you can do this either from code or the configuration file. As discussed earlier, it is highly recommended
that you do this from the configuration file.

To instantiate and attach an EventTypeFilter filter to a local trace listener, you must add a <filter>
child element to the <add> element that represents the local trace listener in the <listeners> subele-
ment of the <source> element that represents the associated trace source. You must also set the type
attribute on this <filter> child element to “System.Diagnostics.EventTypeFilter” to specify
that you want the trace listener to use an EventTypeFilter to filter which events to trace. You must
also set the initializeData attribute on this <filter> child element to a SourceLevels enumeration
value to specify which events the trace listener should trace.

For example, the boldfaced portion of the following configuration fragment attaches an
EventTypeFilter trace filter to the IisTraceListener and sets its initializeData attribute to

564

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 564

Error to specify that IisTraceListener should only trace events of type Critical and Error and
should ignore all other types of events:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
<listeners>
<add name=”myListener” type=”System.Web.IisTraceListener”>
<filter type=”System.Diagnostics.EventTypeFilter”
initializeData=”Error”/>

</add>
</listeners>

</source>
</sources>
<switches>
<add name=”mySwitch” value=”All”/>

</switches>
</system.diagnostics>

</configuration>

Note that this configuration fragment attaches a switch with a source level value of All to the trace source.
This means that the trace source traces all types of events. However, thanks to the EventTypeFilter trace
filter, the IisTraceListener only routes events of type Critical and Error to the IIS 7 tracing infra-
structure. In other words, IIS 7 modules such as Failed Request Tracing will only see Critical and Error
type events.

To attach an EventTypeFilter filter to a shared trace listener, add a <filter> child element to the
<add> child element that represents the shared trace listener in the <sharedListeners> section. You
must also set the type and initializeData attributes of the <filter> element as discussed earlier.
The bold faced portion of the following configuration fragment attaches an EventTypeFilter filter to
the IisTraceListener shared listener:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
<listeners>
<add name=”myListener” />

</listeners>
</source>

</sources>
<switches>
<add name=”mySwitch” value=”All”/>

</switches>
<sharedListeners>
<add name=”myListener” type=”System.Web.IisTraceListener”>
<filter type=”System.Diagnostics.EventTypeFilter” initializeData=”Error”/>

</add>
</sharedListeners>

</system.diagnostics>
</configuration>

565

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 565

Next, I show you how to instantiate and attach an EventTypeFilter filter to a trace listener from code.
Listing 11-17 presents a new version of RssService that instantiates and attaches an EventTypeFilter
filter to the IisTraceListener.

Listing 11-17: Imperative Instantiation and Attachment of an EventTypeFilter filter

using System;
using System.Configuration.Provider;
using System.Web;
using System.IO;
using Microsoft.Web.Administration;
using Rss.ImperativeManagement;
using System.Web.Hosting;
using System.Diagnostics;

namespace Rss.Base
{
public class RssService
{
private static RssProvider provider = null;
private static RssProviderCollection providers = null;
private static bool IsInitialized = false;

private static TraceSource traceSource = null;
public static TraceSource TraceSource
{
get
{
Initialize();
return traceSource;

}
}

public RssProvider Provider
{
get { Initialize(); return provider; }

}

public RssProviderCollection Providers
{
get { Initialize(); return providers; }

}

public static void LoadRss(Stream stream)
{
Initialize();
Channel channel = new Channel();
channel.Title = channelTitle;
channel.Link = channelLink;
channel.Description = channelDescription;

provider.LoadRss(channel, stream);
}

566

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 566

567

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-17: (continued)

private static string channelTitle;
private static string channelDescription;
private static string channelLink;

private static void Initialize()
{
if (!IsInitialized)
{
traceSource = new TraceSource(“myTraceSource”);
SourceSwitch mySwitch = new SourceSwitch(“mySwitch”);
mySwitch.Level = SourceLevels.Error;
traceSource.Switch = mySwitch;

IisTraceListener myListener = new IisTraceListener();
myListener.Name = “myListener”;
EventTypeFilter myFilter = new EventTypeFilter(SourceLevels.Error);
myListener.Filter = myFilter;
traceSource.Listeners.Add(myListener);

traceSource.TraceEvent(TraceEventType.Start, 0,
“[RSS SERVICE] START Initialize”);

ServerManager mgr = new ServerManager();
Configuration config =
mgr.GetWebConfiguration(HostingEnvironment.SiteName,

HttpContext.Current.Request.ApplicationPath);

RssSection section =
(RssSection)config.GetSection(“system.webServer/rss”, typeof(RssSection));
channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;
traceSource.TraceInformation(

“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
{
ProviderException ex =

new ProviderException(“Unable to load default RssProvider”);
traceSource.TraceData(TraceEventType.Critical, 0, ex);
throw ex;

}

IsInitialized = true;
traceSource.TraceEvent(TraceEventType.Stop, 0,

“[RSS SERVICE] END Initialize”);

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 567

Listing 11-17: (continued)

}
}

}
}

As the boldfaced portion of this code listing shows, the Initialize method first instantiates an
EventTypeFilter, passing in SourceLevels.Error as the source level:

EventTypeFilter myFilter = new EventTypeFilter(SourceLevels.Error);

Then, it assigns this EventTypeFilter filter to the Filter property of the trace listener:

myListener.Filter = myFilter;

SourceFilter
The SourceFilter filter uses the source of the specified trace event to determine whether the trace
event should be traced. Listing 11-18 presents the implementation of the SourceFilter filter.

Listing 11-18: The SourceFilter Filter

public class SourceFilter : TraceFilter
{
private string src;

public SourceFilter(string source)
{
this.Source = source;

}

public override bool ShouldTrace(TraceEventCache cache, string source,
TraceEventType eventType, int id,
string formatOrMessage, object[] args,
object data1, object[] data)

{
if (source == null)
throw new ArgumentNullException(“source”);

return string.Equals(this.src, source);
}

public string Source
{
get { return this.src; }

set
{
if (value == null)
throw new ArgumentNullException(“source”);

this.src = value;
}

}
}

568

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 568

Note that the constructor of the SourceFilter filter takes a string argument that contains the name of a
trace source and stores this argument in a private field. The Source read/write string property of the
SourceFilter filter simply gets and sets the value of this field. This means that you can use the Source
property to imperatively change the associated trace source of a SourceFilter filter after you instanti-
ate the filter. Notice that the setter of the Source property raises an exception if the value being assigned
to the property is null.

The SourceFilter filter, like any other trace event filter, inherits from the TraceFilter base class and
implements its ShouldTrace abstract method. As Listing 11-18 shows, this method simply checks
whether the source of the specified trace event is the same source associated with the filter. If so, it
returns true. Otherwise it returns false. Note that the method raises an exception if the source name
passed to the constructor was null.

One common scenario where the SourceFilter filter comes in handy is when several trace sources
share the same trace listener. In this case this trace listener is an IisTraceListener. This means that
IisTraceListener routes events coming from several trace sources to the IIS 7 tracing infrastructure.
This ends up cluttering the output trace file, making it hard to make sense of the content of the file. In
these situations you can temporarily attach a SourceFilter filter to IisTraceListener to have the
trace listener only route events coming from a particular trace source. The following listing shows how
you can do this from the configuration file:

<configuration>
<system.diagnostics>
<sources>
<source name=”myTraceSource1” switchName=”mySwitch”>
<listeners>
<add name=”myListener” />

</listeners>
</source>
<source name=”myTraceSource2” switchName=”mySwitch”>
<listeners>
<add name=”myListener” />

</listeners>
</source>

</sources>
<switches>
<add name=”mySwitch” value=”All”/>

</switches>
<sharedListeners>
<add name=”myListener” type=”System.Web.IisTraceListener”>
<filter type=”System.Diagnostics.SourceFilter”
initializeData=”myTraceSource2”/>

</add>
</sharedListeners>

</system.diagnostics>
</configuration>

Note that the <sources> element contains two <source> elements that represent two trace sources
named myTraceSource1 and myTraceSource2, which share an IisTraceListener trace listener named
myListener. Also note that you have attached a SourceFilter trace filter to this shared trace listener
and set its initializeData attribute to myTraceSource2, which is the name of the second trace
source. This means that your SourceFilter trace filter will instruct the shared trace listener to route

569

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 569

only traces originating from the myTraceSource2 trace source to the IIS 7 tracing infrastructure ignor-
ing the traces coming from the myTraceSource1 trace source.

Putting It All Together
Open the RSS solution that you created in Chapter 10 in Visual Studio. Recall that this solution contains
a Class Library project named Rss. Now take these steps:

1. Replace the content of the RssService.cs file in the Base directory of the Rss project with the
code shown in Listing 11-3.

2. Add a new Web application named RssWebApp to this solution.

3. Add an empty text file named MyFile.rss to this Web application.

4. Add the boldfaced portion of Listing 11-19 to the web.config file of this Web application.

5. Add the boldfaced portions of Listing 11-20 to the applicationHost.config file. Don’t forget
to replace the value of the PublicKeyToken attribute with the actual public key token of the
assembly. Chapter 7 showed you how to access the public key token of an assembly.

6. Add the boldfaced portion of the following XML fragment to the <connectionStrings> sec-
tion of the machine.config file:

<connectionStrings>
<add name=”MyXmlFile” connectionString=”App_Data/Articles.xml” />

</connectionStrings>

7. Add an empty XML file named Articles.xml to this Web application and add the content of
Listing 11-21 to this file.

8. Right-click the Rss project node in the Solution Explorer and select Properties.

9. Select the Build tab from the Properties page and make sure the Define TRACE constant is
selected.

Listing 11-19: The web.config File

<configuration>
<system.web>
<compilation debug=”true”/>

</system.web>
<system.diagnostics>
<sources>
<source name=”myTraceSource” switchName=”mySwitch”>
<listeners>
<add name=”myListener” type=”System.Web.IisTraceListener, System.Web,

Version=2.0.0.0, Culture=Neutral, PublicKeyToken=b03f5f7f11d50a3a”>
<filter type=”System.Diagnostics.EventTypeFilter”
initializeData=”All”/>

</add>
</listeners>

</source>
</sources>

570

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 570

571

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-19: (continued)

<switches>
<add name=”mySwitch” value=”All”/>

</switches>
</system.diagnostics>
<system.webServer>
<defaultDocument enabled=”true”>
<files>
<add value=”MyFile.rss”/>

</files>
</defaultDocument>

</system.webServer>
</configuration>

Listing 11-20: The applicationHost.config File

<configuration>
. . .
<location path=”“ overrideMode=”Allow”>
<system.webServer>
<handlers accessPolicy=”Read, Script”>

<add name=”RssHandler” path=”*.rss” verb=”*“ preCondition=”integratedMode”
type=”Rss.Base.RssHandler, Rss, Version=1.0.0.0, Culture=Neutral,

PublicKeyToken=3c8f2b8aeeec5395”/>

. . .
</handlers>
. . .
<rss enabled=”true” defaultProvider=”XmlRssProvider”
channelTitle=”Free articles from Articles.com site”
channelDescription=”This site is dedicated to ASP.NET technologies”
channelLink=”http://articles.com”>
<providers>
<add name=”XmlRssProvider” connectionStringName=”MyXmlFile”
item=”//Article”
itemLinkFormatString=”http://articles.com/{0}“ itemTitle=”@title”
itemDescription=”Abstract/text()“ itemLink=”@link”
type=”Rss.Base.XmlRssProvider, Rss, Version=1.0.0.0, Culture=Neutral,

PublicKeyToken=3c8f2b8aeeec5395”/>
</providers>

</rss>
. . .

</system.webServer>
</location>
. . .

</configuration>

Listing 11-21: The Articles.xml File

<?xml version=”1.0” encoding=”utf-8” ?>
<Articles>

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 571

Listing 11-21: (continued)

<Article title=”What’s new in ASP.NET?” link=”Smith1.aspx”>
<Abstract>Describes the new ASP.NET features</Abstract>

</Article>
<Article title=”XSLT in ASP.NET Applications” link=”Carey.aspx”>
<Abstract>Shows to use XSLT in your ASP.NET applications</Abstract>

</Article>
<Article title=”XML programming” link=”Smith2.aspx”>
<Abstract>Reviews .NET 2.0 XML programming features</Abstract>

</Article>
</Articles>

Build the Rss project. Then access the MyFile.rss page of the RssWebApp Web application from your
browser. You should see the RSS document that the provider-based RSS service generates. You may be
wondering what happened to the traces you were trying to route to the IIS 7 tracing infrastructure. You’re
not done yet. There are still a few more steps that you have to take, as follows. Routing trace events to the
IIS 7 infrastructure is just half the story. Next, you need to configure an IIS 7 module named Failed Request
Tracing to capture these trace events and log them in a log file. This configuration involves two important
steps. Here is the first step: Launch the IIS 7 Manager and select the Default Web Site node from the
Connections pane, as shown in Figure 11-1.

Figure 11-1

Now click the Failed Request Tracing link button in the Actions pane to launch the Edit Web Site Failed
Request Tracing Settings dialog shown in Figure 11-2.

572

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 572

Figure 11-2

Check the Enable checkbox shown in Figure 11-2. Note that this dialog allows you to specify the location of
the trace output file and the maximum number of trace files that can be stored in this location. Click OK to
enable the Failed Request Tracing. As mentioned earlier, it takes two steps to configure the Failed Request
Tracing module. So far we’ve covered the first step. The second step requires you to specify a failed request
tracing rule. As the name implies, a failed request tracing rule instructs the Failed Request Tracing module
to log the trace events of those requests that meet the criteria specified by the failed request tracing rule.
The Failed Request Tracing module does not log trace events of those requests that meet none of the criteria
specified by the failed request tracing rules. Keep in mind that you can define multiple failed request trac-
ing rules. Next, I show you how to define a failed request tracing rule. Now go back to the IIS 7 Manager
and select the RssWebSite node in the Connections pane as shown in Figure 11-3.

Figure 11-3

Double-click the Failed Request Tracing Rules icon in the workspace in Figure 11-3 to navigate to the
Failed Request Tracing Rules page shown in Figure 11-4.

573

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 573

Figure 11-4

Click the Add link button in the Actions pane in Figure 11-4 to launch the Add Failed Request Tracing
Rule Wizard shown in Figure 11-5. This wizard allows you to add a new failed request tracing rule.

Figure 11-5

Select the All content (*) radio button, as shown in Figure 11-5, and click the Next button to move to the
Define Trace Conditions step shown in Figure 11-6.

574

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 574

Figure 11-6

Select the Status code(s) checkbox, and enter 200 for the status code. Then click the Next button to move
on to the Select Trace Providers step shown in Figure 11-7.

Figure 11-7

Uncheck all the providers in the left pane except the ASP.NET provider. Select the Verbose option from
the Verbosity combo box. Select the Module and Page toggles in the Areas section. Click the Finish but-
ton to exit the wizard.

575

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 575

Now access the MyFile.rss page of the RssWebSite from your browser. Go to the directory where the
trace output file is added. Open the file. You should see the result shown in Listing 11-22. As you can
see, this file contains the three trace events emitted by the Initialize method of the RssService.

Listing 11-22: The Trace Output File

<?xml version=”1.0” encoding=”UTF-8” ?>
<?xml-stylesheet type=’text/xsl’ href=’freb.xsl’?>
<failedRequest url=”http://localhost:80/RssWebSite2/“

siteId=”1”
appPoolId=”DefaultAppPool”
processId=”248”
verb=”GET”
remoteUserName=”“
userName=”“
tokenUserName=”NT AUTHORITY\IUSR”
authenticationType=”anonymous”
activityId=”{00000000-0000-0000-2D00-0080000000FA}“
failureReason=”STATUS_CODE”
statusCode=”200”
triggerStatusCode=”200”
timeTaken=”202”
xmlns:freb=”http://schemas.microsoft.com/win/2006/06/iis/freb”>

<Event xmlns=”http://schemas.microsoft.com/win/2004/08/events/event”>
<System>
<Provider Name=”ASPNET” Guid=”{AFF081FE-0247-4275-9C4E-021F3DC1DA35}“/>
<EventID>0</EventID>
<Version>0</Version>
<Level>0</Level>
<Opcode>66</Opcode>
<Keywords>0x2</Keywords>
<TimeCreated SystemTime=”2007-06-13T08:31:10.589Z”/>
<Correlation ActivityID=”{00000000-0000-0000-2D00-0080000000FA}“/>
<Execution ProcessID=”248” ThreadID=”3920”/>
<Computer>LH-WGPSJIEKZFID</Computer>

</System>
<EventData>
<Data Name=”ContextId”>{00000000-0000-0000-2D00-0080000000FA}</Data>
<Data Name=”Uri”>/RssWebSite/MyFile.rss</Data>
<Data Name=”eventData”>[RSS SERVICE] START Initialize</Data>

</EventData>
<RenderingInfo Culture=”en-US”>
<Opcode>AspNetModuleDiagStartEvent</Opcode>
<Keywords>
<Keyword>Module</Keyword>

</Keywords>
</RenderingInfo>
<ExtendedTracingInfo
xmlns=”http://schemas.microsoft.com/win/2004/08/events/trace”>
<EventGuid>{06A01367-79D3-4594-8EB3-C721603C4679}</EventGuid>

</ExtendedTracingInfo>
</Event>

576

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 576

Listing 11-22: (continued)

<Event xmlns=”http://schemas.microsoft.com/win/2004/08/events/event”>
<System>
<Provider Name=”ASPNET” Guid=”{AFF081FE-0247-4275-9C4E-021F3DC1DA35}“/>
<EventID>0</EventID>
<Version>0</Version>
<Level>4</Level>
<Opcode>64</Opcode>
<Keywords>0x2</Keywords>
<TimeCreated SystemTime=”2007-06-13T08:31:10.621Z”/>
<Correlation ActivityID=”{00000000-0000-0000-2D00-0080000000FA}“/>
<Execution ProcessID=”248” ThreadID=”3920”/>
<Computer>LH-WGPSJIEKZFID</Computer>

</System>
<EventData>
<Data Name=”ContextId”>{00000000-0000-0000-2D00-0080000000FA}</Data>
<Data Name=”Uri”>/RssWebSite2/MyFile.rss</Data>
<Data Name=”eventData”>
Channel Description: This site is dedicated to ASP.NET
Channel Link: http://articles.com
Channel Title: Free articles from Articles.com site

</Data>
</EventData>
<RenderingInfo Culture=”en-US”>
<Opcode>AspNetModuleDiagInfoEvent</Opcode>
<Keywords>
<Keyword>Module</Keyword>

</Keywords>
</RenderingInfo>
<ExtendedTracingInfo
xmlns=”http://schemas.microsoft.com/win/2004/08/events/trace”>
<EventGuid>{06A01367-79D3-4594-8EB3-C721603C4679}</EventGuid>

</ExtendedTracingInfo>
</Event>

<Event xmlns=”http://schemas.microsoft.com/win/2004/08/events/event”>
<System>
<Provider Name=”ASPNET” Guid=”{AFF081FE-0247-4275-9C4E-021F3DC1DA35}“/>
<EventID>0</EventID>
<Version>0</Version>
<Level>0</Level>
<Opcode>67</Opcode>
<Keywords>0x2</Keywords>
<TimeCreated SystemTime=”2007-06-13T08:31:10.636Z”/>
<Correlation ActivityID=”{00000000-0000-0000-2D00-0080000000FA}“/>
<Execution ProcessID=”248” ThreadID=”3920”/>
<Computer>LH-WGPSJIEKZFID</Computer>

</System>
<EventData>
<Data Name=”ContextId”>{00000000-0000-0000-2D00-0080000000FA}</Data>
<Data Name=”Uri”>/RssWebSite2/MyFile.rss</Data>
<Data Name=”eventData”>[RSS SERVICE] END Initialize</Data>

</EventData>

577

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 577

Listing 11-22: (continued)

<RenderingInfo Culture=”en-US”>
<Opcode>AspNetModuleDiagStopEvent</Opcode>
<Keywords>
<Keyword>Module</Keyword>

</Keywords>
</RenderingInfo>
<ExtendedTracingInfo
xmlns=”http://schemas.microsoft.com/win/2004/08/events/trace”>
<EventGuid>{06A01367-79D3-4594-8EB3-C721603C4679}</EventGuid>

</ExtendedTracingInfo>
</Event>

</failedRequest>

Configurable Tracing
The current implementation of the RssService class hard-codes the trace source’s name, as you can see
from the following excerpt from Listing 11-7:

traceSource = new TraceSource(“myTraceSource”);

This introduces two problems. First of all, the trace source name is hard-coded. Recall that the page
developer must use the same trace name in the configuration file as it is used in the code. This means
that the page developer cannot configure the trace source without knowing its hard-coded name. In
addition, the page developer won’t be able to use a name of her choosing. Second of all, it does not allow
the page developer to use an external trace source to trace the RssService’s trace events. To fix these
problems, extend your <rss> configuration system to add support for two attributes named
traceSource and isExternalTraceSource. The page developer can then set the
isExternalTraceSource attribute to true and assign the fully qualified name of a type to the
traceSource attribute. This type must expose a static property of type TraceSource named
TraceSource that returns a reference to the desired trace source. If the page developer wants the
RssService to use its own internal trace source, she must set the isExternalTraceSource attribute to
false and assign the desired trace source name to traceSource attribute.

Therefore, the first order of business is to modify the RSS_Schema.xml file to add support for the
traceSource and isExternalTraceSource attributes on the <rss> configuration section, as shown in
boldfaced portion of Listing 11-23.

Listing 11-23: The RSS_Schema.xml File

<configSchema>
<sectionSchema name=”system.webServer/rss”>
<attribute name=”enabled” type=”bool” defaultValue=”true”/>
<attribute name=”channelTitle” type=”string” defaultValue=”Unknown”/>
<attribute name=”channelDescription” type=”string” defaultValue=”Unknown”/>
<attribute name=”channelLink” type=”string” defaultValue=”Unknown”/>
<attribute name=”traceSource” type=”string” defaultValue=”Unknown”/>
<attribute name=”isExternalTraceSource” type=”bool” defaultValue=”false”/>

578

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 578

579

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-23: (continued)

<attribute name=”defaultProvider” type=”string”
validationType=”requireTrimmedString” defaultValue=”SqlRssProvider”/>
<element name=”providers”>
<collection addElement=”add” removeElement=”remove” clearElement=”clear”
allowUnrecognizedAttributes=”true”>
<attribute name=”name” required=”true” isUniqueKey=”true” type=”string” />
<attribute name=”type” required=”true” type=”string” />

</collection>
</element>

</sectionSchema>
</configSchema>

Next, you need to edit the RssSection imperative management class to add support for two new prop-
erties named TraceSource and IsExternalTraceSource that provide imperative access to the
traceSource and isExternalTraceSource attributes on the <rss> configuration section as shown in
Listing 11-24.

Listing 11-24: The RssSection Class

using System;
using Microsoft.Web.Administration;
using IIS7AndAspNet2IntegratedProvidersModel.ImperativeManagement;

namespace Rss.Base
{
public class RssSection : ConfigurationSection
{
static RssSection()
{
RssSection.ProvidersAttribute = “providers”;
RssSection.DefaultProviderAttribute = “defaultProvider”;
RssSection.EnabledAttribute = “enabled”;
RssSection.ChannelTitleAttribute = “channelTitle”;
RssSection.ChannelDescriptitonAttribute = “channelDescription”;
RssSection.ChannelLinkAttribute = “channelLink”;
RssSection.TraceSourceAttribute = “traceSource”;
RssSection.IsExternalTraceSourceAttribute = “isExternalTraceSource”;

}

. . .

public string TraceSource
{
get
{
return (string)base[RssSection.TraceSourceAttribute];

}
set
{
base[RssSection.TraceSourceAttribute] = value;

}

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 579

Listing 11-24: (continued)

}

public bool IsExternalTraceSource
{
get
{
return (bool)base[RssSection.IsExternalTraceSourceAttribute];

}
set
{
base[RssSection.IsExternalTraceSourceAttribute] = value;

}
}

private ProviderSettingsCollection _providers;
private static readonly string DefaultProviderAttribute;
private static readonly string EnabledAttribute;
private static readonly string ProvidersAttribute;
private static readonly string ChannelTitleAttribute;
private static readonly string ChannelDescriptitonAttribute;
private static readonly string ChannelLinkAttribute;
private static readonly string TraceSourceAttribute;
private static readonly string IsExternalTraceSourceAttribute;

}
}

Next, you need to modify the implementation of the RssService class as shown in the boldfaced por-
tion of Listing 11-25.

Listing 11-25: The RssService Class

using System;
using System.Configuration.Provider;
using System.Web;
using System.IO;
using Microsoft.Web.Administration;
using IIS7AndAspNet2IntegratedProvidersModel.ImperativeManagement;
using System.Diagnostics;
using System.Text;
using System.Web.Compilation;
using System.Reflection;

namespace Rss.Base
{
public class RssService
{
private static RssProvider provider = null;
private static RssProviderCollection providers = null;
private static bool IsInitialized = false;

private static TraceSource traceSource = null;

580

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 580

Listing 11-25: (continued)

public static TraceSource TraceSource
{
get
{
Initialize();
return traceSource;

}
}

private static string channelTitle;
private static string channelDescription;
private static string channelLink;

private static void Initialize()
{
if (!IsInitialized)
{
ServerManager mgr = new ServerManager();
Configuration config = mgr.GetApplicationHostConfiguration();
RssSection section = (RssSection)config.GetSection(

“system.webServer/rss”, typeof(RssSection));
channelDescription = section.ChannelDescription;
channelLink = section.ChannelLink;
channelTitle = section.ChannelTitle;

if (section.IsExternalTraceSource)
{
Type c = BuildManager.GetType(section.TraceSource, true, true);
PropertyInfo pi = c.GetProperty(“TraceSource”);
traceSource = (TraceSource)pi.GetValue(null, null);

}
else
traceSource = new TraceSource(section.TraceSource);

traceSource.TraceInformation(
“Channel Description: {0}\nChannel Link: {1}\nChannel Title: {2}\n”,
channelDescription, channelLink, channelTitle);

providers = new RssProviderCollection();
ProvidersHelper.InstantiateProviders

(section.Providers, providers, typeof(RssProvider));
provider = providers[section.DefaultProvider];

if (provider == null)
{
ProviderException ex =

new ProviderException(“Unable to load default RssProvider”);
traceSource.TraceData(TraceEventType.Critical, 0, ex);
throw ex;

}
IsInitialized = true;
traceSource.TraceEvent(TraceEventType.Stop, 0,

581

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 581

582

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-25: (continued)

“[RSS SERVICE] END Initialize”);
}

}
}

}

As you can see, the Initialize method first checks whether the isExternalTraceSource attribute
on the <rss> configuration section is set to true. If so, it takes these steps to access a reference to the
external trace source:

1. Invokes the GetType static method on the BuildManager class, passing in the value of the
traceSource attribute on the <rss> configuration section to return a reference to the Type
object that represents the type that contains the external trace source:

Type c = BuildManager.GetType(section.TraceSource, true, true);

2. Calls the GetProperty method on this Type object to return a reference to a PropertyInfo
object that represents the TraceSource property:

PropertyInfo pi = c.GetProperty(“TraceSource”);

3. Calls the GetValue method on this PropertyInfo object to return a reference to the external
trace source and assigns this reference to the traceSource static field:

traceSource = (TraceSource)pi.GetValue(null, null);

If the isExternalTraceSource attribute on the <rss> configuration section is set to false, the
Initialize method calls the constructor of the TraceSource class, passing in the value of the
traceSource attribute to instantiate a new trace source with the specified name:

traceSource = new TraceSource(section.TraceSource);

Next, you need to modify the implementation of the RssPage module page in order to add UI support
for configuring your trace settings as shown in Listing 11-26.

Listing 11-26: The RssPage Module Page

namespace Rss.Client
{
class RssPage : ModuleDialogPage
{
. . .

private Label channelTitleLabel;
private TextBox channelTitleTextBox;
private Label channelDescriptionLabel;
private TextBox channelDescriptionTextBox;
private Label channelLinkLabel;
private TextBox channelLinkTextBox;
private Label traceSourceLabel;

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 582

583

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-26: (continued)

private TextBox traceSourceTextBox;
private CheckBox isExternalTraceSourceCheckBox;

. . .

private void OnTraceSourceTextBoxTextChanged(object sender, EventArgs e)
{
this.UpdateUIState();

}

private void OnIsExternalTraceSourceCheckBoxCheckedChanged(object sender,
EventArgs e)

{
this.UpdateUIState();

}

private void InitializeUI()
{
if (localInfo == null)
return;

ClearChannelSettings();
this.channelTitleTextBox.Text = localInfo.ChannelTitle;
this.channelDescriptionTextBox.Text = localInfo.ChannelDescription;
this.channelLinkTextBox.Text = localInfo.ChannelLink;
this.traceSourceTextBox.Text = localInfo.TraceSource;
this.isExternalTraceSourceCheckBox.Checked = localInfo.IsExternalTraceSource;

}

private void ClearChannelSettings()
{
this.channelTitleTextBox.Clear();
this.channelDescriptionTextBox.Clear();
this.channelLinkTextBox.Clear();
this.traceSourceTextBox.Clear();

}

private void GetChannelValues()
{
this.clone = this.bag.Clone();
this.clone[0] = this.channelTitleTextBox.Text;
this.clone[1] = this.channelDescriptionTextBox.Text;
this.clone[2] = this.channelLinkTextBox.Text;
this.clone[3] = this.traceSourceTextBox.Text;
this.clone[4] = this.isExternalTraceSourceCheckBox.Checked;

}

private void InitializeComponent()
{
traceSourceLabel = new Label();
traceSourceTextBox = new TextBox();
isExternalTraceSourceCheckBox = new CheckBox();

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 583

584

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-26: (continued)

base.SuspendLayout();

. . .

traceSourceLabel.Location = new Point(0, 240);
traceSourceLabel.Name = “channelLinkLabel”;
traceSourceLabel.AutoSize = true;
traceSourceLabel.TabIndex = 4;
traceSourceLabel.Text = “Trace Source:”;
traceSourceLabel.TextAlign = ContentAlignment.MiddleLeft;

traceSourceTextBox.Location = new Point(110, 240);
traceSourceTextBox.Name = “channelLinkTextBox”;
traceSourceTextBox.Width = 250;
traceSourceTextBox.TabIndex = 5;
traceSourceTextBox.TextChanged +=

new EventHandler(OnTraceSourceTextBoxTextChanged);

isExternalTraceSourceCheckBox.Location = new Point(0, 280);
isExternalTraceSourceCheckBox.Name = “channelLinkLabel”;
isExternalTraceSourceCheckBox.AutoSize = true;
isExternalTraceSourceCheckBox.TabIndex = 4;
isExternalTraceSourceCheckBox.Text = “Is external trace source”;
isExternalTraceSourceCheckBox.TextAlign = ContentAlignment.MiddleLeft;
isExternalTraceSourceCheckBox.CheckedChanged +=

new EventHandler(OnIsExternalTraceSourceCheckBoxCheckedChanged);

. . .

base.Controls.Add(traceSourceLabel);
base.Controls.Add(traceSourceTextBox);
base.Controls.Add(isExternalTraceSourceCheckBox);

base.ResumeLayout(false);
}

}
}

As you can see, the new version of RssPage contains a new label that displays the text “Trace Source:”, a
new textbox that allows the user to enter the trace source name or the fully qualified name of the type
that exposes a TraceSource property that returns a reference to an external trace source, and a check-
box that allows the page developer to specify whether the textbox contains a trace source name or the
required type information. Note that the InitializeComponents method registers a method named
OnTraceSourceNameTextBoxTextChanged as an event handler for the TextChanged event of this new
textbox and a method named OnIsExternalTraceSourceCheckBoxCheckedChanged as an event han-
dler for the CheckedChanged event of the checkbox. Figure 11-8 shows what the new RssPage module
page looks like.

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 584

Figure 11-8

You also need to add two new properties named TraceSource and IsExternalTraceSource to
the RssSectionInfo class as shown in Listing 11-27. Recall that this class exposes the contents of the
PropertyBag collection that contains the settings on the <rss> configuration section as strongly-typed
properties.

Listing 11-27: The RssSectionInfo Class

using Microsoft.Web.Management.Server;

namespace Rss.Client
{
public sealed class RssSectionInfo
{
private PropertyBag bag;

public RssSectionInfo(PropertyBag bag)
{
this.bag = bag.Clone();

}

. . .

public string TraceSource
{
get { return (string)this.bag[5]; }

}

585

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 585

Listing 11-27: (continued)

public bool IsExternalTraceSource
{
get { return (bool)this.bag[6]; }

}
}

}

Finally, you need to modify the implementation of the RequestLoggingModuleService module serv-
ice class as shown in Listing 11-28. Recall that this module service is responsible for reading the configu-
ration settings from and writing the configuration settings into the underlying configuration file. There
are two particular methods that you have to edit. The first method is the GetChannelSettings method,
because you also want to get the values of the traceSource and isExternalTraceSource attributes.
The second method is the UpdateChannelSettings method, because you also want to store the new
values of these two attributes in the underlying configuration file.

Listing 11-28: The RequestLoggingModuleService Class

using System;
using Rss.Base;
using Microsoft.Web.Administration;
using Microsoft.Web.Management.Server;
using System.Web.Configuration;
using Rss.ImperativeManagement;

namespace Rss.GraphicalManagement.Server
{
public class RssModuleService : ModuleService
{
. . .

[ModuleServiceMethod(PassThrough = true)]
public PropertyBag GetSettings()
{
PropertyBag bag1 = new PropertyBag();
RssSection section1 = this.GetSection();
bag1[0] = section1.ChannelTitle;
bag1[1] = section1.ChannelDescription;
bag1[2] = section1.ChannelLink;
bag1[3] = section1.IsLocked;
bag1[4] = section1.Enabled;
bag1[5] = section1.TraceSource;
bag1[6] = section1.IsExternalTraceSource;
return bag1;

}

[ModuleServiceMethod(PassThrough = true)]
public void UpdateChannelSettings(PropertyBag updatedChannelSettings)
{
RssSection section1 = this.GetSection();
section1.ChannelTitle = (string)updatedChannelSettings[0];

586

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 586

Listing 11-28: (continued)

section1.ChannelDescription = (string)updatedChannelSettings[1];
section1.ChannelLink = (string)updatedChannelSettings[2];
section1.TraceSource = (string)updatedChannelSettings[3];
section1.IsExternalTraceSource = (bool)updatedChannelSettings[4];
base.ManagementUnit.Update();

}
}

}

Runtime Status and Control API
As mentioned in Chapter 4, there are two categories of the IIS 7 and ASP.NET integrated imperative
management types. The types in the first category expose members (methods and properties), which
allow you to imperatively access and manipulate the associated XML constructs of the IIS 7 and
ASP.NET integrated configuration system. I discussed these types in great detail in Chapter 4.

The types in the second category expose members (methods and properties), which allow you to imper-
atively access and manipulate the runtime state of the associated IIS 7 runtime objects. These types
include Request, RequestCollection, ApplicationDomain, ApplicationDomainCollection,
WorkerProcess, and WorkerProcessCollection, which I discuss in this section.

There are three IIS 7 and ASP.NET integrated imperative management types that fall in both categories
because they expose both members (methods and properties) that allow you to imperatively access and
manipulate the associated XML constructs of the IIS 7 and ASP.NET integrated configuration system,
and members that allow you to imperatively access and manipulate the runtime state of the associated
IIS 7 runtime objects. These three types are ServerManager, ApplicationPool, and Site.

To understand how the types in the second category manage to provide imperative access and control
over the runtime states of the IIS 7 runtime objects, first you need to familiarize yourself with an impor-
tant unmanaged API known as Runtime Status and Control API (RSCA). This unmanaged API consists
of the following unmanaged types:

❑ IRSCA_AppPool: This unmanaged RSCA class allows unmanaged code to imperatively access
detailed up-to-date runtime data for a specified application pool and to imperatively start, recy-
cle, and stop the application pool.

❑ IRSCA_RequestData: This unmanaged RSCA class allows unmanaged code to imperatively
access detailed up-to-date runtime data for a specified request.

❑ IRSCA_AppDomain: This unmanaged RSCA class allows unmanaged code to imperatively
access detailed up-to-date runtime data for a specified application domain and to imperatively
unload the application domain and its assemblies.

❑ IRSCA_RequestReader: This unmanaged RSCA class allows unmanaged code to iterate
through a list of worker process requests and to use the IRSCA_RequestData objects associated
with these requests to imperatively access detailed up-to-date runtime data for each worker
process request.

587

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 587

❑ IRSCA_WorkerProcess: This unmanaged RSCA class allows unmanaged code to imperatively
access detailed up-to-date runtime data for a specified worker process.

❑ IRSCA_VirtualSite: This unmanaged RSCA class allows unmanaged code to imperatively
access detailed up-to-date runtime data for a specified virtual Web site and to imperatively start
and stop the Web site.

❑ IRSCA_W3SVC: This unmanaged RSCA class allows unmanaged code to iterate through a list of
virtual Web sites to access the IRSCA_VirtualSite objects that allow unmanaged code to
access detailed up-to-date runtime data for these virtual Web sites and to imperatively start and
stop these virtual Web sites.

❑ IRSCA_WAS: This unmanaged RSCA class allows unmanaged code to:

❑ Iterate through a list of application pools to access the IRSCA_AppPool objects that
allow unmanaged code to imperatively access detailed up-to-date runtime data for
these application pools and to imperatively start, recycle, and stop these application
pools.

❑ Iterate through a list of worker processes to access the IRSCA_WorkerProcess objects
that allow unmanaged code to imperatively access detailed up-to-date runtime data for
these worker processes.

As you can see, the detailed up-to-date runtime data for the IIS 7 runtime objects from RSCA provides
you with a powerful diagnostic tool to study the IIS 7 runtime state to pinpoint runtime problems and
issues.

As mentioned, RSCA is an unmanaged API. As such, only COM/C++ developers can directly program
against the unmanaged classes that make up this API. The IIS 7 and ASP.NET integrated imperative man-
agement system comes with an internal sealed class named RscaInterop, which contains a bunch of man-
aged interfaces. As the name suggests, the RscaInterop class enables the interoperation between managed
code and RSCA unmanaged classes. As such, each interface defined within the RscaInterop class facilitates
the interoperation between managed code and an RSCA unmanaged class with the same name as the inter-
face. As Listing 11-29 shows, the RscaInterop class exposes eight interfaces named IRSCA_AppDomain,
IRSCA_AppPool, IRSCA_RequestData, IRSCA_RequestReader, IRSCA_VirtualSite, IRSCA_W3SVC,
IRSCA_WAS, and IRSCA_WorkerProcess that enable interoperation between managed code and the RSCA
unmanaged classes with the same names and an enumeration type named RSCA_OBJECT_STATE_ENUM that
maps into an RSCA unmanaged enumeration type with the same name.

Listing 11-29: The RscaInterop Internal Class

internal sealed class RscaInterop
{
private RscaInterop() { }

[ComImport, Guid(“35D651CB-0787-46b2-9B92-667D15E5591B”),
InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface IRSCA_AppDomain { . . . }

[ComImport, Guid(“6b49610c-060b-4d63-b524-cf56c2f890b5”),
InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface IRSCA_AppPool { . . . }

588

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 588

Listing 11-29: (continued)

[ComImport, InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
Guid(“6B5D2FE4-0093-46df-B2BC-2D0CDAB2A748”)]
public interface IRSCA_RequestData { . . . }

[ComImport, InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
Guid(“DAD4B26E-185B-452d-A33B-9548A7D0959A”)]
public interface IRSCA_RequestReader { . . . }

[ComImport, InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
Guid(“375F4C11-A2EA-4453-ABE4-AE040B64F597”)]
public interface IRSCA_VirtualSite { . . . }

[ComImport, Guid(“c9041162-3c4f-417e-8b7f-ba2731d585bb”),
InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface IRSCA_W3SVC { . . . }

[ComImport, InterfaceType(ComInterfaceType.InterfaceIsIUnknown),
Guid(“77DE72A3-C0F1-4820-BFB7-057A21A5A4B2”)]
public interface IRSCA_WAS { . . . }

[ComImport, Guid(“9D9DE1BD-0D37-4352-B959-A6F2E7BF95DC”),
InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface IRSCA_WorkerProcess { . . . }

public enum RSCA_OBJECT_STATE_ENUM { . . . }
}

I mentioned that the nested interfaces of the RscaInterop class enable interoperation between managed
code and the underlying RSCA unmanaged classes. The managed code in this case is an internal sealed
class named RscaWrapper. In other words, the nested interfaces of the RscaInterop class enable the
RscaWrapper managed class to interoperate with the underlying RSCA unmanaged classes to access
and to control the IIS 7 runtime state.

The IIS 7 and ASP.NET integrated imperative management types in the second category of types dis-
cussed earlier expose the functionality of the RscaWrapper managed class in the form of a convenient
set of methods and properties that you use in your own C# or Visual Basic code to programmatically
access and control the IIS 7 runtime state. In other words, you use the IIS 7 and ASP.NET integrated
imperative management types in the second category to indirectly interact with the underlying RSCA
unmanaged classes to programmatically access detailed up-to-date runtime data for various IIS 7 run-
time objects and to programmatically control these IIS 7 runtime objects.

ServerManager
Chapter 4 provided in-depth coverage of those members of the ServerManager class that allow your
managed code to access configuration data from the IIS 7 and ASP.NET integrated configuration system.
The ServerManager class also exposes a property of type WorkerProcessCollection named

589

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:57 PM Page 589

WorkerProcesses as shown in the following code fragment. As you’ll see shortly, this property pro-
vides up-to-date runtime data for the current worker processes.

public sealed class ServerManager : IDisposable
{
public WorkerProcessCollection WorkerProcesses { get; }
. . .

}

WorkerProcessCollection
The WorkerProcessCollection class acts as a container for WorkerProcess objects as demonstrated
in Listing 11-30. I discuss WorkerProcess shortly.

Listing 11-30: The WorkerProcessCollection Class

public sealed class WorkerProcessCollection : ICollection,
IEnumerable<WorkerProcess>, IEnumerable

{
public IEnumerator<WorkerProcess> GetEnumerator();
public WorkerProcess GetWorkerProcess(int processId);

public int IndexOf(WorkerProcess workerProcess);
public int Count { get; }
public WorkerProcess this[int index] { get; }

}

The WorkerProcessCollection class exposes the following members:

❑ GetEnumerator: This method returns an IEnumerator<WorkerProcess> enumerator that
you can use to iterate through the WorkerProcess objects in the WorkerProcessCollection
collection.

❑ GetWorkerProcess: This method returns a reference to the WorkerProcess object with a spec-
ified process id.

❑ IndexOf: This method returns the index of a specified WorkerProcess object in the
WorkerProcessCollection collection.

❑ Count: This property returns the number of the WorkerProcess objects in the
WorkerProcessCollection collection.

❑ Item: This indexer returns a reference to the WorkerProcess object in the
WorkerProcessCollection with a specified index.

WorkerProcess
The IIS 7 and ASP.NET integrated imperative management API comes with a class named
WorkerProcess, which allows your C# or Visual Basic code to indirectly interact with the underlying
IRSCA_WorkerProcess RSCA unmanaged object to imperatively retrieve detailed up-to-date runtime
data for the worker process responsible for processing the requests for a particular application pool.
Listing 11-31 presents the declaration of the members of this class.

590

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 590

Notice that this class exposes a method named GetRequests that returns a RequestCollection collec-
tion. I discuss RequestCollection shortly. The GetRequests method takes an integer value that
allows you to select requests with elapsed time less than the specified value. The elapsed time of a
request specifies how long the worker process has been processing the request.

Listing 11-31: The WorkerProcess Class

public sealed class WorkerProcess
{
public RequestCollection GetRequests(int timeElapsedFilter);

public ApplicationDomainCollection ApplicationDomains { get; }
public string AppPoolName { get; }
public int ProcessId { get; }
public Guid ProcessGuid { get; }
public WorkerProcessState State { get; }

}

Here are the descriptions of important properties of the WorkerProcess class:

❑ ApplicationDomains: Gets the ApplicationDomainCollection collection that contains
ApplicationDomain objects. I discuss ApplicationDomain shortly.

❑ AppPoolName: Gets the name of the application pool to which the worker process is assigned.
The same worker process cannot be assigned to two different application pools simultaneously.
This ensures that the application domains are isolated by process boundaries. Such isolation
ensures that the application misbehavior in one application pool does not affect the applications
running in another application pool.

❑ ProcessId: Gets the process id of the worker process.

❑ ProcessGuid: Gets the Guid for the worker process.

❑ State: Gets the running state of the worker process. Note that this property is of enumeration
type WorkerProcessState as defined in Listing 11-32.

Listing 11-32: The WorkerProcessState Enumeration

public enum WorkerProcessState
{
Starting,
Running,
Stopping,
Unknown

}

RequestCollection
The IIS 7 and ASP.NET integrated imperative management API comes with a class named
RequestCollection that acts as a container for Request objects as shown in Listing 11-33. I discuss
Request shortly.

591

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 591

Listing 11-33: The RequestCollection Class

public sealed class RequestCollection : ICollection, IEnumerable<Request>,
IEnumerable

{
public IEnumerator<Request> GetEnumerator();
public int IndexOf(Request element);

public int Count { get; }
public Request this[int index] { get; }

}

Here are the descriptions of the methods and properties of the RequestCollection class:

❑ GetEnumerator: Returns the IEnumerator<Request> enumerator that you can use to iterate
through the Request objects in the collection.

❑ IndexOf: Returns the index of the specified Request object in the collection.

❑ Count: Gets the total number of the Request objects in the collection.

❑ Item: Gets the Request object with the specified index in the collection.

Request
The IIS 7 and ASP.NET integrated imperative management API comes with a managed class named
Request, which allows your managed code to indirectly interact with the underlying
IRSCA_RequestData RSCA unmanaged object to retrieve detailed up-to-date runtime data for a speci-
fied client request and expose this data through strongly-typed properties shown in Listing 11-34.

Listing 11-34: The Request Class

public sealed class Request
{
public string ClientIPAddr { get; }
public string ConnectionId { get; }
public string CurrentModule { get; }
public string HostName { get; }
public string LocalIPAddress { get; }
public int LocalPort { get; }
public PipelineState PipelineState { get; }
public int ProcessId { get; }
public string RequestId { get; }
public int SiteId { get; }
public int TimeElapsed { get; }
public int TimeInModule { get; }
public int TimeInState { get; }
public string Url { get; }
public string Verb { get; }

}

592

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 592

Here are the descriptions of some of these properties:

❑ ClientIPAddr: Gets the IP address of the client that made the request.

❑ CurrentModule: Gets the name of the IIS 7 module currently processing the request.

❑ TimeInModule: Specifies how long the current IIS 7 module has been processing the request.

❑ ProcessId: Gets the process ID of the worker process processing the request.

❑ SiteId: Gets the identifier of the Web site to which the request was made.

❑ TimeElapsed: Specifies how long the worker process has been processing the request.

❑ Url: Gets the request URL.

❑ Verb: Gets the HTTP verb that the client used to make the request.

❑ PipelineState: Gets the PipelineState enumeration value that specifies the current
pipeline state of the request. Listing 11-35 presents the definition of this enumeration type.
These pipeline states basically map to the states at which the HttpApplication object fires its
corresponding events.

❑ TimeInState: Specifies how long the request has been in the current pipeline state.

Listing 11-35: The PipelineState Enumeration Type

public enum PipelineState
{
AcquireRequestState = 0x20,
AuthenticateRequest = 2,
AuthorizeRequest = 4,
BeginRequest = 1,
EndRequest = 0x800,
ExecuteRequestHandler = 0x80,
LogRequest = 0x400,
MapRequestHandler = 0x10,
PreExecuteRequestHandler = 0x40,
ReleaseRequestState = 0x100,
ResolveRequestCache = 8,
SendResponse = 0x20000000,
Unknown = 0,
UpdateRequestCache = 0x200

}

ApplicationDomain
A .NET application domain acts as a container for one or more assemblies, and isolates these assemblies
from the assemblies in other application domains. Application domains provide a level of isolation simi-
lar to OS processes, without the expensive context switch overhead. Application domains allow you to
load more than one application into the same OS process, where each application runs in a separate
application domain.

You cannot run any managed application — be it desktop or Web — without creating an application
domain and loading the application into the domain. The ApplicationDomain class is the IIS 7 and

593

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 593

ASP.NET integrated imperative management API’s representation of an application domain as shown in
Listing 11-36 and provides imperative access to the detailed up-to-date runtime data for an application
domain and imperative means to unload the application domain.

Listing 11-36: The ApplicationDomain Class

public class ApplicationDomain
{
// Methods
public void Unload();

// Properties
public string Id { get; }
public string PhysicalPath { get; }
public string VirtualPath { get; }
public WorkerProcess WorkerProcess { get; }

}

The following describes the members of the ApplicationDomain class:

❑ Unload: This method allows your managed code to indirectly invoke the Unload method on the
underlying IRSCA_AppDomain RSCA unmanaged object to unload an application domain.

❑ Id: Gets the identifier of the application domain.

❑ PhysicalPath: Gets the physical path of the application loaded into the application domain.

❑ VirtualPath: Gets the virtual path of the application loaded into the application domain.

❑ WorkerProcess: Gets the WorkerProcess that represents the worker process where the appli-
cation domain resides.

ApplicationDomainCollection
The IIS 7 and ASP.NET integrated imperative management API comes with a collection class named
ApplicationDomainCollection, which acts as a container for ApplicationDomain objects.
Listing 11-37 presents the members of this class.

Listing 11-37: The ApplicationDomainCollection Class

public sealed class ApplicationDomainCollection : ICollection,
IEnumerable<ApplicationDomain>, IEnumerable

{
// Methods
public IEnumerator<ApplicationDomain> GetEnumerator();
public int IndexOf(ApplicationDomain element);

// Properties
public int Count { get; }
public ApplicationDomain this[int index] { get; }

}

594

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 594

Here are the descriptions of the members of this class:

❑ GetEnumerator: Returns the IEnumerator<ApplicationDomain> object that can be used to
iterate through the ApplicationDomain objects in the collection.

❑ IndexOf: Returns the index of the specified ApplicationDomain object in the collection.

❑ Count: Gets the total number of the ApplicationDomain objects in the collection, which is
basically the total number of application domains that reside in the associated worker process.

❑ Item: Gets the ApplicationDomain object with the specified index.

ApplicationPool
Chapter 4 discussed those members of the ApplicationPool class that allow you to imperatively
access and manipulate the XML constructs that represent an application pool in the IIS 7 and ASP.NET
integrated configuration system. This section discusses those members of the ApplicationPool class
that allow you to imperatively access and manipulate the runtime state of an application pool as shown
in Listing 11-38.

Listing 11-38: The ApplicationPool Class

public sealed class ApplicationPool : ConfigurationElement
{
public ObjectState Recycle();
public ObjectState Start();
public ObjectState Stop();

public ObjectState State { get; }
public WorkerProcessCollection WorkerProcesses { get; }

}

Here are the descriptions of these members:

❑ State: This read-only property returns an object of type ObjectState enumeration. List -
ing 11-39 presents the definition of this enumeration type. As the name suggests, the State
property specifies the running state of an application pool.

❑ WorkerProcesses: This read-only property returns a reference to a
WorkerProcessCollection collection of WorkerProcess objects, each allowing your man-
aged code to imperatively access detailed up-to-date runtime data for a particular worker
process assigned to the application pool.

❑ Recycle: This method allows your managed code to indirectly invoke the Recycle method on
the underlying IRSCA_AppPool RSCA unmanaged object to recycle an application pool.

❑ Start: This method allows your managed code to indirectly invoke the Start method on the
underlying IRSCA_AppPool RSCA unmanaged object to start an application pool.

❑ Stop: This method allows your managed code to indirectly invoke the Stop method on the
underlying IRSCA_AppPool RSCA unmanaged object to stop an application pool.

595

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 595

596

Chapter 11: Integrated Tracing and Diagnostics

Listing 11-39: The ObjectState Enumeration Type

public enum ObjectState
{
Starting,
Started,
Stopping,
Stopped,
Unknown

}

Site
Chapter 4 provides in-depth coverage of those members of the Site class that allow your managed code
to access and to manipulate the XML representation of a virtual Web site in the underlying configuration
file. This section covers those members of the Site class that allow your managed code to access and to
manipulate the runtime state of a virtual Web site as shown in Listing 11-40.

Listing 11-40: The Site Class

public sealed class Site : ConfigurationElement
{
public ObjectState Start();
public ObjectState Stop();

public ObjectState State { get; }
}

The following list describes these members:

❑ Start: Call this method from your managed code to indirectly invoke the Start method on the
underlying IRSCA_VirtualSite RSCA unmanaged object to start a virtual Web site.

❑ Stop: Call this method from your managed code to indirectly invoke the Stop method on the
underlying IRSCA_VirtualSite RSCA unmanaged object to stop a virtual Web site.

❑ State: Call this property to return an ObjectState enumeration value that specifies the cur-
rent runtime state of a virtual Web site.

Putting It All Together
In this section, I present a few examples that use the Request, RequestCollection, ApplicationDomain,
ApplicationDomainCollection, WorkerProcess, WorkerProcessCollection, ServerManager,
ApplicationPool, and Site IIS 7 and ASP.NET integrated imperative management types to access and to
control the runtime states of the IIS 7 runtime objects.

To set up the first example, launch Visual Studio and add a blank solution. Next add a new Console
Application to this solution and replace the content of the Program.cs file with the code shown in
Listing 11-41. Then add a new Web application to this solution and replace the content of the Default
.aspx file with the code shown in Listing 11-42. Note that the Page_Load method in this code listing

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 596

uses the Sleep static method of the .NET Thread class. This will allow the console application to
retrieve up-to-date runtime data for the HTTP request made for the Default.aspx file. Now first access
the Default.aspx file from your browser and then run the console application. You should get the
result shown in Figure 11-9.

Listing 11-41: Displaying Up-to-Date Runtime Data for IIS 7 Runtime Objects

using System;
using Microsoft.Web.Administration;

class Program
{
static void Main(string[] args)
{
ServerManager mgr = new ServerManager();
foreach (WorkerProcess wp in mgr.WorkerProcesses)
{
Console.WriteLine(“Worker Process Info:”);
Console.WriteLine(“ AppPoolName: “ + wp.AppPoolName);
Console.WriteLine(“ ProcessId: “ + wp.ProcessId.ToString());
Console.WriteLine(“ ProcessGuid: “ + wp.ProcessGuid.ToString());
Console.WriteLine(“ State: “ + wp.State.ToString());
Console.WriteLine();

foreach (Request request in wp.GetRequests(10))
{
Console.WriteLine(“Request Info: “);
Console.WriteLine(“ ClientIPAddr: “ + request.ClientIPAddr);
Console.WriteLine(“ ConnectionId: “ + request.ConnectionId);
Console.WriteLine(“ CurrentModule: “ + request.CurrentModule);
Console.WriteLine(“ HostName: “ + request.HostName);
Console.WriteLine(“ LocalIPAddress: “ + request.LocalIPAddress);
Console.WriteLine(“ LocalPort: “ + request.LocalPort.ToString());
Console.WriteLine(“ PipelineState: “ +

request.PipelineState.ToString());
Console.WriteLine(“ ProcessId: “ + request.ProcessId.ToString());
Console.WriteLine(“ RequestId: “ + request.RequestId);
Console.WriteLine(“ SiteId: “ + request.SiteId.ToString());
Console.WriteLine(“ TimeElapsed: “ + request.TimeElapsed.ToString());
Console.WriteLine(“ TimeInModule: “ +

request.TimeInModule.ToString());
Console.WriteLine(“ TimeInState: “ + request.TimeInState.ToString());
Console.WriteLine(“ Url: “ + request.Url);
Console.WriteLine(“ Verb: “ + request.Verb);

}
Console.WriteLine();

foreach (ApplicationDomain appDomain in wp.ApplicationDomains)
{
Console.WriteLine(“Application Domain Info: “);
Console.WriteLine(“ Id: “ + appDomain.Id);
Console.WriteLine(“ PhysicalPath: “ + appDomain.PhysicalPath);
Console.WriteLine(“ VirtualPath: “ + appDomain.VirtualPath);

}

597

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 597

Listing 11-41: (continued)

Console.WriteLine();
Console.WriteLine();

}
Console.ReadKey();

}
}

Listing 11-42: The Default.aspx Page

<%@ Page Language=”C#“ %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<script runat=”server”>
void Page_Load(object sender, EventArgs e)
{
System.Threading.Thread.Sleep(60000);

}
</script>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
<title>Untitled Page</title>

</head>
<body>
<form id=”form1” runat=”server”>
</form>

</body>
</html>

Figure 11-9

598

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 598

599

Chapter 11: Integrated Tracing and Diagnostics

Next, I walk you through the implementation of the Main method shown in Listing 11-41. This method
begins by instantiating a ServerManager instance:

ServerManager mgr = new ServerManager();

Then, it invokes the WorkerProcesses property on this ServerManager instance to return a reference to
the WorkerProcessCollection collection of WorkerProcess objects. Recall that each WorkerProcess
object allows your managed code to indirectly use the underlying IRSCA_WorkerProcess RSCA unman-
aged object to retrieve detailed up-to-date runtime data for the associated worker process. Next, the Main
method iterates through the WorkerProcess objects in this WorkerProcessCollection collection for
each enumerated WorkerProcess object. First, it writes out the values of the properties of the enumer-
ated WorkerProcess:

Console.WriteLine(“Worker Process Info:”);
Console.WriteLine(“ AppPoolName: “ + wp.AppPoolName);
Console.WriteLine(“ ProcessId: “ + wp.ProcessId.ToString());
Console.WriteLine(“ ProcessGuid: “ + wp.ProcessGuid.ToString());
Console.WriteLine(“ State: “ + wp.State.ToString());
Console.WriteLine();

Then, it calls the GetRequest method on the enumerated WorkerProcess object to return a reference to
the RequestCollection collection of Request objects. Recall that each Request object in this collec-
tion allows your managed code to indirectly use the underlying IRSCA_RequestData RSCA unman-
aged object to retrieve detailed up-to-date runtime data for the associated client request. Next, the Main
method iterates through the Request objects in this RequestCollection collection and writes out the
values of the properties of each Request object:

foreach (Request request in wp.GetRequests(10))
{
Console.WriteLine(“Request Info: “);
Console.WriteLine(“ ClientIPAddr: “ + request.ClientIPAddr);
Console.WriteLine(“ ConnectionId: “ + request.ConnectionId);
Console.WriteLine(“ CurrentModule: “ + request.CurrentModule);
Console.WriteLine(“ HostName: “ + request.HostName);
Console.WriteLine(“ LocalIPAddress: “ + request.LocalIPAddress);
Console.WriteLine(“ LocalPort: “ + request.LocalPort.ToString());
Console.WriteLine(“ PipelineState: “ +

request.PipelineState.ToString());
Console.WriteLine(“ ProcessId: “ + request.ProcessId.ToString());
Console.WriteLine(“ RequestId: “ + request.RequestId);
Console.WriteLine(“ SiteId: “ + request.SiteId.ToString());
Console.WriteLine(“ TimeElapsed: “ + request.TimeElapsed.ToString());
Console.WriteLine(“ TimeInModule: “ +

request.TimeInModule.ToString());
Console.WriteLine(“ TimeInState: “ + request.TimeInState.ToString());
Console.WriteLine(“ Url: “ + request.Url);
Console.WriteLine(“ Verb: “ + request.Verb);

}
Console.WriteLine();

Finally, the Main method calls the ApplicationDomains property on the enumerated WorkerProcess
to return a reference to the ApplicationDomainCollection collection of ApplicationDomain objects.

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 599

Recall that each ApplicationDomain object allows your managed code to use the underlying
IRSCA_AppDomain RSCA unmanaged object to retrieve detailed up-to-date runtime data for the associ-
ated application domain. Next, the Main method iterates through the ApplicationDomain objects in
this ApplicationDomainCollection collection and writes out the values of the properties of each
ApplicationDomain object:

foreach (ApplicationDomain appDomain in wp.ApplicationDomains)
{
Console.WriteLine(“Application Domain Info: “);
Console.WriteLine(“ Id: “ + appDomain.Id);
Console.WriteLine(“ PhysicalPath: “ + appDomain.PhysicalPath);
Console.WriteLine(“ VirtualPath: “ + appDomain.VirtualPath);

}
Console.WriteLine();
Console.WriteLine();

}

LogRequest
The HttpApplication object responsible for processing requests for a given Web application fires an
event named LogRequest if the application pool containing the Web application is running in inte-
grated mode. The HttpApplication object fires this event to allow interested HTTP modules and
application code to log request data to the desired data store. Such logged request data provides a pow-
erful diagnostic tool that you can use for troubleshooting your Web applications.

In this section you implement an HTTP module named MyModule that registers an event handler for the
LogRequest event of the HttpApplication object to log request data to an XML file. The first order of
business is to decide on the XML schema of this XML file. Listing 11-43 presents an example of an XML
document that the MyModule HTTP module supports.

Listing 11-43: An Example of an XML File That the MyModule HTTP Module Supports

<?xml version=”1.0” encoding=”utf-8”?>
<requests>
<request applicationPath=”/WebSite2” date=”7/12/2007 1:35:47 AM”
hostAddress=”::1” httpMethod=”GET” siteName=”Default Web Site”
url=”http://localhost/WebSite2/Default.aspx” />

</requests>

As you can see, this XML file consists of a document element named <requests>, which contains zero
or more child elements named <request>. Each <request> child element exposes six attributes named
applicationPath, date, hostAddress, httpMethod, siteName, and url, which store request data.
You’re not limited to storing these six pieces of information about a given request. However, to keep our
discussions focused, you’ll store only these six pieces of information for each request. You can also
assume that the <connectionStrings> section of the web.config file of the Web application for which
the request is made contains an <add> element whose name attribute value is set to “MyXmlFile” and
whose connectionString attribute value is set to the virtual path of the XML file where the request
data will be stored. Listing 11-44 presents an example of such a web.config file.

600

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 600

Listing 11-44: The web.config File

<configuration>
<connectionStrings>
<add name=”MyXmlFile” connectionString=”App_Data/data.xml”/>

</connectionStrings>
</configuration>

Launch Visual Studio. Add a blank solution named MyModuleSol and add a new Class Library project
named MyModuleProj to this solution. Right-click this project in Solution Explorer and select the
Properties option to launch the Properties dialog. Switch to the Application tab and enter MyAssembly
and MyNamspace into the Assembly name and Default namespace textboxes, respectively. Then follow
the steps discussed in Chapter 7 to configure Visual Studio to:

❑ Compile MyModuleProj project into a strongly-named assembly.

❑ Deploy the assembly to the Global Assembly Cache (GAC).

Next, add a new Web application named MyWebApplication to the MyModuleSol solution. Add a new
XML file named data.xml to the App_Data directory of this Web application and add the following list-
ing to this file:

<?xml version=”1.0” encoding=”utf-8”?>
<requests>
</requests>

Then add the <add> element shown in Listing 11-44 to the <connectionStrings> section of the
web.config file of MyWebApplication application.

Next, we’ll get down to the implementation of the MyModule HTTP module as shown in Listing 11-45.
As you can see, this HTTP module, like any other HTTP module, inherits the IHttpModule interface
and implements the Dispose and Init methods of this interface. Note that the MyModule HTTP mod-
ule’s implementation of the Init method registers a method named OnLogRequest as an event handler
for the LogRequest event of the HttpApplication object. Now add a new source file named
MyModule.cs to the MyModuleProj project and add the code shown in Listing 11-45 to this file. You also
need to add references to the System.Web.dll and System.Configuration.dll assemblies to the
MyModuleProj project.

Listing 11-45: The MyModule HTTP Module

using System;
using System.Xml;
using System.Web;
using System.Xml.XPath;
using System.Web.Hosting;
using System.Configuration;

namespace MyNamespace
{
public class MyModule : IHttpModule
{

601

Chapter 11: Integrated Tracing and Diagnostics

(Continued)

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 601

Listing 11-45: (continued)

void IHttpModule.Dispose() { }

void IHttpModule.Init(HttpApplication app)
{
app.LogRequest += new EventHandler(OnLogRequest);

}

void OnLogRequest(object sender, EventArgs e)
{
string dataFile =

ConfigurationManager.ConnectionStrings[“MyXmlFile”].ConnectionString;
HttpApplication app = sender as HttpApplication;
HttpContext context = app.Context;

XmlDocument doc = new XmlDocument();
doc.Load(context.Server.MapPath(dataFile));

XPathNavigator nav = doc.CreateNavigator();
nav.MoveToChild(XPathNodeType.Element);

using (XmlWriter writer = nav.AppendChild())
{
writer.WriteStartElement(“request”);
writer.WriteAttributeString(“applicationPath”,

context.Request.ApplicationPath);
writer.WriteAttributeString(“date”, DateTime.Now.ToString());
writer.WriteAttributeString(“hostAddress”,

context.Request.UserHostAddress);
writer.WriteAttributeString(“httpMethod”, context.Request.HttpMethod);
writer.WriteAttributeString(“siteName”, HostingEnvironment.SiteName);
writer.WriteAttributeString(“url”, context.Request.Url.ToString());
writer.WriteEndElement();

}

doc.Save(HttpContext.Current.Server.MapPath(dataFile));
}

}
}

Next, I walk you through the implementation of the OnLogRequest method. OnLogRequest begins by
accessing the virtual path of the XML file where the request data will be stored:

string dataFile =
ConfigurationManager.ConnectionStrings[“MyXmlFile”].ConnectionString;

Next, OnLogRequest accesses a reference to the current HttpContext object:

HttpApplication app = sender as HttpApplication;
HttpContext context = app.Context;

602

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 602

Then, it instantiates an XmlDocument and populates it with the content of the XML file with the speci-
fied virtual path:

XmlDocument doc = new XmlDocument();
doc.Load(context.Server.MapPath(dataFile));

Next, it calls the CreateNavigator method on the XmlDocument to return the XPathNavigator object
that knows how to navigate this document:

XPathNavigator nav = doc.CreateNavigator();

Then, it invokes the MoveToChild method to move the document element of the XML document:

nav.MoveToChild(XPathNodeType.Element);

As mentioned earlier, in this case, the document element is an element named <requests>.

Next, OnLogRequest invokes the AppendChild method on the XPathNavigator to return a reference
to an XmlWriter instance that allows you to add a new child <request> element to the <requests>
document element:

XmlWriter writer = nav.AppendChild()

Next, it stores the request data in the associated attributes of this <request> child element:

writer.WriteStartElement(“request”);
writer.WriteAttributeString(“applicationPath”,

context.Request.ApplicationPath);
writer.WriteAttributeString(“date”, DateTime.Now.ToString());
writer.WriteAttributeString(“hostAddress”, context.Request.UserHostAddress);
writer.WriteAttributeString(“httpMethod”, context.Request.HttpMethod);
writer.WriteAttributeString(“siteName”, HostingEnvironment.SiteName);
writer.WriteAttributeString(“url”, context.Request.Url.ToString());
writer.WriteEndElement();

Finally, OnLogRequest commits the changes to the underlying XML file:

doc.Save(HttpContext.Current.Server.MapPath(dataFile));

Next, follow the steps discussed in Chapter 8 to plug the MyModule HTTP module into the IIS 7 and
ASP.NET integrated request processing pipeline.

Now access the Default.aspx page of the MyWebApplication project. The content of this page is irrel-
evant to our current discussions. Next open the data.xml file in your favorite editor. You should see the
result shown in the following code listing:

<?xml version=”1.0” encoding=”utf-8”?>
<requests>
<request applicationPath=”/WebSite2” date=”7/12/2007 1:35:47 AM”
hostAddress=”::1” httpMethod=”GET” siteName=”Default Web Site”
url=”http://localhost/WebSite2/Default.aspx” />

</requests>

603

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 603

When you access the Default.aspx page, the current HttpApplication object first invokes the Init
method of the MyModule HTTP module to allow the module to register the OnLogRequest method as an
event handler for the LogRequest event. The HttpApplication object then at some point fires its
LogRequest event and consequently invokes the OnLogRequest method of the MyModule HTTP mod-
ule, which in turn stores the request data into the data.xml file.

Summary
This chapter provided in-depth coverage of the IIS 7 and ASP.NET integrated tracing infrastructure and
its main components. You learned how to use this integrated infrastructure to instrument your managed
code with tracing, to route traces to the IIS 7 tracing infrastructure, and to configure IIS 7 modules such
as Failed Request Tracing to consume these traces. The next chapter moves on to the deep integration of
ASP.NET and Windows Communication Foundation in IIS 7, where you learn how to take advantage of
this deep integration in your own Web applications.

604

Chapter 11: Integrated Tracing and Diagnostics

52539c11.qxd:WroxPro 9/17/07 6:58 PM Page 604

ASP.NET and Windows
Communication Foundation

Integration in IIS 7

Windows Communication Foundation (WCF) is a comprehensive layered framework for service-
oriented programming. The top layer of this framework, known as the Service Model layer,
allows you to model the communications of your software product with the outside world with
minimal time and effort. The framework then extracts all the required information from your
model and uses this information to create and to configure the runtime components needed to
implement your model from a lower layer of the framework (known as the Channel layer). In
other words, you’re only responsible for modeling the communications of your products with the
outside world, and you don’t have to worry about actually implementing this model. This saves
you from having to deal with dirty little details of the underlying runtime components that imple-
ment your model, and consequently allows you to focus on what matters to your application, that
is, the domain-specific requirements of your application.

This chapter presents and discusses the implementation of an example that will show you how to
use the Windows Communication Foundation Service Model to model the communications of
your own software products. During the course of this chapter you’ll see how you can take advan-
tage of the deep integration of ASP.NET and WCF services in the IIS 7 environment in your own
Web applications.

Installing the Required Software
Because Windows Vista and Windows Server 2008 automatically install the required .NET
Framework components, you should already have everything you need to use WCF. However, if

52539c12.qxd 9/17/07 10:04 PM Page 605

Chapter 12: ASP.NET and WCF Integration in IIS 7

606

you want to take full advantage of the programming convenience of Visual Studio in your own service-
oriented programming activities, you’ll need to install one of the following:

❑ Visual Studio 2008.

❑ Visual Studio 2005 plus the required WCF Visual Studio Extensions. You can download a free
copy of these extensions from the Microsoft Web site.

Bug Repor t Manager
As mentioned earlier, all discussions of this chapter are presented in the context of an example. This
example implements a bug report manager system. Every piece of software ships with bugs that don’t
get caught and fixed during the development process of the software. As a result, every organization
needs to have a bug report management system in place to manage the reported bugs such as:

❑ Adding a new bug report: Bugs are reported via different mechanisms. For example, the soft-
ware itself may contain the necessary logic for automatically reporting bugs when and where
they occur. Such automatic bug reporting does not involve human interaction other than possi-
bly showing a popup to the user asking for her permission to report the bug. The users, admin-
istrators, support staff, and the like should also be able to report bugs. Such bug reports are
normally done through some elaborate user interface where people can enter information about
the bug.

❑ Updating a bug report. For example, the engineer assigned to a bug may not be able to repro-
duce the bug and may want to update the bug report accordingly.

❑ Providing statistical analyses of the bug reports such as the number of high-priority bugs, how
long a typical bug report sits in the system before it is finally resolved and closed, the number of
closed bugs, the number of bugs that haven’t yet been assigned to any engineer, and so on.

To keep our discussions focused, the bug report manager system will support only two features:

❑ Adding new bug reports

❑ Retrieving the list of all bug reports submitted to the system

The bug report manager system will also maintain all bug reports in memory. As you’ll see later, keeping
bug reports in memory will also help with our discussions of the deep integration of ASP.NET and WCF
in the IIS 7 environment.

Next, we’ll get down to the implementation of the bug report manager system. First, go ahead and create
a blank solution named ProIIS7AspNetIntegProgCh12 in Visual Studio. You’ll add all of the projects
used in this chapter to this solution. Next, add a new Class Library project named BugReportManager
to this solution. Right-click this project in Solution Explorer and select Properties from the popup
menu to launch the Properties dialog. Switch to the Application tab in the Properties dialog and enter
ProIIS7AspNetIntegProgCh12 into the “Assembly name” and “Default namespace” textboxes. Don’t
forget to save these changes.

Next, add an empty source file named BugReportManager.cs to the BugReportManager project and
add the code shown in Listing 12-1 to this source file. Now go ahead and build the BugReportManager

52539c12.qxd 9/17/07 10:04 PM Page 606

Chapter 12: ASP.NET and WCF Integration in IIS 7

607

Class Library project.

Listing 12-1: The BugReportManager Class

using System.Collections;
using System.Data;

namespace ProIIS7AspNetIntegProgCh12
{
public static class BugReportManager
{
private static DataTable bugReports;
static BugReportManager()
{
bugReports = new DataTable();
bugReports.Columns.Add(new DataColumn("Sender"));
bugReports.Columns.Add(new DataColumn("Subject"));
bugReports.Columns.Add(new DataColumn("Body"));

}

public static void AddBugReport(string sender, string subject, string body)
{
DataRow row = bugReports.NewRow();
row["Sender"] = sender;
row["Subject"] = subject;
row["Body"] = body;
bugReports.Rows.Add(row);

}

public static IEnumerable GetBugReports()
{
return bugReports.DefaultView;

}
}

}

As you can see, Listing 12-1 implements a static class named BugReportManager that exposes two static
methods named AddBugReport and GetBugReports. The AddBugReport method takes three strings as
its arguments, creates a DataRow object and populates it with these three strings, and adds the object to
an internal DataTable object named bugReports. As you can see, each DataRow object in this internal
DataTable contains three pieces of information about a bug report: its sender, subject, and body. The
GetBugReports method simply returns the DataView object that represents the default view of this
DataTable object. Note that the GetBugReports method returns this DataView object as an object of
type IEnumerable. This will allow you to change the internal storage mechanism of your bug report
manager system without affecting its clients.

The following sections show you how to use WCF to enable the bug report manager system to commu-
nicate with its clients, such as engineers responsible for fixing bugs, support staff, and the like.

52539c12.qxd 9/17/07 10:04 PM Page 607

Chapter 12: ASP.NET and WCF Integration in IIS 7

608

Windows Communication
Foundation Service

As you can imagine, the bug report manager system relies heavily on its communications with the out-
side world. After all, it is through these communications that new bug reports are added to the system,
existing bug reports are updated, and statistical information is retrieved.

One of the important software design criteria is that each component of the software must be specifically
designed and optimized for a particular task. Therefore, you must not incorporate the logic that handles
the communications of the bug report manager system with the outside world into the bug report man-
ager system itself. Instead, you must delegate the responsibility of the communications with the outside
world to a different component. This component is known as a WCF service in the WCF jargon. More for-
mally, a WCF service is a piece of software that responds to communications from the outside world.
You can think of a WCF service as a wrapper around a piece of software such as the bug report manager
system to enable the software to communicate with the outside world.

Windows Communication Foundation
Endpoint

A WCF service must be able to provide different access points for different communication scenarios.
For example, engineers responsible for fixing bugs should communicate with the service through a dif-
ferent access point than the end users. These access points are known as WCF endpoints in the WCF jar-
gon, as shown in Figure 12-1.

Figure 12-1

Every WCF endpoint has a binding, an address, and a contract:

1. Binding: The binding of an endpoint specifies how the endpoint communicates with the outside
world, that is, it specifies the communication protocols for the endpoint. Here are a few examples:

❑ The transport protocol, through which the endpoint and its clients communicate. HTTP
and TCP are two examples of transport protocols.

WCF Service

Endpoint

Endpoint

Endpoint

Endpoint

52539c12.qxd 9/17/07 10:04 PM Page 608

Chapter 12: ASP.NET and WCF Integration in IIS 7

609

❑ The encoding protocol that the endpoint and its clients use to encode their communica-
tions before they go over the wire. XML text and binary are two examples of encoding
protocols.

❑ The security protocol that the endpoint and its clients use to secure their communica-
tions. For example, some bug reports may contain sensitive information requiring a
secure transmission channel. Or retrieving some sensitive statistical information from
the bug report manager system may require secure channels. HTTPS and WS-Security
are examples of security protocols.

2. Address: The address of an endpoint specifies where the endpoint is, that is, the network address
to which the clients of an endpoint must direct their communications if they want to communi-
cate with the WCF service through that endpoint.

3. Contract: The contract of an endpoint specifies what operations of the WCF service the clients
can access through that endpoint.

Windows Communication Foundation
Service Model

As discussed earlier, a WCF service is a wrapper around a piece of software enabling the software to
communicate with the outside world. Later in this chapter, you develop a WCF service, which will
enable the bug report manager system to communicate with the outside world.

As mentioned earlier, Windows Communication Foundation is a layered framework. The top layer of
this framework is known as Service Model. As the name suggests, you use this layer to model your
WCF service. The keyword here is modeling. Modeling a piece of software is much less time-consuming
and takes much less effort than implementing the software. Besides, modeling allows you to avoid dis-
tracting implementation details and focus on the actual design of your software.

The Windows Communication Foundation Service Model provides you with three important facilities to
model your WCF service:

❑ Attribute-based programming: The Windows Communication Foundation Service Model comes
with a convenient set of metadata attributes that you can use to annotate the appropriate enti-
ties in your program such as interfaces, classes, and properties. In other words, you get to
model some aspects of your service in terms of the Windows Communication Foundation
Service Model’s metadata attributes.

❑ Configuration-based programming: The Windows Communication Foundation Service Model
comes with a convenient configuration language that you can use to model some aspects of
your service in the configuration file.

❑ Regular imperative programming: The Windows Communication Foundation Service Model
comes with a convenient set of managed classes that you can use to model your service in code.

Windows Communication Foundation then uses your service model, which is modeled in terms of
the Windows Communication Foundation Service Model’s metadata attributes, configuration language,

52539c12.qxd 9/17/07 10:04 PM Page 609

Chapter 12: ASP.NET and WCF Integration in IIS 7

610

and managed classes, to instantiate and configure the runtime components needed to implement your
model. Your sole job is to define your service model in terms of the Windows Communication
Foundation Service Model’s metadata attributes, configuration language, and managed classes. You
don’t have to worry about instantiating and configuring the runtime components that implement your
model because Windows Communication Foundation automatically takes care of this for you.

You may be wondering just exactly what a typical model of a WCF service looks like. The answer lies in
the discussions of the previous section and Figure 12-1. As this figure shows, from the outside, a WCF
service looks like a collection of endpoints. This outside view of the service is exactly what we care about
when we’re using the Windows Communication Foundation Service Model’s metadata attributes, con-
figuration language, and managed classes to model a service.

The inside view of a service is quite complex because that’s where all the details of the runtime compo-
nents that implement the service come into play.

As you can see, developing a WCF service model boils down to developing its endpoints. Recall that
every endpoint has an address, a binding, and a contract. In general it takes two sets of tasks to develop
a WCF service model: imperative (coding or development tasks) and administrative.

Imperative tasks involve designing those parts of the model that requires using the Windows
Communication Foundation Service Model’s metadata attributes and managed classes because using
these attributes and classes requires coding. Administrative tasks, on the other hand, involve designing
those parts of the service model that requires using the Windows Communication Foundation Service
Model’s configuration language because using this language does not require coding.

Windows Communication Foundation allows you to develop all aspects of your service in code if you
choose to do so. However, this is not a recommended approach. As a rule of thumb, anything that can be
done declaratively in the configuration files should be done in the configuration files to allow adminis-
trators to modify the service without any code changes.

Developing a WCF Service
Developing the endpoints of a WCF service involves the following tasks:

❑ Developing the service contracts. Recall that the contract of an endpoint specifies those
operations of a WCF service that are available at that endpoint. In other words, the client com-
munications directed at a particular endpoint of a WCF service will only be able to access those
operations of the service that are part of the endpoint’s contract. As you’ll see later in this chap-
ter, developing service contracts requires coding.

❑ Developing bindings. Recall that the binding of an endpoint specifies the communication protocols
through which the endpoint communicates with the outside world. Windows Communication
Foundation comes with predefined bindings that address common scenarios. As a result, there is no
real need to develop custom bindings unless the existing bindings do not meet your application
requirements. Developing custom bindings is beyond the scope of this book.

52539c12.qxd 9/17/07 10:04 PM Page 610

Chapter 12: ASP.NET and WCF Integration in IIS 7

611

❑ Adding, updating, removing, and configuring endpoints. Can you do this in code? Sure, but
you’re highly discouraged from doing so. If you hard-code the service endpoints, every time
there’s a need to update or remove an endpoint, the code has to change. Therefore, adding and
configuring the service endpoint should be done from the configuration file, unless there’s a
good reason to do it from the code.

❑ Adding behaviors. As the name suggests, a Windows Communication Foundation behavior is a
component that enhances the runtime behavior of a service, an endpoint, or an operation. Some
behaviors must be added in code, and some others must be added in the configuration file.
You’ll see an example of a behavior later in this chapter.

Every WCF service can expose one or more service contracts, each of which is a collection of operations.
As mentioned earlier, every endpoint of a service exposes a particular service contract. A WCF service
can expose the same service contract (the same set of operations) through more than one endpoint. This
allows the clients of a service to access the same set of operations through different network addresses or
different communication protocols.

Because a WCF service can expose more than one service contract, you need a way to uniquely identify a
service contract among other service contracts of the service. The name and namespace of a service con-
tract together uniquely identify the service contract among other service contracts. I show you later in
this chapter how the name and namespace of a service contract are specified.

Developing a WCF Service Contract
A WCF service contract is a .NET interface or class decorated with the ServiceContractAttribute
metadata attribute. Go back to your Visual Studio project and add a new WCF Service Library named
BugReportManagerService to the ProIIS7AspNetIntegProgCh12 solution. Take these steps to use
the WCF Service Model to develop a service contract (see Listing 12-2):

1. Define a regular .NET interface named IBugReportManagerServiceContract, which exposes
the following methods:

❑ AddBugReport: Adds a new bug report. For example, a support staff may use this oper-
ation to report a new bug.

❑ GetBugReports: Gets all the bug reports.

2. Annotate the IBugReportManagerServiceContract interface with the WCF Service Model’s
ServiceContractAttribute metadata attribute to designate the interface as a WCF service
contract.

3. Annotate the AddBugReport and GetBugReports methods of the
IBugReportManagerServiceContract interface with the OperationContractAttribute
metadata attribute to designate these methods as the operations of the WCF service contract.
Note that Windows Communication Foundation will not treat those methods of the interface
that are not annotated with the OperationContractAttribute metadata attribute as part of
the WCF service contract, and consequently those methods will not be available to the clients
of the WCF service.

52539c12.qxd 9/17/07 10:04 PM Page 611

Chapter 12: ASP.NET and WCF Integration in IIS 7

612

Listing 12-2: The IBugReportManagerServiceContract Service Contract

namespace ProIIS7AspNetIntegProgCh12
{
using System.ServiceModel;

[ServiceContract]
public interface IBugReportManagerServiceContract
{
[OperationContract]
void AddBugReport (BugReport bugReport);

[OperationContract]
BugReportCollection GetBugReports ();

}
}

Now add a new source file named IBugReportManagerServiceContract.cs to the
BugReportManagerService project and add the code shown in Listing 12-2 to this source file. As you
can see, this source file contains the service contract.

Note that the GetBugReports operation of the IBugReportManagerServiceContract service contract
returns a collection of type BugReportCollection, which is defined in Listing 12-3. Thanks to .NET
generics, implementing a new collection type is as easy as implementing a new class that derives from
one of the standard generic collections. Add a new source file named BugReportCollection.cs to the
BugReportManagerService project and add the code shown in Listing 12-3 to this file.

Listing 12-3: The BugReportCollection Class

using System.Collections.Generic;

namespace ProIIS7AspNetIntegProgCh12
{
public class BugReportCollection : List<BugReport> { }

}

As you can see from Listing 12-3, the BugReportCollection acts as a container for objects of type
BugReport. Listing 12-4 presents the implementation of the BugReport class. A BugReport object con-
tains the complete information about a given bug report. In this simple case, this information includes
the sender, subject, and body of the bug report.

Listing 12-4: The BugReport Class

namespace ProIIS7AspNetIntegProgCh12
{
public class BugReport
{
private string body;
private string subject;
private string sender;

52539c12.qxd 9/17/07 10:04 PM Page 612

Chapter 12: ASP.NET and WCF Integration in IIS 7

613

Listing 12-4: (continued)

public string Sender
{
get { return sender; }
set { sender = value; }

}

public string Subject
{
get { return subject; }
set { subject = value; }

}

public string Body
{
get { return body; }
set { body = value; }

}
}

}

WCF services and their clients exchange SOAP messages. Therefore, the data exchanged between a WCF
service and its client must be serialized into XML on the sender side and deserialized from XML on the
receiver side.

For example, those clients that access the AddBugReport operation of the bug report manager service at
a particular service endpoint must pass a BugReport object that represents the bug report being added
into this operation. In other words, the data exchanged between the WCF service and its clients in this
case is a BugReport object.

Those clients that access the GetBugReports operation of the bug report manager service, on the other
hand, receive a collection of BugReport objects. In other words, the data exchanged between the service
and its clients in this case is a collection of BugReport objects.

Because the bug report manager service and its clients only exchange SOAP messages, the BugReport object
that the client wants to pass into the AddBugReport operation must be serialized into XML before it is sent
to the service. The service, on the other hand, must deserialize this XML back into a BugReport object before
it is passed into the operation because the AddBugReport operation expects a BugReport object as its argu-
ment, not XML data.

In addition, the service must serialize the BugReport objects that the GetBugReports operation returns
into XML before they’re sent to the client that invoked this operation in the first place. The client, on the
other hand, must deserialize this XML back into a collection of BugReport objects before they’re passed
into the client code that invoked the GetBugReports operation because the client code expects to
receive a collection of BugReport objects from the GetBugReports operation, not XML data

As you can see, serialization and deserialization play a significant role in Windows Communication
Foundation. By default, Windows Communication Foundation uses an XML serializer named
DataContractSerializer to serialize and deserialize the data exchanged between a WCF service and
its clients.

52539c12.qxd 9/17/07 10:04 PM Page 613

Chapter 12: ASP.NET and WCF Integration in IIS 7

614

All you have to do as a developer is to:

1. Annotate the type of the data exchanged between a WCF service and its clients with the
DataContractAttribute metadata attribute. In this case, the data is of type BugReport. As
the highlighted portions of Listing 12-5 show, the BugReport class is annotated with the
DataContractAttribute metadata attribute.

2. Annotate the desired properties of the type of the data exchanged between a WCF service and
its clients with the DataMemberAttribute metadata attribute. As the highlighted portions of
Listing 12-5 show, the Sender, Subject, and Body properties of the BugReport class are anno-
tated with the DataMemberAttribute metadata attributes to instruct the
DataContractSerializer that you want the serializer to serialize all these properties. Keep in
mind that the serializer only serializes those properties that are annotated with the
DataMemberAttribute metadata attribute.

Now add a new source file named BugReport.cs to the BugReportManagerService project and add
the code shown in Listing 12-5 to this file.

Listing 12-5: The BugReport Class

using System.Runtime.Serialization;

namespace ProIIS7AspNetIntegProgCh12
{
[DataContract]
public class BugReport
{

private string body;
private string subject;
private string sender;

[DataMember]
public string Sender
{

get { return sender; }
set { sender = value; }

}

[DataMember]
public string Subject
{

get { return subject; }
set { subject = value; }

}

[DataMember]
public string Body
{

get { return body; }
set { body = value; }

}
}

}

52539c12.qxd 9/17/07 10:04 PM Page 614

Chapter 12: ASP.NET and WCF Integration in IIS 7

615

Implementing a WCF Service Contract
The previous section showed you how to develop a WCF service contract. As discussed earlier, the con-
tract of an endpoint specifies the operations available to the clients of a WCF service at that endpoint.
The next step is to provide the actual implementation for these operations. Thanks to the WCF Service
Model, implementing a service contract is as easy as writing a .NET class that implements the interface
that defines the service contract. Listing 12-6 presents the implementation of a .NET class named
BugReportManagerServiceImpl that implements the IBugReportManagerServiceContract service
contract.

Listing 12-6: The BugReportManagerServiceImpl Class

using System.ServiceModel;
using System.Collections;
using System.Data;
using System.ComponentModel;

namespace ProIIS7AspNetIntegProgCh12
{
public class BugReportManagerServiceImpl :

IBugReportManagerServiceContract
{
public void AddBugReport(BugReport bugReport)
{
BugReportManager.AddBugReport(bugReport.Sender, bugReport.Subject,

bugReport.Body);
}

public BugReportCollection GetBugReports()
{
IEnumerable list = BugReportManager.GetBugReports();
BugReportCollection bugReports = new BugReportCollection();
BugReport bugReport;
IEnumerator iter = list.GetEnumerator();
bool firstIteration = true;
PropertyDescriptorCollection pds = null;
while (iter.MoveNext())
{
if (firstIteration)
{
firstIteration = false;
pds = TypeDescriptor.GetProperties(iter.Current);

}

bugReport = new BugReport();
bugReport.Sender = (string)pds["Sender"].GetValue(iter.Current);
bugReport.Subject = (string)pds["Subject"].GetValue(iter.Current);
bugReport.Body = (string)pds["Body"].GetValue(iter.Current);
bugReports.Add(bugReport);

}

return bugReports;
}

}
}

52539c12.qxd 9/17/07 10:04 PM Page 615

Chapter 12: ASP.NET and WCF Integration in IIS 7

616

As Listing 12-6 shows, the BugReportManagerServiceImpl class’s implementation of the
AddBugReport and GetBugReports operations of the IBugReportManagerServiceContract
service contract simply delegate to the AddBugReport and GetBugReports methods of the
BugReportManager static class that Listing 12-1 implements. This should not come as a surprise
because the WCF bug report manager service is a wrapper around the BugReportManager system to
enable the system to communicate with the outside world.

Next, I walk you through the implementation of the GetBugReports method. This method begins by
invoking the GetBugReports static method on the BugReportManager static class to return an
IEnumerable collection that contains all the bug reports filed with the system:

IEnumerable list = BugReportManager.GetBugReports();

Next, it instantiates a BugReportCollection:

BugReportCollection bugReports = new BugReportCollection();

Then, it invokes the GetEnumerator method on the IEnumerable collection to return a reference to the
IEnumerator object that knows how to enumerate the bug reports stored in this IEnumerable collection:

IEnumerator iter = list.GetEnumerator();

Then, it uses this IEnumerator object to iterate through the bug reports stored in the IEnumerable col-
lection and takes these steps for each iteration. If it is the first iteration, it calls the GetProperties static
method on a .NET class named TypeDescriptor to return a reference to a
PropertyDescriptorCollection of PropertyDescriptor objects where each property descriptor
object represents a piece of information about a bug report. Note that it stores this collection in a local
variable named pds to make it available for the next iterations.

if (firstIteration)
{
firstIteration = false;
pds = TypeDescriptor.GetProperties(iter.Current);

}

Next, it creates a BugReport object:

bugReport = new BugReport();

Then, it uses the string “Sender” as an index into the previously discussed
PropertyDescriptorCollection to return a reference to the PropertyDescriptor object that repre-
sents the sender part of a bug report. It invokes the GetValue method on this PropertyDescriptor
object to return a string that contains the sender of the enumerated bug report and stores this informa-
tion in the Sender property of the BugReport object:

bugReport.Sender = (string)pds["Sender"].GetValue(iter.Current);

Next, it repeats the same process to retrieve the subject and body of the enumerated bug report and
stores them in Subject and Body properties of the BugReport object, respectively:

bugReport.Subject = (string)pds["Subject"].GetValue(iter.Current);
bugReport.Body = (string)pds["Body"].GetValue(iter.Current);

52539c12.qxd 9/17/07 10:04 PM Page 616

Chapter 12: ASP.NET and WCF Integration in IIS 7

617

Then, it adds this BugReport object to the BugReportCollection:

bugReports.Add(bugReport);

Add a new source file named BugReportManagerServiceImpl.cs to the BugReportManagerService
WCF Service Library project and add the code shown in Listing 12-6 to this file. Next, add a reference to
the assembly into which the BugReportManager Class Library project was compiled in the previous
section. As you would expect, this assembly is located in the bin directory of the BugReportManager
Class Library project. Finally, go ahead and build the BugReportManagerService WCF Service Library
project.

Hosting a WCF Service
You must host a WCF service in an application domain to make it available to the outside world.
Therefore, one of the responsibilities of a WCF service developer is to take the necessary steps to provide
support for loading the service in an application domain. These steps depend on where you want to host
your WCF service. You can host your service in any .NET application, because any .NET application can
load a service into an application domain. If you decide to load your service into a custom .NET applica-
tion such as a Console Application, you must also develop this application.

In this case, you’ll delegate the responsibility of loading the service into an application domain to IIS 7.
This will allow you to take full advantage of the great features of IIS 7 that we’ve been talking about
throughout this book. Recall that IIS 7 loads each Web application into a separate application domain to
ensure that the execution of one application does not interfere with the execution of another application.

This means that all the assemblies of a given Web application including the assembly that contains your
WCF service contracts and their implementations are loaded into the same application domain. This
allows you to treat these WCF services as you would any other component of your Web applications,
such as the ASP.NET pages. This also means that the same ASP.NET compilation system that compiles
the rest of your Web application also compiles your WCF service contracts and their implementations.
Such deep integration of your WCF services with the rest of your Web applications opens up great pro-
gramming opportunities that would not be possible otherwise. We’ll take a look at an example of this
case later in this chapter.

Now go ahead and add a new WCF Service Web site named BugReportManagerServiceHost to the
ProIIS7AspNetIntegProgCh12 solution. This Web site will automatically include a .svc file and a cou-
ple of .cs files. Delete both .cs files, change the name of .svc file to BugReportManagerService.svc,
remove all the content of this file, and add the following directive to this file:

<%@ ServiceHost
Service="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl" %>

As you can see, this directive assigns a string containing the fully qualified name of the
BugReportManagerServiceImpl class, which implements the WCF
IBugReportManagerServiceContract service contract, to the Service attribute of the
ServiceHost directive.

When the first request for the BugReportManagerService.svc resource arrives in IIS 7, IIS 7 checks with
the handlers section of the configuration files in the appropriate configuration hierarchy to determine

52539c12.qxd 9/17/07 10:04 PM Page 617

Chapter 12: ASP.NET and WCF Integration in IIS 7

618

whether a handler has been registered for handling requests for resources with the file extension .svc. If
you open the applicationHost.config file in your favorite editor, you should see the following section
in this file:

<configuration>
<location path="" overrideMode="Allow">
<system.webServer>
<handlers accessPolicy="Script, Read">
<add path="*.svc" name="svc-Integrated" verb="*"
preCondition="integratedMode"
type="System.ServiceModel.Activation.HttpHandler, System.ServiceModel,

Version=3.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"/>

</handlers>
</system.webServer>

</location>
</configuration>

This section registers the System.ServiceModel.Activation.HttpHandler HTTP handler for han-
dling requests for resources with the file extension .svc.

IIS 7 then passes this first request to the System.ServiceModel.Activation.HttpHandler HTTP
handler for processing. This HTTP handler under the hood invokes a method named Open on an object
of type ServiceHost. The Open method in turn triggers the process through which Windows
Communication Foundation examines your service model and automatically creates the runtime compo-
nents needed to implement your service model.

If you visit the following standard directory on your machine:

%windir%\Microsoft.NET\Framework\v2.0.50727\CONFIG

and open the web.config file located in this directory in your favorite editor, you should see the follow-
ing section in this file:

<configuration>
<system.web>
<compilation>
<buildProviders>
<add extension=".svc"
type="System.ServiceModel.Activation.ServiceBuildProvider,

System.ServiceModel, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

</buildProviders>
</compilation>

</system.web>
</configuration>

As you can see, this section registers the System.ServiceModel.Activation.ServiceBuildProvider
as the build provider for resources with the file extension .svc. The main responsibility of a build provider
is to parse its associated file, generate the appropriate source code from the parsed information, and add
this source code to the appropriate assembly builder. The assembly builder then builds this source code
together with source code contributed by other build providers into a single assembly, which is then
loaded into the current application domain.

52539c12.qxd 9/17/07 10:04 PM Page 618

Chapter 12: ASP.NET and WCF Integration in IIS 7

619

In this case, the System.ServiceModel.Activation.ServiceBuildProvider build provider parses
the following directive in the BugReportManagerService.svc file to retrieve the value of the Service
attribute, which is nothing but the fully qualified name of the BugReportManagerServiceImpl class
that implements the WCF IBugReportManagerServiceContract service contract:

<%@ ServiceHost
Service="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl" %>

The ServiceBuildProvider then adds a reference to the assembly that contains the
BugReportManagerServiceImpl class and passes it on to the assembly builder, causing this
assembly to load into the current application domain.

Administrative Tasks
So far, you’ve learned how to define and how to implement a WCF service contract. As you saw, these
two tasks require coding. This section covers the administrative tasks, which do not require coding and
are performed from the configuration files.

The first administrative task involves adding a <system.serviceModel> element as the child element of
the <configuration> document element of the web.config file of the BugReportManagerServiceHost
WCF Service Web site if it hasn’t already been added. Recall that BugReportManagerServiceHost hosts
the bug report manager service.

<configuration>
<system.serviceModel>
. . .

</system.serviceModel>
</configuration>

The <system.serviceMode> section of the web.config file contains all the WCF-related configuration
settings.

The second administrative task involves adding a <services> element as the child element of the
<system.serviceModel> element if it hasn’t already been added. As the name suggests, the
<services> element will contain the configuration settings specific to the WCF services.

<configuration>
<system.serviceModel>
<services>
. . .

</services>
</system.serviceModel>

</configuration>

Note that more than one service can be configured in the same web.config file, which means that more
than one service could run in the same application.

The third administrative task is to add one or more <service> elements as the child elements of the
<services> element, and assign a string containing the fully qualified name of the class that imple-
ments the desired WCF service contract(s) to the name attribute of each <service> element.

52539c12.qxd 9/17/07 10:04 PM Page 619

Chapter 12: ASP.NET and WCF Integration in IIS 7

620

In this case, assign a string containing the fully qualified name of the BugReportManagerServiceImpl
class as the value of the name attribute, because this class implements the IBugReportManagerService
service contract:

<configuration>
<system.serviceModel>

<services>
<service name="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl">
. . .

</service>
</services>

</system.serviceModel>
</configuration>

In this example, the BugReportManagerServiceImpl class implements a single service contract, that is,
the IBugReportManagerServiceContract service contract. In other words, the bug report manager serv-
ice supports a single service contract. In general, a WCF service may support more than one WCF service
contract. In other words, the class whose fully qualified name is given by the value of the name attribute of
the <service> element may implement more than one WCF service contract.

The final administrative task is to add one or more <endpoint> elements as the child elements of each
<service> element and set the values of the address, binding, and contract attributes of these
<endpoint> elements:

<configuration>
<system.serviceModel>

<services>
<service name="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl">
<endpoint
address=""
binding="basicHttpBinding"
contract="ProIIS7AspNetIntegProgCh12.IBugReportManagerServiceContract"/>

</service>
</services>

</system.serviceModel>
</configuration>

Each <endpoint> child element of a <service> element represents a particular endpoint of the WCF
service. In this case, the <endpoint> child element represents an endpoint of the WCF bug report man-
ager service.

Note that the binding attribute of this <endpoint> element is set to the string "basicHttpBinding".
As discussed earlier, the WCF Service Model comes with standard set of bindings that you can use in
your own Web applications. Each standard binding is a class that directly or indirectly inherits from the
Binding base class. Each class specifies a set of communication protocols that contains at least a trans-
port protocol. If a binding does not explicitly specify a message-encoding protocol, the transport proto-
col will use its default transport-protocol specific message-encoding protocol to encode the SOAP
messages exchanged between the endpoint and its clients.

The value of the binding attribute of an <endpoint> element is nothing but the name of a binding class
in camel casing, in compliance with the camel casing convention used in configuration files. For exam-
ple, in this case, the value of the binding attribute is the name of the BasicHttpBinding class in camel

52539c12.qxd 9/17/07 10:04 PM Page 620

Chapter 12: ASP.NET and WCF Integration in IIS 7

621

casing. The BasicHttpBinding specifies a set of two protocols: an HTTP transport protocol and a text
message-encoding protocol for encoding SOAP messages in text format. The BasicHttpBinding is con-
figured to meet the WS-I Basic Profile Specification 1.1 to promote maximum interoperability.

Also note that the value of the contract attribute of the <endpoint> element, in this case, is set to the
string "ProIIS7AspNetIntegProgCh12.IBugReportManagerServiceContract". This means that
all the operations defined in the IBugReportManagerServiceContract service contract are available
to the clients of the bug report manager service at this endpoint. Recall that this service contract defines
two operations named AddBugReport and GetBugReports.

As you can see, the value of the address attribute on this <endpoint> element has not been set. This is
because when a WCF service is hosted in IIS 7, Windows Communication Foundation picks up the
address of the endpoint from the virtual directory of the .svc file associated with the service.

Now go ahead and add the following configuration fragment to the web.config file of the
BugReportManagerServiceHost WCF Service Web site:

<system.serviceModel>
<services>
<service name="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl">
<endpoint
address=""
binding="basicHttpBinding"
contract="ProIIS7AspNetIntegProgCh12.IBugReportManagerServiceContract"/>

</service>
</services>

</system.serviceModel>

Add a reference to the assembly into which the BugReportManagerService WCF Service Library
project was built in the previous section to the BugReportManagerServiceHost WCF Service Web
site. This assembly is located in the bin directory of the BugReportManagerService WCF Service
Library project. Now use the http://localhost/BugReportManagerServiceHost/
BugReportManagerService.svc URL to access the BugReportManagerService.svc file from a
browser. You should get the result shown in Figure 12-2.

Figure 12-2

52539c12.qxd 9/17/07 10:04 PM Page 621

Chapter 12: ASP.NET and WCF Integration in IIS 7

622

Notice the message shown in bold in Figure 12-2. According to this message, the metadata publishing
for this service is disabled. This is done for security purposes. Your WCF service is not available to its
clients until you explicitly turn on the metadata publishing for your service. This is where WCF service
behaviors come into play.

A service behavior is a component that attaches to a service and extends its capabilities. Windows
Communication Foundation ships with a service behavior named ServiceMetadataBehavior that you
can attach to your WCF service to enable your service to generate and return a WSDL document or
metadata to a client that asks for this document. The WSDL document of your WCF service provides its
clients with the complete recipe for generating SOAP messages that they need to send to your service
and for consuming SOAP messages that they receive from your service.

Can you attach the ServiceMetadataBehavior service behavior to your service from within your
code? Sure, but you’re discouraged from doing so, because hard-coding this service behavior would
require code changes every time there’s a need to turn on or off this metadata publishing capability of
your service.

The ServiceMetadataBehavior service behavior is one of those behaviors that should be attached to a
WCF service through a configuration file. Take these steps to attach the ServiceMetadataBehavior
service behavior to your WCF service from a configuration file:

1. Add a <behaviors> element as the child element of the <system.serviceModel> element as
shown in the highlighted portion of the following listing if it hasn’t already been added:

<system.serviceModel>
<services>

. . .
</services>
<behaviors>
. . .

</behaviors>
</system.serviceModel>

As the name suggests, the <behaviors> element will contain behaviors that will be attached to
the WCF services, endpoints, and operations in the current application.

2. Add a <serviceBehaviors> element as the child element of the <behaviors> element as
shown in highlighted portion of the following listing if it hasn’t already been added:

<system.serviceModel>
<services>

. . .
</services>
<behaviors>
<serviceBehaviors>
. . .

</serviceBehaviors>
</behaviors>

</system.serviceModel>

52539c12.qxd 9/17/07 10:04 PM Page 622

Chapter 12: ASP.NET and WCF Integration in IIS 7

623

As the name implies, the <serviceBehaviors> element will contain behaviors that will be
attached to WCF services in the current application.

3. Add a <behavior> child element to the <serviceBehaviors> element and assign a value to
its name attribute as shown in the highlighted portion of the following configuration fragment.
You can assign any value you want to this attribute as long as it is unique and does not violate
the typical XML attribute naming rules.

<system.serviceModel>
<services>

. . .
</services>
<behaviors>

<serviceBehaviors>
<behavior name="BugReportManagerService_ServiceMetadata">
. . .

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

4. Add an element with the same name as the behavior as the child element of the <behavior>
element and assign the appropriate values to the appropriate attributes of this element. The
highlighted portion of the following configuration fragment adds an element named
<serviceMetadata> as the child element of the <behavior> element and sets its
httpGetEnabled attribute to true to turn on the metadata publishing capabilities of the serv-
ice to which the behavior attaches. As the name suggests, setting the httpGetEnabled attribute
to true enables the service to send a WSDL document or metadata in response to a GET HTTP
request for this document.

Notice that the name of this child element follows the camel casing naming convention of the
.NET configuration files:

<system.serviceModel>
<services>

. . .
</services>
<behaviors>

<serviceBehaviors>
<behavior name="BugReportManagerService_ServiceMetadata">
<serviceMetadata httpGetEnabled="true"/>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

5. Add an attribute named behaviorConfiguration to the <service> element that represents
the WCF service to which the specified behavior is to be attached. Assign the value of the name

52539c12.qxd 9/17/07 10:04 PM Page 623

Chapter 12: ASP.NET and WCF Integration in IIS 7

624

attribute of the <behavior> element to this attribute as shown in the boldfaced portions of the
following configuration fragment:

<system.serviceModel>
<services>

<service name="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl"
behaviorConfiguration="BugReportManagerService_ServiceMetadata">
<endpoint address="" binding="basicHttpBinding"
contract="ProIIS7AspNetIntegProgCh12.IBugReportManagerServiceContract"/>

</service>
</services>
<behaviors>

<serviceBehaviors>
<behavior name="BugReportManagerService_ServiceMetadata">

<serviceMetadata httpGetEnabled="true"/>
</behavior>

</serviceBehaviors>
</behaviors>

</system.serviceModel>

Now add this configuration fragment to the web.config file of the BugReportManagerServiceHost
WCF Service Web site. Now if you access the BugReportManagerService.svc file at http://
localhost/BugReportManagerServiceHost/BugReportManagerService.svc, you should get
the page shown in Figure 12-3.

Figure 12-3

As you can see, this time around the page contains a link to the WSDL document or metadata that
describes the bug report manager service. If you click this link, it will take you to the page shown in
Figure 12-4, which displays the WSDL document.

52539c12.qxd 9/17/07 10:04 PM Page 624

Chapter 12: ASP.NET and WCF Integration in IIS 7

625

Figure 12-4

Developing a Windows Communication
Foundation Client

In this section, you develop a Windows Communication Foundation client that will communicate with
your bug report manager service through the endpoint you defined in the previous sections. When it
comes to developing a WCF client, you have several options. I cover three of these options in the follow-
ing sections:

❑ Adding a Web reference

❑ Using the svcutil.exe tool

❑ Imperative approach

You’ll use each option to create a separate client application.

Adding a Web Reference
Add a new Web site named BugReportManagerServiceClientWebRef to the
ProIIS7AspNetIntegProgCh12 solution. Right-click the BugReportManagerServiceClientWebRef

52539c12.qxd 9/17/07 10:04 PM Page 625

Chapter 12: ASP.NET and WCF Integration in IIS 7

626

Web site in Solution Explorer and select the Add Web Reference option to launch the Add Web Reference
dialog. Use the following URL to navigate to the page shown in Figure 12-3:

http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc

Enter ProIIS7AspNetIntegProgCh12 in the “Web reference name” textbox. Now click the Add
Reference button. This will automatically do the following:

❑ Download the WSDL document for the bug report manager service from the specified URL.

❑ Generate a class named BugReportManagerServiceImpl. This class is known as the proxy class
because it acts as a proxy for the server-side BugReportManagerServiceImpl class. Recall that
this server-side class implements the IBugReportManagerServiceContract service contract.
Because the client-side BugReportManagerServiceImpl class acts as a proxy for the server-
side BugReportManagerServiceImpl class, it exposes methods with the same signatures as
the methods of the server-side class. As such, it exposes two methods named AddBugReport
and GetBugReports, where the former takes an object of type BugReport as its argument just
like its server-side counterpart, and the latter returns a collection of BugReport objects just like
its server-side counterpart.

❑ Generate the appropriate configuration settings.

Now you’re ready to use the BugReportManagerServiceImpl proxy class to communicate
with the bug report manager service. Now add a new Web Form named Default.aspx to the
BugReportManagerServiceClientWebRef Web site and add the code shown in Listing 12-7 to
Default.aspx file.

Listing 12-7: The Default.aspx File

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<asp:GridView ID="GridView1" DataSourceID="MySource" runat="server"
BackColor="LightGoldenrodYellow" BorderColor="Tan" BorderWidth="1px"
CellPadding="2" ForeColor="Black" GridLines="None">
<HeaderStyle BackColor="Tan" Font-Bold="True" />
<AlternatingRowStyle BackColor="PaleGoldenrod" />

</asp:GridView>

<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl"
SelectMethod="GetBugReports" />

</form>
</body>
</html>

52539c12.qxd 9/17/07 10:04 PM Page 626

Chapter 12: ASP.NET and WCF Integration in IIS 7

627

The Web page shown in Listing 12-7 consists of a GridView server control, which is bound to an
ObjectDataSource data source control. The ObjectDataSource data source control exposes two
important properties named TypeName and SelectMethod. You must set the value of the TypeName
property to the fully qualified name of the type whose method you want the data source control to
invoke. You must set the value of the SelectMethod property to the name of the method being invoked.

In your case, you want to have the ObjectDataSource data source control invoke the GetBugReports
method of the BugReportManagerServiceImpl proxy class. Therefore, you need to assign the fully
qualified name of this proxy class (including its namespace) to the TypeName property of the data source
control and the method name (GetBugReports) to the SelectMethod property.

The beauty of the ObjectDataSource data source control is that it allows you to invoke the
GetBugReports method of the BugReportManagerServiceImpl proxy class without writing a single
line of imperative code. It is all done declaratively in the .aspx file.

Using the svcutil.exe Tool
Windows Communication Foundation ships with a tool named svcutil.exe that automatically down-
loads the WSDL document from a specified URL, generates the code for the proxy class and stores it in a
specified file, and generates the appropriate configuration file with the appropriate settings. When you
run this command

svcutil.exe /out:BugReportManagerServiceclient.cs /config:Web.config
http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc

the svcutil.exe tool will automatically do the following:

❑ Download the metadata document (WSDL document) for the bug report manager service from
the http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc
URL.

❑ Generate the code for a proxy class named BugReportManagerServiceContractClient
and store the code in the specified BugReportManagerServiceClient.cs file in the current
directory.

❑ Generate the required configuration settings and store them in the specified web.config file in
the current directory.

If you check out the directory where you ran the svcutil.exe tool, you should see the
BugReportManagerServiceClient.cs and web.config files. Add a new Web site named
BugReportManagerServiceClientSvcUtil to the ProIIS7AspNetIntegProgCh12 solution. Next,
add the App_Code directory to this Web site. Right-click App_Code and select Add Existing Item to
launch the Add Existing Item dialog. Navigate to the directory where you ran the svcutil.exe tool to
add the BugReportManagerServiceClient.cs file to the App_Code directory. Now, right-click
BugReportManagerServiceClientSvcUtil and select Add Existing Item to launch the Add Existing
Item dialog. Navigate to the directory where you ran the svcutil.exe tool to add the web.config file
to the BugReportManagerServiceClientSvcUtil Web site. Now go back to the Solution Explorer panel
of Visual Studio. Drag the Default.aspx file from the BugReportManagerServiceClientWebRef Web
site to the BugReportManagerServiceClientSvcUtil Web site. This will automatically copy this file
into the BugReportManagerServiceClientSvcUtil Web site. Next, change the value of the TypeName

52539c12.qxd 9/17/07 10:04 PM Page 627

Chapter 12: ASP.NET and WCF Integration in IIS 7

628

attribute on the <asp:ObjectDataSource> in the Default.aspx file to
BugReportManagerServiceContractClient, which is the name of the type of the proxy class that
svcutil.exe generates, as shown in the following code fragment:

<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="BugReportManagerServiceContractClient"
SelectMethod="GetBugReports" />

Next, I take a look at the contents of the BugReportManagerServiceClient.cs and web.config files.
Listing 12-8 presents the content of the BugReportManagerServiceClient.cs file.

Listing 12-8: The Content of the BugReportManagerServiceClient.cs File

namespace ProIIS7AspNetIntegProgCh12
{
using System.Runtime.Serialization;

[DataContract]
public partial class BugReport : object, IExtensibleDataObject
{
private ExtensionDataObject extensionDataField;

private string BodyField;
private string SenderField;
private string SubjectField;

public ExtensionDataObject ExtensionData
{
get { return this.extensionDataField; }
set { this.extensionDataField = value; }

}

[DataMember]
public string Sender
{
get { return this.SenderField; }
set { this.SenderField = value; }

}

[DataMember]
public string Subject
{
get { return this.SubjectField; }
set { this.SubjectField = value; }

}

[DataMember]
public string Body
{
get { return this.BodyField; }
set { this.BodyField = value; }

}
}

52539c12.qxd 9/17/07 10:04 PM Page 628

(Continued)

Chapter 12: ASP.NET and WCF Integration in IIS 7

629

Listing 12-8: (continued)

}

[ServiceContract(ConfigurationName = "IBugReportManagerServiceContract")]
public interface IBugReportManagerServiceContract
{
[OperationContract(

Action = "http://tempuri.org/IBugReportManagerServiceContract/AddBugReport",
ReplyAction =
"http://tempuri.org/IBugReportManagerServiceContract/AddBugReportResponse")]

void AddBugReport(BugReport bugReport);

[OperationContract(
Action = "http://tempuri.org/IBugReportManagerServiceContract/GetBugReports",
ReplyAction =
"http://tempuri.org/IBugReportManagerServiceContract/GetBugReportsResponse")]

BugReport[] GetBugReports();
}

public partial class BugReportManagerServiceContractClient :
ClientBase<IBugReportManagerServiceContract>,
IBugReportManagerServiceContract

{

public BugReportManagerServiceContractClient() { }

public BugReportManagerServiceContractClient(string endpointConfigurationName)
: base(endpointConfigurationName)

{
}

public BugReportManagerServiceContractClient(string endpointConfigurationName,
string remoteAddress)

: base(endpointConfigurationName, remoteAddress)
{
}

public BugReportManagerServiceContractClient(string endpointConfigurationName,
EndpointAddress remoteAddress)

: base(endpointConfigurationName, remoteAddress)
{
}

public BugReportManagerServiceContractClient(Binding binding,
EndpointAddress remoteAddress)

: base(binding, remoteAddress)
{
}

public void AddBugReport(BugReport bugReport)
{
base.Channel.AddBugReport(bugReport);

}

52539c12.qxd 9/17/07 10:04 PM Page 629

Chapter 12: ASP.NET and WCF Integration in IIS 7

630

Listing 12-8: (continued)

public BugReport[] GetBugReports()
{
return base.Channel.GetBugReports();

}
}

As Listing 12-8 shows, the svcutil.exe tool parses the WSDL document and generates the code for the
following types:

❑ BugReport: This is the same BugReport type defined on the server side. Note that this client-
side BugReport type and its properties are annotated with the same DataContract and
DataMember metadata attributes as its BugReport server-side counterpart.

❑ IBugReportManagerServiceContract: This is the same
IBugReportManagerServiceContract type defined on the server side. Recall that this type
defines the service contract of your bug report manager service. Also note that the methods of
this client-side IBugReportManagerServiceContract service contract are annotated with the
same OperationContract attributes as its server-side counterpart. Note that the Action and
ReplyAction properties these OperationContract metadata attributes are set. The client uses
the values of these two properties to keep track of which incoming response message corre-
sponds to which outgoing request message.

❑ BugReportManagerServiceContractClient: This class acts as the proxy for the
server-side BugReportManagerServiceImpl class. Recall that the server-side
BugReportManagerServiceImpl class implements the IBugReportManagerServiceContract
service contract of the bug report manager service. Because the client-side
BugReportManagerServiceContractClient class is a proxy for the server-side
BugReportManagerServiceImpl, it also implements the same contract, that is, the
IBugReportManagerServiceContract, as can be seen from Listing 12-8.

Besides implementing the service contract that its server-side counterpart implements, a proxy class
such as BugReportManagerServiceContractClient also inherits from a generic class named
ClientBase<ServiceContract> where the ServiceContract stands for the service contract
that the proxy class implements. In this case, the BugReportManagerServiceContractClient
proxy class inherits the ClientBase<IBugReportManagerServiceContract> base class. The
ClientBase<ServiceContract> generic class encapsulates the logic that allows the proxy class to
communicate with the back-end WCF service.

Next, I take a look at the content of the web.config file that the svcutil.exe tool generates, as shown
in Listing 12-9.

Listing 12-9: The web.config File

<?xml version="1.0"?>
<configuration>
<system.serviceModel>
<bindings>
<basicHttpBinding>

52539c12.qxd 9/17/07 10:04 PM Page 630

Listing 12-9: (continued)

<binding name="BasicHttpBinding_IBugReportManagerServiceContract"
closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard" maxBufferSize="65536"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArrayLength="16384" maxBytesPerRead="4096"
maxNameTableCharCount="16384"/>
<security mode="None">
<transport clientCredentialType="None"
proxyCredentialType="None" realm=""/>
<message clientCredentialType="UserName" algorithmSuite="Default"/>

</security>
</binding>

</basicHttpBinding>
</bindings>

<client>
<endpoint
address=
"http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc"

binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_IBugReportManagerServiceContract"
contract="IBugReportManagerServiceContract"
name="BasicHttpBinding_IBugReportManagerServiceContract"/>

</client>

</system.serviceModel>
</configuration>

As you can see from Listing 12-9, this web.config file contains a <system.serviceModel> element
that has two child elements named <bindings> and <client>. The <bindings> element contains one
or more binding elements that each specifies a particular binding. Recall that each binding is a .NET
class that directly or indirectly inherits from the Binding base class. In this case, the <bindings> ele-
ment contains a single binding element named <basicHttpBinding>, which represents the standard
BasicHttpBinding binding, which ships with Windows Communication Foundation. Note that this
<basicHttpBinding> element contains a <binding> child element that specifies the values of the
properties of the BasicHttpBinding binding.

As shown in Listing 12-9, the <client> element contains an <endpoint> element that represents the
service endpoint to which the client communications will be directed. Note that the address, binding,
and contract attributes on this <endpoint> element are set to the address, binding, and contract of its
associated service endpoint. Also note that the <endpoint> element exposes an attribute named
bindingConfiguration whose value is set to the value of the name attribute of the <binding> child
element of the <basicHttpBinding> element that specifies the values of the properties of the
BasicHttpBinding binding. This instructs the client to use the property values specified by this
<binding> child element. Another point of interest here is the name attribute of the <endpoint> ele-
ment. This attribute uniquely identifies its associated <endpoint> element among other endpoint

Chapter 12: ASP.NET and WCF Integration in IIS 7

631

52539c12.qxd 9/17/07 10:04 PM Page 631

Chapter 12: ASP.NET and WCF Integration in IIS 7

632

elements. In this case, the <client> element contains a single <endpoint> element because the bug
report manager service exposes a single endpoint. However, in general, a WCF service may expose sev-
eral endpoints, which means that the <client> element may contain several <endpoint> elements, one
for each service endpoint.

Imperative Approach
The previous section discussed the C# code that the svcutil.exe tool generates. Recall that this tool
generates the code for three types of classes:

❑ Data classes: The BugReport class is an example of a data class. Instances of these data classes
represent the data exchanged between a WCF service and its clients. As discussed earlier, the
DataContractSerializer serializes these instances into XML on the sender side (be it the
WCF service or its client) and deserializes these instances from XML on the receiver side.

As Listing 12-8 shows, the svcutil.exe tool parses the metadata document and generates the
code for these data classes. Because these client-side data classes are the same as their server-
side counterparts, you should be able to manually program these data classes yourself without
using the svcutil.exe tool.

❑ Service contracts: The IBugReportManagerServiceContract interface shown in Listing 12-8
is an example of a service contract. Again, because these client-side service contracts are the
same as their server-side counterparts, you can easily program them without using the
svcutil.exe tool.

❑ Proxy classes: The BugReportManagerServiceContractClient class is an example of a
proxy class. As you can see from Listing 12-8, a proxy class is a class that

❑ Implements a service contract. For example, the
BugReportManagerServiceContractClient proxy class implements the
IBugReportManagerServiceContract service contract.

❑ Inherits from ClientBase<ServiceContract>. For example, the
BugReportManagerServiceContractClient proxy class inherits from
ClientBase<IBugReportManagerServiceContract>.

❑ Its implementation of the operations of the service contract delegates to the corre-
sponding methods of the Channel property of the ClientBase<ServiceContract>.
For example, the BugReportManagerServiceContractClient proxy’s implementa-
tions of the AddBugReport and GetBugReports operations of the
IBugReportManagerServiceContract service contract respectively delegate to
the Channel property of the AddBugReport and GetBugReports methods of the
ClientBase<IBugReportManagerServiceContract> class as can be seen from the
following excerpt from Listing 12-8:

public void AddBugReport(BugReport bugReport)
{
base.Channel.AddBugReport(bugReport);

}

public BugReport[] GetBugReports()
{
return base.Channel.GetBugReports();

}

52539c12.qxd 9/17/07 10:04 PM Page 632

Chapter 12: ASP.NET and WCF Integration in IIS 7

633

❑ Exposes five constructors as follows:

❑ Default constructor: Thanks to this constructor you could use the
ObjectDataSource data source control in Default.aspx to invoke the
GetBugReports method of the BugReportManagerServiceContractClient
class. Under the hood, the ObjectDataSource data source control uses the type
information assigned to its TypeName property to instantiate an instance of the
specified type, which is the BugReportManagerServiceContractClient class in
this case.

public BugReportManagerServiceContractClient() { }

❑ A constructor that takes a string that contains the endpoint’s configuration name.
Recall from the previous section that the <endpoint> subelement of the <client>
element exposes an attribute named name that uniquely identifies the associated
endpoint among other endpoints. This constructor requires you to pass in the value
of the name attribute of the <endpoint> element that represents an endpoint. You’ll
see an example of this later in this section.

public BugReportManagerServiceContractClient(string endpointConfigurationName)
: base(endpointConfigurationName)

{
}

❑ A constructor that takes two string parameters. The first parameter is the endpoint’s
configuration name and the second parameter is the network address of the endpoint:

public BugReportManagerServiceContractClient(string endpointConfigurationName,
string remoteAddress)

: base(endpointConfigurationName, remoteAddress)
{
}

❑ A constructor that takes two parameters. The first parameter is a string that contains
the endpoint’s configuration name and the second parameter is a EndpointAddress
object that represents the endpoint’s address:

public BugReportManagerServiceContractClient(string endpointConfigurationName,
EndpointAddress remoteAddress)

: base(endpointConfigurationName, remoteAddress)
{
}

❑ A constructor that takes two parameters. The first parameter is a Binding object that
represents the binding of the endpoint and the second parameter is an
EndpointAddress object that represents the endpoint’s address:

public BugReportManagerServiceContractClient(Binding binding,
EndpointAddress remoteAddress)

: base(binding, remoteAddress)
{
}

52539c12.qxd 9/17/07 10:04 PM Page 633

Chapter 12: ASP.NET and WCF Integration in IIS 7

634

You can program all these classes and their methods without using svcutil.exe as follows. Add a new
Web site named BugReportManagerServiceClientImperative to the ProIIS7AspNetIntegProgCh12
solution. Go back to the Solution Explorer panel of Visual Studio. Drag the App_Code directory and
Default.aspx and web.config files from the BugReportManagerServiceClientSvcUtil Web
site to the BugReportManagerServiceClientImperative Web site. This automatically adds a new
App_Code directory to the BugReportManagerServiceClientImperative Web site and copies the
BugReportManagerServiceClient.cs file into this directory. Basically you’re pretending that you’ve
written the content of the BugReportManagerServiceClient.cs file yourself instead of using the
svcutil.exe tool.

Next, go ahead and change the value of the TypeName attribute on the <asp:ObjectDataSource> in
Default.aspx file to ProIIS7AspNetIntegProgCh12.BugReports as shown in the following code
fragment:

<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReports"
SelectMethod="GetBugReports" />

As you can see, this time around you want the ObjectDataSource data source control to invoke the
GetBugReports method of a new class named BugReports, which you’ve written manually, instead of
the proxy class. Delegating to a different class enables you to use any of the five constructors of the
proxy class you want. Listing 12-10 presents the implementation of the BugReports class.

Listing 12-10: The BugReports Class

namespace ProIIS7AspNetIntegProgCh12
{
using System.ServiceModel;

public class BugReports
{
public static BugReport[] GetBugReports()
{
BugReportManagerServiceContractClient proxy =

new BugReportManagerServiceContractClient();
return proxy.GetBugReports();

}

public static BugReport[] GetBugReports2()
{
BugReportManagerServiceContractClient proxy =
new BugReportManagerServiceContractClient(

"BasicHttpBinding_IBugReportManagerServiceContract");
return proxy.GetBugReports();

}

public static BugReport[] GetBugReports3()
{
BasicHttpBinding binding =
new BasicHttpBinding("BasicHttpBinding_IBugReportManagerServiceContract");

EndpointAddress address =
new EndpointAddress(

52539c12.qxd 9/17/07 10:04 PM Page 634

Chapter 12: ASP.NET and WCF Integration in IIS 7

635

Listing 12-10: (continued)

"http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc");
BugReportManagerServiceContractClient proxy =

new BugReportManagerServiceContractClient(binding, address);
return proxy.GetBugReports();

}
}

}

The BugReports class presents three versions of the GetBugReports method as follows:

❑ GetBugReports: This version of the method uses the default constructor of the
BugReportManagerServiceContractClient proxy class. This is exactly what the
ObjectDataSource data source control did when you asked the control to directly invoke the
GetBugReports method on the proxy class itself.

❑ GetBugReports2: This version of the method uses the proxy constructor that takes the value of
the name attribute of the <endpoint> subelement of the <client> element. Recall that this
value uniquely identifies an <endpoint> subelement among other <endpoint> subelements of
the <client> element. Keep in mind that each <endpoint> subelement represents a particular
service endpoint with a particular address, binding, and contract. In other words, the
GetBugReports2 method allows you to communicate with the WCF service through any
desired endpoint.

❑ GetBugReports3: This version of the method uses the proxy constructor that takes two param-
eters. The first parameter references the Binding object that represents the binding of the end-
point. The second parameter references the EndpointAddress that represents the address of
the endpoint. Note that GetBugReports3 instantiates a BasicHttpBinding object, passing in
the string that contains the value of the name attribute on the <binding> subelement of the
<basicHttpBinding> subelement of the <bindings> element in the configuration file shown
in Listing 12-9. This string instructs the constructor of the BasicHttpBinding class to use the
values specified by the <binding> element with the specified name attribute value to initialize
the BasicHttpBinding object.

Switching from one version of the GetBugReports method to another is as simple as setting the value of
the SelectMethod property of the ObjectDataSource data source control to the name of the desired
version of the method. For example, the following instructs the ObjectDataSource data source control
to use the GetBugReports3 method:

<%@ Page Language="C#" %>
. . .
<html xmlns="http://www.w3.org/1999/xhtml">
. . .
<body>

<form id="form1" runat="server">
. . .
<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReports"
SelectMethod="GetBugReports3" />

</form>
</body>
</html>

52539c12.qxd 9/17/07 10:04 PM Page 635

Chapter 12: ASP.NET and WCF Integration in IIS 7

636

Taking Advantage of ASP.NET and WCF
Integration in IIS 7

As discussed earlier, one of the great advantages of hosting WCF services in IIS is their deep integration
with ASP.NET applications. This allows you to treat WCF services running in your Web application like
any other component of your application such as ASP.NET Web pages. This section shows you how to
take advantage of this deep integration in your Web applications.

Now, go back to the BugReportManagerServiceHost WCF Service Web site and add a new Web Form
named Default.aspx. Add the code shown in Listing 12-11 to the Default.aspx file. If you access the
Default.aspx page from your browser, you’ll get the result shown in Figure 12-5.

Listing 12-11: The Default.aspx File of the BugReportManagerServiceHost Web Site

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<asp:DetailsView ID="DetailsView1" DataSourceID="MySource" runat="server"
Height="50px" Width="125px" BackColor="LightGoldenrodYellow" BorderColor="Tan"
BorderWidth="1px" CellPadding="2" ForeColor="Black" GridLines="None"
AutoGenerateInsertButton="True" AutoGenerateRows="False" DefaultMode="Insert">
<CommandRowStyle HorizontalAlign="Center" />
<editrowstyle backcolor="DarkSlateBlue" forecolor="GhostWhite"
HorizontalAlign="Center" />
<AlternatingRowStyle BackColor="PaleGoldenrod" />
<Fields>
<asp:BoundField DataField="sender" HeaderText="Sender" />
<asp:BoundField DataField="subject" HeaderText="Subject" />
<asp:BoundField DataField="body" HeaderText="Body" />

</Fields>
</asp:DetailsView>

<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReportManager"
InsertMethod="AddBugReport" />

</form>
</body>
</html>

As Figure 12-5 shows, the Default.aspx page of the BugReportManagerServiceHost Web site con-
sists of DetailsView server control bound to an ObjectDataSource data source control. Note that the
DefaultMode attribute on the <asp:DetailsView> tag is set to Insert to display the DetailsView
server control in its Insert mode, where you can insert a new bug report. As the following excerpt from
Listing 12-11 shows, the TypeName property of the ObjectDataSource data source control bound to the

52539c12.qxd 9/17/07 10:04 PM Page 636

Chapter 12: ASP.NET and WCF Integration in IIS 7

637

Figure 12-5

DetailsView server control is set to the fully qualified name of the BugReportManager static class.
Recall that this class represents the bug report manager system.

<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReportManager"
InsertMethod="AddBugReport" />

In other words, this code instructs the ObjectDataSource data source control to use the AddBugReport
method of the BugReportManager class as an insert method to insert a new bug report. As you
can see, the Default.aspx page directly interacts with the bug report manager system. This is very
different from the Default.aspx pages of the BugReportManagerServiceClientWebRef,
BugReportManagerServiceClientSvcUtil, and BugReportManagerServiceClientImperative
Web sites, where these pages interact with the bug report manager system via the bug report manager
WCF service.

Now go ahead and enter a few bug reports into the system. Next, visit the Default.aspx page of one of
the client applications, that is, BugReportManagerServiceClientWebRef,
BugReportManagerServiceClientSvcUtil, or BugReportManagerServiceClientImperative.
You should get the result shown in Figure 12-6. Note that this page displays all the bug reports that you
just entered into the system.

Figure 12-6

52539c12.qxd 9/17/07 10:04 PM Page 637

Chapter 12: ASP.NET and WCF Integration in IIS 7

638

As you can see, you have two Web pages up and running, the Default.aspx page of the
BugReportManagerServiceHost Web site shown in Figure 12-5, and the Default.aspx page of
one of the client Web sites shown in Figure 12-6. The former page allows you to enter new bug reports,
whereas the latter page allows you to view all the reported bugs. Now use the Default.aspx page to
enter a few more bug reports into the system. Refresh the client page. Notice that the client page dis-
plays all the reported bugs, including those that you just entered. The Default.aspx page directly
interacts with the bug report manager system, whereas the client page uses the bug report manager
WCF service to interact with the system. Notice that the Default.aspx page and your bug report
manager WCF service both belong to the same Web site, that is, the BugReportManagerServiceHost
Web site. This means that the Default.aspx page and the service both are loaded into the same appli-
cation domain. That is exactly why you can enter new bug reports in one page and view them all in
another page.

To help you understand this important point, revisit the implementation of the BugReportManager
class shown in Listing 12-1. As this code listing shows, the BugReportManager class stores all bug
reports in an ArrayList kept in memory. The Default.aspx page of the
BugReportManagerServiceHost Web site uses the AddBugReport method of the BugReportManager
class to add a new bug report to this in-memory ArrayList storage. The Default.aspx page of the
client Web sites, on the other hand, uses the GetBugReports operation of the service to retrieve all bug
reports from this in-memory ArrayList storage. In other words, both the Default.aspx page of the
BugReportManagerServiceHost Web site and the service can access the same in-memory ArrayList
storage. This is possible because both of them are loaded into the same application domain. As you can
see, the deep integration of ASP.NET and WCF services in IIS 7 opens up new programming opportuni-
ties that would not be possible otherwise.

Using Different Bindings
The previous sections showed you how to develop a WCF service to enable a piece of software such as
the bug report manager system to communicate with the outside world. As discussed, every WCF serv-
ice exposes one or more endpoints, each with an address, a binding, and a contract. The binding of an
endpoint specifies the communication protocols through which the endpoint communicates with the
outside world. In this section, you see how to enable your WCF service to communicate with different
clients through different sets of communication protocols (bindings).

As discussed in Chapter 2, two main IIS 7 components are involved for each type of transport protocol:

❑ Protocol listener: A protocol listener is a component that listens for incoming requests over a
particular transport protocol. For example, HTTP.SYS is the protocol listener that listens for
incoming requests over the HTTP transport protocol. The Net.Tcp Port Sharing Service, on the
other hand, is the protocol listener that listens for incoming requests over the TCP transport
protocol.

❑ Protocol listener adapter: A protocol listener adapter is a component that adapts a particular
type of protocol listener to Windows Process Activation Service (WAS). For example, Net.Tcp
Listener Adapter is the protocol listener adapter that adapts the Net.Tcp Port Sharing Service
(Net.Tcp protocol listener) to Windows Process Activation Service.

When a request over a specific transport protocol arrives, the associated protocol listener picks it up. The
protocol listener adapter then informs the WAS that a request for a specified application pool has
arrived. The WAS checks whether a worker process has already been assigned to the application pool. If

52539c12.qxd 9/17/07 10:04 PM Page 638

Chapter 12: ASP.NET and WCF Integration in IIS 7

639

not, it spawns a new worker process and assigns the task of processing requests for the application pool
to this worker process, which in turn picks up the request from its associated queue and processes it.

Therefore, the first order of business in enabling your WCF service to communicate with its clients
through a new transport protocol such as TCP is to ensure that the protocol listener and protocol listener
adapter components for that transport protocol are up and running. Because you want to enable the bug
report manager WCF service to communicate with its clients through the TCP transport protocol, you
need to ensure that the Net.Tcp Port Sharing Service, which is the protocol listener for the TCP transport
protocol, and Net.Tcp Listener Adapter, which is the protocol listener adapter for the TCP transport pro-
tocol, are both up and running. Follow these steps to accomplish this. Select Start ➪ Run and run serv-
ices.msc to launch the Services management console shown in Figure 12-7.

Figure 12-7

Right-click Net.Tcp Listener Adapter and select Properties from the popup menu to launch the Net.Tcp
Listener Adapter Properties dialog box shown in Figure 12-8. Select the Automatic option from the
Startup type combo box and click OK. Make sure you start the adapter if it hasn’t already started. To
start the adapter, right-click the adapter and select Start from the popup menu.

Figure 12-8

52539c12.qxd 9/17/07 10:04 PM Page 639

Chapter 12: ASP.NET and WCF Integration in IIS 7

640

Repeat these two steps for the Net.Tcp Port Sharing Service protocol listener. So far, you have ensured
that the TCP protocol listener and listener adapter are up and running. Next, you need to enable the
application that hosts the bug report manager WCF service to accept incoming requests over the TCP
transport protocol. Recall that the bug report manager WCF service is hosted in a Web application
named BugReportManagerServiceHost. Therefore, you need to enable this application to accept
incoming requests over the TCP transport protocol. Take these steps to accomplish this task:

1. Open the applicationHost.config file in your favorite editor.

2. Search for the <application> element that represents the BugReportManagerServiceHost
Web application in the applicationHost.config file, add an attribute named
enabledProtocols, and set its value to "http, net.tcp" to enable this Web application
to accept incoming requests on both the HTTP and TCP transport protocols, as shown in the
following:

<configuration>
<system.applicationHost>
<sites>
<site name="Default Web Site" id="1" serverAutoStart="true">
<application path="/BugReportManagerServiceHost"
enabledProtocols="http, net.tcp">
<virtualDirectory path="/"
physicalPath="C:\inetpub\wwwroot\BugReportManagerServiceHost" />

</application>
</site>

</sites>
</system.applicationHost>

</configuration>

Next, you need to configure the Net.Tcp Port Sharing Service protocol listener to listen on the appropri-
ate binding on the site that contains the Web application that hosts the bug report manager WCF service.
Take these steps to accomplish this:

1. Open the applicationHost.config file in your favorite editor.

2. Search for the <site> element that represents the site that contains the
BugReportManagerServiceHost Web application and add the <binding> element shown in
boldface in the following excerpt from the applicationHost.config file to the <bindings>
subelement of this <site> element:

<configuration>
<system.applicationHost>
<sites>
<site name="Default Web Site" id="1" serverAutoStart="true">
<application path="/BugReportManagerServiceHost"
enabledProtocols="http, net.tcp">
<virtualDirectory path="/"
physicalPath="C:\inetpub\wwwroot\BugReportManagerServiceHost" />

</application>
<bindings>
<binding protocol="http" bindingInformation="*:80:" />
<binding protocol="net.tcp" bindingInformation="808:+" />

52539c12.qxd 9/17/07 10:04 PM Page 640

Chapter 12: ASP.NET and WCF Integration in IIS 7

641

</bindings>
</site>

</sites>
</system.applicationHost>

</configuration>

Next, you need to enable the bug report manager WCF service itself for accepting incoming requests
over the TCP transport protocol. Take these steps to accomplish this:

1. Open the web.config file of the BugReportManagerServiceHost Web application. Recall that
this application hosts the bug report manager WCF service.

2. Add a new <endpoint> child element to the <service> element that represents the WCF
service:

<configuration>
<system.serviceModel>
<services>
<service name="ProIIS7AspNetIntegProgCh12.BugReportManagerServiceImpl"

behaviorConfiguration="BugReportManagerService_ServiceMetadata">

<endpoint address="" binding="basicHttpBinding"
contract="ProIIS7AspNetIntegProgCh12.IBugReportManagerServiceContract"/>

<endpoint address="" binding="netTcpBinding"
contract="ProIIS7AspNetIntegProgCh12.IBugReportManagerServiceContract"/>

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="BugReportManagerService_ServiceMetadata">
<serviceMetadata httpGetEnabled="true"/>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

Now if you access the following URL from your browser:

http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc?wsdl

you’ll get the result shown in Figure 12-9. This figure displays the content of the WSDL document
that describes the bug report manager service. Note that the WSDL document now contains a
<wsdl:binding> element with the name attribute value of NetTcpBinding_
IBugReportManagerServiceContract. This binding enables the clients of the service to
communicate with the service through the TCP transport protocol.

That wraps up the server-side configurations. Next, you develop a new client Web application that com-
municates with the service through the TCP transport protocol.

52539c12.qxd 9/17/07 10:04 PM Page 641

Figure 12-9

Now add a new Web site named BugReportManagerServiceClientSvcUtil2 to the
ProIIS7AspNetIntegProgCh12 solution. In the Solution Explorer window of Visual Studio,
drag the Default.aspx file from the BugReportManagerServiceHost Web site to the
BugReportManagerServiceClientSvcUtil2 Web site. This will automatically copy this file
into the BugReportManagerServiceClientSvcUtil2 Web site. Recall that this Default.aspx file
contains the Web page shown in Figure 12-5, which allows the user to add new bug reports to the bug
report manager system.

Next, navigate to your favorite directory and use the following command:

svcutil.exe /out:BugReportManagerServiceclient.cs /config:Web.config
http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc

As discussed earlier, when you run the preceding command, the svcutil.exe tool will automatically
do the following:

❑ Download the metadata document (WSDL document) that describes the bug report manager
service from the specified URL:

http://localhost/BugReportManagerServiceHost/BugReportManagerService.svc

❑ Generate the code for a proxy class named BugReportManagerServiceClient and store the
code in the specified BugReportManagerServiceClient.cs file in the current directory.

❑ Generate the required configuration settings and store them in the specified web.config file in
the current directory.

Chapter 12: ASP.NET and WCF Integration in IIS 7

642

52539c12.qxd 9/17/07 10:04 PM Page 642

(Continued)

Chapter 12: ASP.NET and WCF Integration in IIS 7

643

Now add the App_Code directory to your BugReportManagerServiceClientSvcUtil2 Web
site. Right-click App_Code and select Add Existing Item to launch the Add Existing Item dialog.
Navigate to the directory where you used the previous command to run svcutil.exe to add
the BugReportManagerServiceClient.cs file to the App_Code directory. Now, right-click
BugReportManagerServiceClientSvcUtil2 again and select Add Existing Item to launch the Add
Existing Item dialog. Navigate to the directory where you used the previous command to run the
svcutil.exe tool to add the web.config file to the BugReportManagerServiceClientSvcUtil2
Web site. Listing 12-12 presents the content of this web.config file.

Listing 12-12: The web.config File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding name="BasicHttpBinding_IBugReportManagerServiceContract"

closeTimeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00"
sendTimeout="00:01:00" allowCookies="false" bypassProxyOnLocal="false"
hostNameComparisonMode="StrongWildcard" maxBufferSize="65536"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaultWebProxy="true">

<readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />
<security mode="None">
<transport clientCredentialType="None" proxyCredentialType="None"

realm="" />
<message clientCredentialType="UserName" algorithmSuite="Default" />

</security>
</binding>

</basicHttpBinding>
<netTcpBinding>
<binding name="NetTcpBinding_IBugReportManagerServiceContract"

closeTimeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00"
sendTimeout="00:01:00" transactionFlow="false" transferMode="Buffered"
transactionProtocol="OleTransactions"
hostNameComparisonMode="StrongWildcard"
listenBacklog="10" maxBufferPoolSize="524288" maxBufferSize="65536"
maxConnections="10" maxReceivedMessageSize="65536">

<readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />
<reliableSession ordered="true" inactivityTimeout="00:10:00"

enabled="false" />
<security mode="Transport">
<transport clientCredentialType="Windows"
protectionLevel="EncryptAndSign" />
<message clientCredentialType="Windows" />

</security>

52539c12.qxd 9/17/07 10:04 PM Page 643

Chapter 12: ASP.NET and WCF Integration in IIS 7

644

Listing 12-12: (continued)

</binding>
</netTcpBinding>

</bindings>
<client>

<endpoint
address="http://localhost/BugReportManagerServiceHost/

BugReportManagerService.svc"
binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_IBugReportManagerServiceContract"
contract="IBugReportManagerServiceContract"
name="BasicHttpBinding_IBugReportManagerServiceContract" />

<endpoint address="net.tcp://localhost/BugReportManagerServiceHost/
BugReportManagerService.svc"

binding="netTcpBinding"
bindingConfiguration="NetTcpBinding_IBugReportManagerServiceContract"
contract="IBugReportManagerServiceContract"
name="NetTcpBinding_IBugReportManagerServiceContract">
<identity>
<servicePrincipalName value="host/serverName" />

</identity>
</endpoint>

</client>
</system.serviceModel>

</configuration>

As you can see from Listing 12-12:

❑ The <client> element contains two <endpoint> subelements. The first <endpoint> subele-
ment represents the service endpoint with the network address of http://localhost/
BugReportManagerServiceHost/BugReportManagerService.svc that allows the client to
communicate with the endpoint through the BasicHttpBinding binding. As discussed earlier,
this binding uses HTTP as the transport protocol for sending and receiving SOAP messages.
The second <endpoint> subelement of the <client> element represents the service endpoint
with the network address of
net.tcp://localhost/BugReportManagerServiceHost/BugReportManagerService.svc
that allows the client to communicate with the endpoint through the NetTcpBinding binding.
This binding uses TCP as the transport protocol for sending and receiving SOAP messages.

❑ The <bindings> element contains two subelements. The first subelement is
<basicHttpBinding>, which was discussed earlier in this chapter. This binding specifies
the values of the properties of the BasicHttpBinding binding. The second subelement is
<netTcpBinding>, which specifies the values of the properties of the NetTcpBinding binding.

Now open the Default.aspx file of the BugReportManagerServiceClientSvcUtil2 client Web site
and make the changes shown in highlighted portion of Listing 12-13.

52539c12.qxd 9/17/07 10:04 PM Page 644

Chapter 12: ASP.NET and WCF Integration in IIS 7

645

Listing 12-13: The Default.aspx Page of the BugReportManagerServiceClientSvcUtil2
Client Application

<%@ Page Language="C#" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">
<asp:DetailsView ID="DetailsView1" DataSourceID="MySource" runat="server"
Height="50px" Width="125px" BackColor="LightGoldenrodYellow" BorderColor="Tan"
BorderWidth="1px" CellPadding="2" ForeColor="Black" GridLines="None"
AutoGenerateInsertButton="true" AutoGenerateRows="false" DefaultMode="Insert">
<AlternatingRowStyle BackColor="PaleGoldenrod" />
<Fields>

<asp:BoundField DataField="sender" HeaderText="Sender" />
<asp:BoundField DataField="subject" HeaderText="Subject" />
<asp:BoundField DataField="body" HeaderText="Body" />

</Fields>
</asp:DetailsView>
<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReports"
InsertMethod="AddBugReport" />

</form>
</body>
</html>

As you can see, these changes instruct the ObjectDataSource data source control to use the AddBugReport
method of the BugReports class as the Insert method to add a new bug report into your bug report man-
ager system. Now, right-click the App_Code directory of the BugReportManagerServiceClientSvcUtil2
client application in the Solution Explorer and select Add New Item to add a new source file named
BugReports.cs. Next, add the code shown in Listing 12-14 to this source file.

Listing 12-14: The BugReports Class

namespace ProIIS7AspNetIntegProgCh12
{
using System.ServiceModel;

public class BugReports
{
public static void AddBugReport(string sender, string subject, string body)
{
BugReportManagerServiceContractClient proxy =
new BugReportManagerServiceContractClient(

"NetTcpBinding_IBugReportManagerServiceContract");
BugReport bugReport = new BugReport();
bugReport.Sender = sender;

52539c12.qxd 9/17/07 10:04 PM Page 645

Chapter 12: ASP.NET and WCF Integration in IIS 7

646

Listing 12-14: (continued)

bugReport.Subject = subject;
bugReport.Body = body;
proxy.AddBugReport(bugReport);

}
}

}

As you can see from Listing 12-14, the BugReports class exposes a static method named
AddBugReport. Note that this method does not use the default constructor of the
BugReportManagerServiceContractClient proxy class to create an instance of this proxy
class. Instead, it uses the constructor that takes the string that contains the name of a specified endpoint.

Because you want your BugReportManagerServiceClientSvcUtil2 Web application to direct its com-
munications to the service endpoint that uses the TCP transport protocol, you must ensure that Windows
Communication Foundation uses the second <endpoint> subelement of the <client> element. As the
you’ve seen, this <endpoint> subelement represents a service endpoint with the network address of
net.tcp://localhost/BugReportManagerServiceHost/BugReportManagerService.svc that uses
the NetTcpBinding binding to communicate with its clients. As Listing 12-14 shows, the AddBugReport
method of the BugReports class passes the value of the name attribute of this <endpoint> subelement
into the constructor of the BugReportManagerServiceClient proxy class when it is instantiating an
instance of this proxy class. This instructs Windows Communication Foundation to direct the communica-
tions of your BugReportManagerServiceClientSvcUtil2 Web application to the service endpoint
specified by the specified <endpoint> subelement of the <client> element.

Putting It All Together
Add a new Web Form named Default2.aspx to the BugReportManagerServiceHost Web applica-
tion and add the code shown in Listing 12-15 to this file.

Listing 12-15: The Default2.aspx File

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<asp:GridView ID="GridView1" DataSourceID="MySource" runat="server"
BackColor="LightGoldenrodYellow" BorderColor="Tan" BorderWidth="1px"
CellPadding="2" ForeColor="Black" GridLines="None">
<HeaderStyle BackColor="Tan" Font-Bold="True" />
<AlternatingRowStyle BackColor="PaleGoldenrod" />

</asp:GridView>

52539c12.qxd 9/17/07 10:04 PM Page 646

Chapter 12: ASP.NET and WCF Integration in IIS 7

647

Listing 12-15: (continued)

<asp:ObjectDataSource runat="server" ID="MySource"
TypeName="ProIIS7AspNetIntegProgCh12.BugReportManager"
SelectMethod="GetBugReports" />

</form>
</body>
</html>

Note that the ObjectDataSource data source control in Default2.aspx directly calls the
GetBugReports method on the BugReportManager static class. In other words, this Web page directly
interacts with the bug report manager system.

Now you’re ready for the final test, where you will have several Web pages up and running simultane-
ously as shown in Figure 12-10. Take these steps to set up the final test:

1. Access the Default.aspx Web page of the BugReportManagerServiceHost Web site from
your browser. You should see the Web page shown in Figure 12-10. Recall that this Web page is
a regular ASP.NET page that does not use the bug report manager WCF service. Instead it
directly invokes the AddBugReport method on the BugReportManager static class to add new
bug reports.

2. Access the Default2.aspx Web page of the BugReportManagerServiceHost Web site from
your browser. You should see the Web page shown in Figure 12-11. This Web page is also a regu-
lar ASP.NET page that does not use the bug report manager WCF service. Instead it directly
invokes the GetBugReports method on the BugReportManager static class to display all bug
reports.

3. Access the Default.aspx Web page of the BugReportManagerServiceClientSvcUtil2 Web
site from your browser. You should see the Web page shown in Figure 12-12. Recall that this
Web page uses the AddBugReport operation of the bug report manager WCF service through
the TCP transport protocol to add new bug reports.

4. Access the Default.aspx Web page of the BugReportManagerServiceClientSvcUtil Web
site from your browser. You should see the Web page shown in Figure 12-13. Recall that this
Web page uses the GetBugReports operation of the bug report manager WCF service through
the HTTP transport protocol to display all bug reports.

Note that I’ve added a label to the original Default.aspx Web pages to help you distinguish these
pages. You can easily add the same labels to these Web pages for your own testing if you want.

Now follow these steps to test your applications:

1. Use the Web page shown in Figure 12-10 to add a new bug report to the bug report manager
system through a regular ASP.NET request processing mechanism.

2. Refresh the Web page shown in Figure 12-11 to retrieve this bug report from your bug report
manager system through a regular ASP.NET request processing mechanism.

52539c12.qxd 9/17/07 10:04 PM Page 647

3. Refresh the Web page shown in Figure 12-13 to retrieve this bug report from your bug report
manager system through the bug report manager WCF service using HTTP transport protocol.

4. Use the Web page shown in Figure 12-14 to add a new bug report to your bug report manager
system through the bug report manager WCF service using TCP transport protocol.

5. Repeat Steps 2 and 3 to see the new bug report added to the system.

This example clearly shows the deep integration of ASP.NET and Windows Communication Foundation
in the IIS 7 environment.

Figure 12-10

Figure 12-11

Figure 12-12

Figure 12-13

Chapter 12: ASP.NET and WCF Integration in IIS 7

648

52539c12.qxd 9/17/07 10:04 PM Page 648

Summary
This chapter provided you with in-depth coverage of the ASP.NET and Windows Communication
Foundation integration in the IIS 7 environment and showed you how to take advantage of this integra-
tion in your own Web applications. Because WCF services of your applications are loaded into the same
application domain as the rest of the components of your applications, and because their compilation
goes through the same ASP.NET dynamic compilation process as any other component of your applica-
tion, you can treat WCF services of your applications as you would any other components of your appli-
cations, such as Web pages. These services can seamlessly interact with the rest of the components of
your application, opening up new programming opportunities that were not possible before.

649

Chapter 12: ASP.NET and WCF Integration in IIS 7

52539c12.qxd 9/17/07 10:04 PM Page 649

52539c12.qxd 9/17/07 10:04 PM Page 650

In
de

x

Index

A
“ “ value, 29
“.“ value, 29
<access> element, 55
accessing configuration sections in

<system.applicationHost> section group,
108–113

add application pool, 108–109
add binding, 110–111
add virtual directory, 112–113
add Web application, 111–112
add Web site, 109–110

accessing specified attribute of specified
configuration section, 103, 104–105

Program.cs file, 105
AcquireRequestState event, 316
action attribute, 42
Actions pane, 63
activity event types, 542
Add Application Pool, 63
Add child elements, 117
“Add collection item” link, 180, 185, 240, 242
ADD command, 81
Add Connection String task form, 487
Add Managed Handler task form, 306, 421
Add Managed Module link, 324, 421
Add Managed Module task form, 325

checkbox, 325
GUI elements, 325

Add method
BindingCollection class, 98
ConfigurationElementCollectionBase<T> class, 87
ScheduleCollection class, 93

Add Provider task form, 402
Add Roles Wizard, 14

confirm installation selections in, 18
installation results, 19
launching, 15
preliminary instruction, 15
select role services in, 17
select server roles in, 16

“Add URL rewriter rule” link, 364, 366
Add Web Site, 66–67

Add XML elements, 407, 410, 415, 443
AddAt method, 87
AddBugReport method, 611
AddCollectionItem method, 278–279

of MyCollectionPage, 243–244
addElement attribute, 121
adding/removing element from specified collection

element of specified configuration section, 103,
106–108

add new element, 106–107
remove element, 107–108

AddItem method, 239–240, 363–364
AddProviderForm task form, 402, 421, 490, 491

parts, 402, 432
AddUrlRewriterRule method, 367–368, 386
administration.config file, 103, 104, 269, 280, 283,

285, 381, 389
MyConfigSectionModuleProvider module provider

registration with, 285–286
RssModuleProvider module provider and, 535–536

ADO.NET, 299
classes, 398
SQL Server-specific classes, 398

Advanced Settings dialog, 65
Allow value, 31
allowDefinition attribute, 128
AllowsAdd, 88
AllowsClear, 88
AllowsRemove, 88
<anonymousAuthentication> element, 56
APP object, 79
APPCMD tool. See appcmd.exe tool
appcmd.exe tool (APPCMD tool), 76–81

IIS Manager v., 77
location, 77
object model, 77–79
syntax, 79–80
XML elements/attributes and, 76–81

Application class, 98–99
GetWebConfiguration method, 99

application domains, 593
<application> elements, 98, 99, 100
Application Level, 27

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 651

application pools, 63–64
adding, in <system.applicationHost>, 108–109
editing, 65

ApplicationCollection class, 99–100
<applicationDefaults> element, 45
ApplicationDomain class, 85, 587, 593–594

members, 594
ApplicationDomainCollection class, 85, 587, 594–595

members, 595
applicationHost.config file, 64, 571

editing, 61
RssHandler registered by, 304
structure, 36–60
UrlRewriterModule HTTP module and, 322–323
XML elements/attributes in, 77–79

application-level configuration file, 133–134
ApplicationPool class, 88–89, 595

members, 595
methods, 89
properties, 89

ApplicationPoolCollection class, 94–95
members, 95

ApplicationPoolCollection container, 103
ApplicationPoolCpu class, 93–94
<applicationPoolDefaults> element, 42
ApplicationPoolPeriodicRestart class, 91–92
ApplicationPoolProcessModel class, 89–90
ApplicationPoolRecycling class, 90–91
<applicationPools>, 37–42

element, 88
section, 37–38

ApplicationPools collection property, 103
applications, 43

root, 43
ApplyChanges method, 193, 213–214, 510–511
APPPOOL object, 79
AppPoolName, 591
ArrayList, 218, 219, 237, 239, 242, 277, 278, 299,

308, 309, 361, 362, 363
Articles table, 292
ArticlesDB database, 488
Articles.xml file, 571–572
ASP.NET, 1. See also integrated architecture,

IIS7/ASP.NET
configuration settings, 68–70
pages, 51
provider-based services, 400
and WCF integration

in IIS7 environment, 605–649
ASPNET_schema.xml, 65
assembly, public key token of, 282, 286, 304

AssemblyDownloadService, 169
AssemblyQualifiedName method, 282, 389
AssociatedModule property, 165
<attribute> elements, 120

in <collection> element, 121, 122
attribute-based programming, WCF Service Model, 609
attributes. See specific attributes
AuthenticateRequest event, 316
<authentication>, 55–58
authentication modules

managed, 57–58
native, 55–57

<authorization>, 58–60
AuthorizeRequest event, 316

B
back button, 222
back-end Web server, 184

communication scenarios
MyCollectionItemTaskForm, 184–186
MyCollectionPage, 184–186
MyConfigSectionPage, 184–186
UrlRewriterPage module page, 348–349
UrlRewriterRuleTaskForm task form, 349–351

BaseForm class, 168
GetService method of, 168

BaseForm constructor, 168
<basicAuthentication>

configuration section, 119, 120
element, 57

BeginRequest event, 316
Binding class, 96–97

properties, 97
<binding> element, 96, 97
BindingCollection class, 97–98

methods, 98
bindingInformation attribute, 96
bindings. See also communication protocols

adding, in <system.applicationHost>, 110–111
WCF endpoint, 608–609, 638–646

developing, 610
Boolean Property, 182
breadcrumbs bar, 222
bug report manager system, 606–607

implementation, 606–607
WCF and, 607–649

bug reports, 606
in memory, 606, 638

BugReport class, 612–614, 630
implementation, 612–613

BugReportCollection class, 612

652

application pools

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 652

BugReportManager class, 607
BugReportManagerService, 611

in ProIIS7AspNetIntegProgCh12, 611
BugReportManagerServiceClient.cs file, 628

content of, 628–630
BugReportManagerServiceClientImperative, 634

in ProIIS7AspNetIntegProgCh12, 634
BugReportManagerServiceClientSvcUtil, 627

in ProIIS7AspNetIntegProgCh12, 627
BugReportManagerServiceClientSvcUtil2

client application, 645
Default.aspx page of, 645

in ProIIS7AspNetIntegProgCh12, 642
BugReportManagerServiceClientWebRef, 625

in ProIIS7AspNetIntegProgCh12, 625
BugReportManagerServiceContractClient class, 630
BugReportManagerServiceHost, 617

in ProIIS7AspNetIntegProgCh12, 617
Web application, 646

Default2.aspx file and, 646–647
Web site, 636

Default.aspx file of, 636–638
BugReportManagerServiceImpl class, 615–617

implementation, 615–616
BugReports class, 634–635, 645–646
build provider, 618
Button1_Click event handler, 425

implementation, 431–432

C
callback methods for TextChanged event, of textbox

controls, 507
CanApplyChanges property, 193, 202, 507
CancelChanges method, 193, 215–216, 511–512
CancelEventArgs class, 204
CanNavigateBack property, 157
CanNavigateForward property, 157
CanRefresh property, 194, 518

of ModulePage class, 224
of MyCollectionPage, 257
of MyConfigSectionPage, 224

Category string property, 158
CausesNavigation property, 162
“Change identifier” link, 181, 182, 185, 240, 242, 243
Channel class, 449

RssHandler HTTP handler, 295
<channel> element, 292
Channel layer, 605
channelDescription, 296
channelLink, 296

channelTitle, 296
checkbox, Add Managed Module task form, 325
CheckBox control, 184, 199
classes. See managed classes, IIS7/ASP.NET

integrated imperative management API; specific
classes

classic ASP pages, 50–51
Clear child elements, 118
Clear method, 87
ClearChannelSettings method, 510
clearElement attribute, 121
ClearSettings method, 211
ClientIPAddr property, 593
client-side managed code, 175–269

class diagram, 176
RSS provider-based service and, 493–526
UrlRewriterModule and, 346–381

clonePropertyBag collection, 215
CLR. See Common Language Runtime
Collection element

<fileExtensions>, 122
<hiddenSegments>, 122
steps for defining, 122–123

<collection> element, 121–124
<attribute> elements in, 121, 122
attributes, 121

collection XML elements, 117
child elements, 117–118
examples, 118, 119

ComboBox control, 184, 199
commandText, 297

SqlRssProvider, 474
commandType, 297

SqlRssProvider, 474
CommitChanges method, 103
Common Language Runtime (CLR), 37, 38
communication protocols, 14, 35, 36, 96, 608, 610,

620, 638
<compilation> section, of root web.config file, 25, 26
compiler type-checking support, 135, 208, 336, 340,

362, 390
ConditionalAttribute metadata attribute, 550
<configSections> section, 32–34
configSource attribute, 31, 32
configuration collections, 26
configuration elements, 26
configuration files, 116
configuration properties, 26
configuration sections, 26, 116

rules, 25

653

configuration sections

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 653

configuration-based programming, WCF Service
Model, 609

ConfigurationElement class, 86
members, 86

ConfigurationElementCollectionBase<T> class, 86–88
methods, 87
properties, 88

ConfigurationModuleProvider class, 282
ConfigurationPath property, 156
ConfigurationReadOnlyDelegationState static field, 535
ConfigurationReadWriteDelegationState static field,

535
ConfigurationSection class, 101–102

properties, 102
ConfigurationSectionName property, 282, 389
Configure RSS provider link, 489
ConfigureProvider method, 436, 437, 438

adding/removing/renaming/updating providers of
service, 438–440

setting default provider of service, 438, 440–442
steps to set default provider, 442–444

ConfigureRoleProvider method, 439
ConfigureRssProvider method, 516
Connection class, 155–156

service container, 154
service provider, 153

Connection object, 156
connection strings, 297, 473–474
Connection Strings item, 486
ConnectionManager, 152
Connections pane, 62
ConnectionStringAttributeName property, 409
connectionStringName, 297
ConnectionStringRequired property, 409
ConnectionStringsPage module list page, 486, 487,

488
console application. See also <myConfigSection>

configuration section
IIS7/ASP.NET integrated imperative extensibility model

and, 141–142
<myConfigSection> and, 128–134

constructors. See specific constructors
containing XML elements, 117

examples, 118, 119
Content View, 63
control adapters, 394
Count property, 88, 590, 592, 595
<cpu> element, 42, 89

attributes, 42
imperative representation of, 93, 94

CreateElement, 87

CreateHeader method, 170, 221
implementation, 223

CreateMainArea method, 170, 221
CreateMenuBar method, 170, 221
CreateNavigationItem method, 232, 233
CreateStatusBar method, 170, 221
Critical event type, 541, 542
CurrentItem property, 157
CurrentModule property, 593
custom module service proxy, implementation of,

502–503
custom provider base class, 448–449
custom provider collection, 449–450
custom provider configuration settings class,

implementation of, 493–498
custom provider feature, implementation of, 498–500
custom section PropertyBag wrapper class,

implementation of, 500–502

D
DataContractAttribute metadata attribute, 614
DataContractSerializer, 613
DataMemberAttribute metadata attribute, 614
Default Document feature, 72, 73, 75
Default Web Site

Home page, RSS item in, 488, 489
node, 69, 73, 76, 227, 404

Default2.aspx file, 646
BugReportManagerServiceHost Web application and,

646–647
Default.aspx

file, 626
of BugReportManagerServiceHost Web site, 636–638

page, 598
of BugReportManagerServiceClientSvcUtil2 client

application, 645
<defaultDocument> section, 45–46

configuration section, 118
defaultValue attribute, 120
Define Trace Conditions, 574, 575
delegation, 73–76
DelegationState class, 534–535
“Delete collection item” link, 181, 240, 242
DELETE command, 81
DELETE database operation, 79, 81
“Delete URL rewriter rule” link, 347, 348, 364, 366
DeleteCollectionItem method, 279

of MyCollectionPage, 244–246
DeleteUrlRewriterRule method, 368–369, 387
Deny value, 31

654

configuration-based programming

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 654

Description
property, 165
string property, 158

deserialization, WCF and, 613
DictionaryEntry objects, 189, 190
<digestAuthentication> element, 57
<directoryBrowse> section, 46
DisableRss method, 515–516, 528–529
disallowOverlappingRotation attribute, 41
disallowRotationOnConfigChange attribute, 41
DisplayName property, 553
Dispose method, 267, 301, 315, 320
DOM

data model, 484
random-access XML API, 302

DownloadandDisplayProviders method, 419
DoWorkEventArgs event data class, 204
DoWorkEventHandler, 204, 235, 265, 359, 378, 441

E
Edit Provider task form, 402, 403
Edit Web Site Failed Request Tracing Settings dialog,

572, 573
<element> element, 121. See also specific elements
Enabled property, 159
EnableRss method, 515, 528–529
encoding protocol, 609
endpoints, WCF, 608, 610, 638

adding/updating/removing/configuring, 611
addresses, 609
bindings, 608–609, 610, 638–646
contracts, 609

EndRequest event, 317
Error event, 317
Error event type, 541, 542
event data class, 204
event handler delegates, 204
event handlers, MyConfigSectionPage, 200–201. See

also specfic event handlers
event types. See also specific event types

activity, 542
severity, 542

events. See specific events
EventTypeFilter filter, 538, 563

instantiation and attachment, 563–570
declarative, 563–565
imperative, 566–570

Execute method, 167, 168

F
Failed Request Tracing

link button, 572
module, 537, 538, 572
Rules page, 573, 574
Rules Wizard, 574

Feature Delegation page, 75
feature modules

IIS7, 2–7
IIS-ApplicationDevelopment, 4
IIS-CommonHttpFeatures, 3
IIS-FTPPublishingService, 7
IIS-HealthAndDiagnostics, 4
IIS-Performance, 5
IIS-Security, 5
IIS-WebServerManagementTools, 6–7
WAS-WindowsActivationService, 7

FeatureName property, 407
features, 14
Features View, 63
<fileExtensions> Collection element, 122
flags attribute, 55
forward button, 222
functional areas, 2

G
GAC. See Global Assembly Cache
gacutil.exe tool, 284
GenerateRss static method, 299–302

of RssHelper class, 300
GetAdministrationConfiguration method, 103
GetApplicationHostConfiguration method, 103
GetAttributeValue, 86
GetBugReports method, 611, 635

versions of, 635
GetChannelValues method, 511
GetCollection, 86
GetCollectionItems method, 235, 277–278
GetDataReader, 299
GetEnumerator, 87, 590, 592, 595
GetGroups method, 255–256

Overridden, 256
GetHandler method, 333

arguments, 334
GetModuleDefinition method, 282, 388

RssModuleProvider module provider and, 533
GetMyConfigSectionSection method, 274
GetPropertyValue method, 164
GetProviders method, 523–524, 529–530

655

GetProviders method

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 655

GetSection method, 96, 104, 106, 130, 142, 272, 310,
345, 384, 385, 392

GetService method, 267
of BaseForm class, 168
of WebMgrShellApplication class, 168

GetSettings method, 203–205, 275, 508, 530
implementation, 203–205

GetTaskItems method, 216, 217, 365–366
implementation, 216–220

GetUrlRewriterSection method, 384–385
GetUrlRewriterSettings method, 359–360, 385–386
GetValues method, 214–215
GetWebApplication, 96
GetWebConfiguration method, 99

Application class, 99
ServerManager class, 103

GetWorkerProcess, 590
Global Assembly Cache (GAC), 269, 283, 284, 286,

293, 303, 306, 308, 311, 320, 325, 331, 334,
340, 421

<globalModules> section, 46–48
Group method, of ModuleListPage, 255
Groupings property, of ModuleListPage, 253, 254
GroupTaskItem

class, 162–163
task item, 174

H
handler factories. See managed handler factories
Handler Mappings module page, 305–306
handlers, 48. See also managed handlers
<handlers> section, 48–50

<add> elements, 50
attributes, 50

HasChanges property, 194, 201–202, 507
help button, 222
<hiddenSegments> Collection element, 122
HierarchyPanel, 171
History collection property, 157
home button, 222
HttpApplication objects, 316

firing of ordered events, 316–317
pool, 316

HttpContext object, 291
HTTPS protocol, 184
HybridDictionary class, 190, 191

I
IBugReportManagerServiceContract service contract,

612, 630
methods, 611

IConnectionManager interface, 152
identityType attribute, 40
IDictionary interface, 189, 190, 208, 276, 413, 414,

434
IDisposable interface, 301
idleTimeout attribute, 40
IEnumerable object, 174
IExtensibilityManager, 411
IHttpHandler interface, 290

members, 291
IHttpHandlerFactory interface, 333

members, 333–334
IHttpModule interface, 315

methods, 315
IIS-

ApplicationDevelopment, 4
feature modules, 4

ASP, 4
update dependencies, 12

ASPNET, 4
update dependencies, 12

BasicAuthentication, 5
CGI, 4
ClientCertificateMappingAuthentication, 5
CommonHttpFeatures, 3

feature modules, 3
CustomLogging, 4
DefaultDocument, 3
DigestAuthentication, 5
DirectoryBrowsing, 3
FTPManagement, 7
FTPPublishingService, 7

feature modules, 7
FTPServer, 7
HealthAndDiagnostics, 4

feature modules, 4
HttpCompressionDynamic, 5
HttpCompressionStatic, 5
HttpErrors, 3
HttpLogging, 4
HttpRedirect, 3
HttpTracing, 4
IISCertificateMappingAuthentication, 5
IPSecurity, 5
ISAPIExtensions, 4
ISAPIFilter, 4
LegacyScripts, 7

update dependencies, 12
LegacySnapIn, 7
LoggingLibraries, 4
ManagementConsole, 6

update dependencies, 12

656

GetSection method

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 656

ManagementScriptingTools, 6
update dependencies, 12

ManagementService, 6
update dependencies, 12

Metabase, 7
NetFxExtensibility, 4

update dependencies, 12
ODBCLogging, 4
Performance feature modules, 5
RequestFiltering, 5
RequestMonitor, 4
Security feature modules, 5
ServerSideIncludes, 4
StaticContent, 3
URLAuthorization, 5
WebServer, 3

update dependencies, 12
updates, 3–5

WebServerManagementTools, 6
feature modules, 6–7

WebServerRole, 2
updates, 2

WindowsAuthentication, 5
WMICompatibility, 7

IIS7. See Internet Information Services 7.0
IIS7 Manager. See Internet Information Services

Manager
IIS7 runtime objects, up-to-date runtime data for,

567–598
IIS7/ASP.NET integrated architecture. See integrated

architecture, IIS7/ASP.NET
IIS_schema.xml, 65
IisTraceListener, 538

instantiation and attachment, 539, 557–562
SourceFilter filter and, 569

Image property, 159, 162
IManagementHost interface, 152
IManagementUIService interface, 152
IModuleChildPage interface, 230–231, 232
imperative programming, WCF Service Model, 609
ImperativeManagement directory, 340, 341
INavigationService interface, 152, 156–157
IndexOf, 87, 590, 592, 595
Information event type, 541, 542
Inherit value, 31
Init method, 315, 320
Initialize method, 267

of Module base class, 269, 381
of ProviderConfigurationConsolidatedPage module

page, 444
of RolesModule module, 411–412

RssService class, 464, 465
SqlRssProvider, 471–473
XmlRssProvider, 480–482

InitializeComponent method
MyCollectionItemTaskForm and, 262–264
MyConfigSectionPage’s user interface and, 196–200
RssPage module page, 504–507
RssSettingsForm task form, 522–523
UrlRewriterRuleTaskForm and, 376–378

InitializeListPage method, 233, 234
UrlRewriterPage module and, 358–359

InitializeUI method, 210, 212, 510
INSERT database operation, 79, 81
InstantiateProviders method, 458–459
integrated administration, IIS7/ASP.NET, 11
integrated architecture, IIS7/ASP.NET, 1–21

extensibility models, 116
main components, 115

integrated configuration system, IIS7/ASP.NET, 10–11,
23–60

APPCMD, 76–81
characteristics/benefits, 23–24, 28
distributed, 26–28
extending RSS provider-based service, 450–453
extensibility model, 115–134
hierarchical, 24–28, 68, 73–74
IIS Manager, 62–76
IIS Manager and hierarchical, 68–73
management options, 61–62
programmatic interaction with, 103–113
steps for extending, 124–125, 337–338

integrated declarative schema extension markup
language, IIS7/ASP.NET, 116–117, 337, 338

XML constructs
<rss>configuration section and, 451–453

XML elements/attributes, 117–124
integrated graphical management system,

IIS7/ASP.NET, 11, 62–76, 145–174. See also
Internet Information Services Manager

extending
RSS provider-based service and, 485–493

extensibility model, 115, 116, 145, 146, 175–287
integrated imperative management API, IIS7/ASP.NET, 11

extending
RSS provider-based service and, 454–462

extensibility model, 115, 116, 134–140
console application for, 141–142

managed classes, 86–103
types, 84

IIS7 troubleshooting, 85, 587
XML constructs, 84–85, 587

657

integrated imperative management API

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 657

integrated providers model, IIS7/ASP.NET, 397–444
in action, 400–405
extending, 445–536. See also RSS provider-based

service
recipe, 445–447

integrated request processing pipeline, IIS7/ASP.NET,
8–10

advantage of, 393
extensibility model, 116, 289–396

through configurable managed components, 336–337
through managed code, 289–290

modular architecture, 115
plugging into

custom managed handler factories, 336
custom managed handlers, 302–315
custom managed modules, 322–332
RssHandler HTTP handler, 302–315
UrlRewriterModule HTTP module, 322–332

integrated tracing and diagnostics, IIS7/ASP.NET,
537–604. See also tracing

components, 537–540
integration of ASP.NET and WCF services, in IIS7

environment, 605–649
IntelliSense support for strongly-typed properties,

Visual Studio, 135, 208, 336, 340, 362, 390
Internet Information Services 7.0 (IIS7), 1

architecture
extensible, 8
modular, 1–2, 11, 115

ASP.NET and WCF integration in, 605–649
configuration settings

application-specific, 73
IIS Manager and, 70–73
web.config file with, 73

feature modules, 2–7
ISAPI mode, 38, 39, 48
setup options, 11–12

command-line, 20
Server Manager tool, 14–19
unattended, 20–21
upgrade, 21
Windows Features dialog, 13–14

troubleshooting integrated imperative management
types, 85, 587

Internet Information Services (IIS7) Manager, 62–76,
145–174

APPCMD tool v., 77
ASP.NET configuration settings, 68–70

machine level, 68–69
site level, 69–70

capabilities, 145
IIS7 configuration settings, 70–73

IIS7/ASP.NET hierarchical configuration and, 68–73
launching

command-line, 62
GUI-based, 62

module pages, 146–148
object model, 152

classes in, 152–166
page navigation, 149
RssHandler HTTP handler registration

at IIS7 Web-server level, 304–309
RssHandlerCh8 application and, 312–313

tasks, 149–151
UrlRewriterModule HTTP module registration

at IIS7 Web-server level, 323–327
UrlRewriterModuleCh8 application and, 323–327

user interface extension
procedures/tasks, 176

Visual Studio and automatic running of, 285
XML elements/attributes and, 62–76

Invoke method, 188
InvokeMethod method, 164–165
IPropertyEditingService interface, 152
IProviderConfigurationService interface, 405, 436–444
IRSCA_AppDomain, 587
IRSCA_AppPool, 587
IRSCA_RequestData, 587
IRSCA_RequestReader, 587
IRSCA_VirtualSite, 588
IRSCA_W3SVC, 588
IRSCA_WAS, 588
IRSCA_WorkerProcess, 588
ISAPI mode, IIS7, 38, 39, 48
IsapiFilterModule, 48
IsapiModule, 48
IsAssignableFrom method, 232
IsEnabled property, 165
IServiceContainer interface, 153–154
IServiceProvider interface, 152–153
isExternalTraceSource attribute, 578

<rss> configuration section and, 578
RSS_Schema.xml file and, 578–579
RssSection class and, 578–580
RssService class and, 578

IsExternalTraceSource property, 585
RssSectionInfo class and, 585–586

IsHeading property, 159, 163
IsNew property, 158
IsReusable property, 291

RssHandler HTTP handler, 296
Item class

RssHandler HTTP handler, 295–296
SqlRssProvider, 469–470

Item indexer, 590

658

integrated providers model

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 658

Item property, 88, 592, 595
itemDescription field, 475
itemDescriptionField, 296
itemDescriptionXPath, 481
itemLink field, 475
itemLinkField, 296
itemLinkFormatString, 297
itemLinkFormatString field, 475
itemLinkXPath, 481
Items property, 163
itemTitle field, 475
itemTitleField, 296
itemTitleXPath, 481
itemXPath, 481

K
KeyValuePair objects, 166, 173

L
Label control, 199
LargeImage property, 165
Level property, of SourceSwitch, 554
limit attribute, 42
LIST command, 80
ListViewItem class, 239
loading specified configuration file, 103, 104
LoadRss method, 298–299

RssService class, 465–466
SqlRssProvider, 475
XmlRssProvider, 482–483

LoadSettings method, 412, 435
localInfo private field, 207
<location> tags, 28–31

characteristics, 30
logEventOnRecycle attribute, 41
LogRequest event, 317, 600–604
LongDescription property, 165

M
Machine Level 1, 27
Machine Level 2, 27
machine-level configuration file, 128–131
managed authentication modules, 57–58
managed classes, IIS7/ASP.NET integrated imperative

management API, 86–103. See also specific
classes

category, 84
IIS7 troubleshooting, 85
integrated configuration system, 84

diagram, 83–85

managed code
client-side, 175–269

class diagram, 176
RSS provider-based service and, 493–526
UrlRewriterModule and, 346–381

extending integrated pipeline through, 289–290
object-oriented, 83
server-side, 175, 269–286

deployment, 283–286
RSS provider-based service and, 526–536
steps to write, 269
UrlRewriterModule and, 381–390

managed handler factories, 333–336
configurability of, 336
custom

developing, 334–335
plugging into integrated request processing pipeline,

336
definition, 290

managed handlers, 290–315
configurability of, 336
custom, 291–302

plugging into integrated request processing pipeline,
302–315

definition, 289–290
server-side logic that retrieves, 308–309

managed modules, 315–333
configurability of, 336
custom, 318–332

developing, 318–321
definition, 290
important points, 318–319
server-side logic that retrieves HTTP, 326–327

Managed pipeline mode drop-down list, 63
ManagedEngine module, 47
managedPipelineMode attribute, 38–39
ManagementConfigurationPath class, 154–155
ManagementFrame constructor, 170, 221

methods, 221
OnCommandBarRefresh method of, 223–224

ManagementGroupBox, 199
controls, 199, 200
hierarchy, 199

ManagementPanel, 264
control, 377
hierarchy, 264

ManagementScope enumeration, 155
ManagementUIService, 152, 169
MapRequestHandler event, 316
maxProcesses attribute, 40
MemberName property, 163
MembershipProviderConfigurationFeature subclass,

406, 407

659

MembershipProviderConfigurationFeature subclass

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 659

MessageTaskItem
class, 159–161

definition, 161
properties, 161

task item, 174
MessageTaskItemType enumeration, 161
MessageType property, 161
MethodName property, 161, 162
methods. See specific methods
MethodTaskItem

class, 161–162
definition, 161–162
properties, 162

task item, 174
MethodTaskItemUsages enumeration, 162

property, 162
Microsoft.Web.Administration namespace, 83, 84
Microsoft.Web.Administration.dll assembly, 104, 105,

107, 108, 141, 177, 340, 344
modeling software, 609
ModifiedKeys property, PropertyBag class, 190, 191,

276
Module class, 153, 267–268

Initialize method of, 269, 381
methods, 267

module dialog pages, 147
module list pages, 147
module pages, 146–148, 177

custom, 148
implementation of, 503–518

for <myConfigSection> configuration section, 179
module properties pages, 147–148
module service, 270

custom, 270
ModuleDefinition object, 533
ModuleDialogPage class, 147, 193

overridable members, 193–194
Refresh method of, 225–226

ModuleListPage, 147
Group method of, 255
Groupings property of, 253, 254
ModulePage class and, 233
MyCollectionPage and, 233

ModuleListPageGrouping class, 253–254
ModulePage class, 177, 194

CanRefresh property of, 224
class hierarchy, 177–178
MyCollectionPage and, 233
Refresh method of, 225
UrlRewriterPage and, 358

ModulePageInfo class, 165–166

ModulePropertiesPage, 147–148
ModuleProvider class, 281, 282
Modules module list page, 324
<modules> section, 52–55

<add> elements, 52
attributes, 52

contents, 53–54
ModuleService class, 270
ModuleServiceMethodAttribute metadata attribute,

273, 381, 383
ModuleServiceProxy, 186–189
MyApplication project, Visual Studio and, 422
MyApplicationPool node, 64
MyClass1 class, 422–423

read/write properties, 423
MyClass1Property1 property, 423, 427
MyClass1Property2 property, 423, 427
MyClass1Property3 property, 423, 427, 428, 430
MyClass1Property4 property, 423, 427, 430
MyClass1Property5 property, 423, 427, 428, 429
MyClass1Property6 property, 423, 424, 427, 429
MyClass2 class, 424
MyCollection class, 136–138, 177
myCollectionIntAttr attribute, 179, 184, 185
MyCollectionIntProperty, 209
MyCollectionItem class, 136, 177
myCollectionItemBoolAttr attribute, 179
myCollectionItemIdentifier attribute, 179
MyCollectionItemInfo class, 238
MyCollectionItemListViewItem class, 239
MyCollectionItemTaskForm

in action, 179–183
communications with back-end Web server, 184–186
constructors, 262
implementation, 258–267
IntializeComponent method and, 262–264

MyCollectionPage, 179
in action, 179–183
AddCollectionItem method of, 243–244
adding support for new task items, 240–247
CanRefresh property of, 257
communications with back-end Web server, 184–186
declaration of members, 229–230
DeleteCollectionItem method of, 244–246
implementation, 229–257
ModuleListPage class and, 233
OnActivated method and, 235
overrides Tasks property, 243
UpdateCollectionItem method of, 246–247

MyConfigSection class, 139–140, 177
Visual Studio and, 176

660

MessageTaskItem

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 660

<myConfigSection> configuration section, 125,
178–179

console application, 128–134
application-level configuration file, 133–134
machine-level configuration file, 128–131
site-level configuration file, 131–133

content, 126–127
module pages for, 179
MyCollection class, 136–138, 177
MyCollectionItem class, 136, 177
MyConfigSection class, 139–140, 177
MyConfigSectionEnum type, 140, 177
MyNonCollection class, 138, 177
MY_schema.xml in, 125

content, 126–127
portions, 125
registration, 128
representative implementation, 125
strongly-typed objects and, 134–135
in <system.webServer> group, 125, 128

MyConfigSection module page, 179–180
group boxes, 180

myConfigSectionBoolAttr attribute, 179, 184, 185
MyConfigSectionBoolProperty, 209
MyConfigSectionEnum type, 140, 177
myConfigSectionEnumAttr attribute, 179, 184, 185
MyConfigSectionEnumObject class, 211–212
MyConfigSectionEnumProperty, 209
MyConfigSectionInfo class, 207–210

benefits, 208
implementation, 207–208

discussion, 209–210
MyConfigSectionModule, 268–269
MyConfigSectionModuleProvider custom module

provider, 281–282
register with administration.config file, 285–286

MyConfigSectionModuleService Server-Side class, 188,
189, 270–273

MyConfigSectionModuleServiceProxy class, 186, 187
MyConfigSectionPage, 179

in action, 179–183
adding support for new task items, 216–221
ApplyChanges method, 213–214
CanApplyChanges property, 202
CanRefresh property of, 224
communications with back-end Web server, 184–186
constructor, 196
declarations of members, 194–196
event handlers, 200–201
GetSettings method, 203–205
HasChanges property, 201–202
implementation, 193–229

InitializeComponent method, 196–200
OnActivated method, 202–203
overrides Tasks property, 220–221
user interface, 198–199

group boxes, 199–200
IntializeComponent method and, 196–200

“View collections items” link
adding, 216–221

MyEnum enumeration, 423
MyForm Windows Form, 427

Button1_Click event handler, 431–432
observations about, 427–428

MyForm.cs file, 422
content of, 425–426

MyForm.Designer.cs file, content of, 424–425
myListener, 558
MyModule HTTP module, 600–604

example of XML file supported by, 600
MyNameSpace, 176, 422
MyNameSpace.Server.MyConfigSectionModuleProvider,

286
MyNonCollection class, 138, 177
myNonCollectionTimeSpanAttr attribute, 179, 184, 185
MyNonCollectionTimeSpanProperty, 209
myNonCollectionTimeSpanPropertyTextBox control,

200
myobj object, 427
MY_schema.xml, 125
MySqlConnectionString, 487, 488
MySqlRssProvider, 492

ProviderConfigurationConsolidatedPage module page
with, 492

myTraceSource, 545, 559
MyXmlRssProvider, 491

ProviderConfigurationConsolidatedPage module page
with, 492

N
name attribute

<attribute> element, 120
<handlers> section, 50
<modules> section, 52
<section> element, 128

Name textbox, 325
native authentication modules, 55–57
Navigate method, 157, 232
NavigateBack method, 157
NavigateForward method, 157
navigation items, 156, 232
navigation service, 149, 156, 232
NavigationData object, 156

661

NavigationData object

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 661

NavigationEventArgs class, 157, 158
NavigationEventHandler, 157
NavigationItem class, 156
NavigationService class, 152

implementation, 231
.NET Framework, and release cycle of Visual Studio, 28
.NET reflection, 421, 428, 430
.NET Roles page, 405, 410
Net.Tcp Listener Adapter, 639
Net.Tcp Port Sharing Service, 639

protocol listener, 640
NewItem property, 158
non-ASP.NET URLs, UrlRewriterModule and rewriting,

393
postback problems, 393–395

non-collection XML elements, 118
examples, 118, 119

O
object-oriented

APIs, 8, 46
managed code, 83
programming, 135, 208, 336, 340, 362, 390

objects. See specific objects
ObjectState enumeration type, 596
ObjectStateFormatter class, 209
OldItem property, 158
OnAccept method, 265, 441

RssSettingsForm task and, 524
UrlRewriterRuleTaskForm and, 378

OnActivated method, 194, 202–203
MyCollectionPage and, 235
of ProviderConfigurationConsolidatedPage, 418
RssPage module page overrides, 508
UrlRewriterPage and, 359

OnCommandBarRefresh method, of ManagementFrame,
223–224

OnFeatureComboBoxSelectedIndexChanged event
handler, 418

portion of implementation, 418–419
OnGroup method, 256

Overridden, 256
OnListViewAfterLabelEdit method, 248–251
OnListViewBeforeLabelEdit method, 247–248
OnListViewDoubleClick method, 251

UrlRewriterPage and, 370–371
OnListViewKeyUp method, 252

UrlRewriterPage and, 371
OnListViewSelectedIndexChanged method, 252

UrlRewriterPage and, 370

OnmyCollectionIntPropertyTextBoxTextChanged
method, 200, 202

OnmyCollectionItemBoolPropertyCheckBoxChanged
method, 264

OnmyCollectionItemIdentifierTextBoxTextChanged
method, 264

OnmyConfigSectionBoolAttrCheckBoxCheckedChanged
event handler, 200, 201

OnmyConfigSectionEnumPropertyComboBoxSelectedIn
dexChanged event handler, 200, 201

OnmyNonCollectionTimeSpanPropertyTextBoxTextChan
ged method, 200, 202

OnNavigationPerformed event handler, 170, 172–174
OnOkButtonClick method, 433

implementation, 433–435
OnRefresh method, 193, 226, 227, 228, 229, 518
OnValueChanged method

of SourceSwitch class, 553
of Switch base class, 553

OnWorkerCompleted method, 266–267, 378, 380, 441
UrlRewriterRuleTaskForm and, 380

OnWorkerDoWork method, 265–266, 441
UrlRewriterRuleTaskForm and, 378–379

OnWorkerGetCollectionItems method, 235–236
OnWorkerGetCollectionItemsCompleted method,

236–238, 239
OnWorkerGetSettings method, 205, 508–509
OnWorkerGetSettingsCompleted method, 205–207,

210, 509–510
OnWorkerGetUrlRewriterSettings method, 360
OnWorkerGetUrlRewriterSettingsCompleted method,

360–362, 363
OperationContractAttribute metadata attribute, 611
Overridden GetGroups method, 256
Overridden OnGroup method, 256
overrideMode, 30

Allow value, 31
Deny value, 31
Inherit value, 31
property, 102

overrideModeDefault, 128

P
Page module page, 156
page navigation, 149–150
PageContainerPanel, 171
PageHandlerFactory, 10, 51, 290, 333, 334, 335
PageHeader class, 221–222
PageTaskList class, 217–218

implementation, 240–241

662

NavigationEventArgs class

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 662

RssPage module page, 512–515
UrlRewriterPage module page, 364–366

PageType object, 156, 165
ParentPage property, 230, 231
password attribute, 40
path attribute, 50
<periodicRestart> element, 42, 91, 92, 93
PhysicalPath, 594
pingingEnabled attribute, 40
pingInterval attribute, 41
pingResponseTime attribute, 41
PipelineState

enumeration type, 593
property, 593

pkgmgr.exe command-line tool, 20
options, 20

PostAcquireRequestState event, 317
PostAuthenticateRequest event, 316
PostAuthorizeRequest event, 316
PostLogRequest event, 317
PostMapRequestHandler event, 316
PostReleaseRequestState event, 317
PostRequestHandlerExecute event, 317
PostResolveRequestCache event, 316
PostUpdateRequestCache event, 317
preCondition attribute

<handlers> section, 50
<modules> section, 52

PreRequestHandlerExecute event, 317
PreSendRequestContent event, 317
PreSendRequestHeaders event, 317
ProcessGuid, 591
ProcessID, 591, 593
<processModel> element, 39–40, 89, 90

attributes, 40–41
imperative representation of, 89, 90

ProcessRequest method, 291
RssHandler’s implementation of, 297–298

ProfileProviderConfigurationFeature subclass, 406, 407
Program.cs file, 105
ProIIS7AspNetIntegProgCh12, 606

BugReportManagerService in, 611
BugReportManagerServiceClientImperative in, 634
BugReportManagerServiceClientSvcUtil in, 627
BugReportManagerServiceClientSvcUtil2 in, 642
BugReportManagerServiceClientWebRef in, 625
BugReportManagerServiceHost in, 617

properties. See specific properties
PropertyBag class, 189–193

constructors, 189–190
CreatePropertyBagFromState method, 192–193
GetState method, 192

indexer property, 190–191
ModifiedKeys property, 190, 191, 276

PropertyEditingService, 152, 169
PropertyGrid control, 421, 422, 427

edit property in, 431–432
protocol attribute, 96
protocol listener adapters, 35, 638
protocol listeners, 34, 638
provider configuration service, 436. See also

IProviderConfigurationService interface
provider pattern, 400
provider-based services, 397. See also integrated

providers model, IIS7/ASP.NET; RSS provider-
based service; workflow

ASP.NET, 400
configurations, 438–442
custom, 407–410

configuration settings, 410
need for, 398

ProviderBaseType property, 407
ProviderCollectionPropertyName property, 407, 408
ProviderConfigurationConsolidatedPage module page,

401, 404, 410, 489, 490
Initialize method of, 444
MySqlRssProvider in, 492
MyXmlRssProvider in, 492
OnActivated method, 418

ProviderConfigurationModule class, 436–437
ProviderConfigurationService property, 440, 517
ProviderConfigurationSettingNames array, 408, 434
ProviderConfigurationSettings class, 405, 412–415

implementation, 412
ProviderFeature abstract base class, 405

internal implementation, 406
properties, 407–410
subclasses, 406
virtual properties, 409

ProviderHelper helper class, 457–460
providers, 400. See also workflow
ProviderSettings class, 454–455
ProviderSettingsCollection class, 455–457
proxies, 184–186
public key token, of assembly, 282, 286, 304
PublicKeyToken attribute, 304

Q
queueLength attribute, 39

R
ReadOnly property, 194, 209, 210, 237, 518
ReadOnlyDescription property, 237

663

ReadOnlyDescription property

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 663

Really Simple Syndication. See RSS
Recipes

accessing configuration sections in
<system.applicationHost> section group,
108–113

add application pool, 108–109
add binding, 110–111
add virtual directory, 112–113
add Web application, 111–112
add Web site, 109–110

accessing specified attribute of specified configuration
section, 103, 104–105

Program.cs file, 105
adding/removing element from specified collection

element of specified configuration section, 103,
106–108

add new element, 106–107
remove element, 107–108

for extension of integrated providers model, 445–447
loading specified configuration file, 103, 104

Recycle method, 89
<recycling> element, 41–42, 89, 92, 93

attributes, 41
imperative representation of, 90, 91

refresh button, 222
Refresh method, 227, 228, 257

of ModuleDialogPage class, 225–226
of ModulePage class, 225

RegisterExtension method, 412
related activity identifier, 548
ReleaseHandler method, 334
ReleaseRequestState event, 317
Remove child elements, 117–118
Remove method

BindingCollection class, 98
ConfigurationElementCollectionBase<T> class, 87

RemoveAt method
BindingCollection class, 98
ConfigurationElementCollectionBase<T> class, 87

removeElement attribute, 121
Repeater control, 292
Request class, 85, 587, 592–593

properties, 593
RequestCollection class, 85, 587, 591–592

methods/properties, 592
<requestFiltering> configuration section, 121–122
RequestLoggingModuleService class, 586–587
resetInterval attribute, 42
ResolveRequestCache event, 316
Resume event type, 541, 542
RetrieveData method, 483–484

rewriting non-ASP.NET URLs, UrlRewriterModule and, 393
postback problems, 393–395

role management service, 397
role services, 14
roles, 14. See also Add Roles Wizard
Roles provider-based service, 409

RolesProviderConfigurationFeature information on, 410
RolesModule module, 410

Initialize method of, 411–412
RolesProviderConfigurationFeature subclass, 406,

407, 411
information on Roles provider-based service, 410
registration, 412

RolesProviderConfigurationSettings class, 412
implementation, 413–414

root application, 43
root web.config file, 69, 73

<compilation> section, 25, 26
IIS7 configuration settings in, 73

RscaInterop internal class, 588–589
RSS (Really Simple Syndication), 291

2.0 format, 291–292
document, 291–292

<rss> configuration section, 454
isExternalTraceSource and, 578
registration, 453
traceSource and, 578
XML constructs of integrated declarative schema

extension markup language and, 451–453
<rss> document element, 292
RSS item, in Default Web Site Home page, 488, 489
Rss project, 447, 570, 572
RSS provider-based service, 445

client-side managed code and, 493–526
implementation steps, 493

custom providers, 467–485
SqlRssProvider, 467–477
XmlRssProvider, 477–485

default provider for, 492–493
extending integrated configuration system, 450–453
extending integrated graphical management system,

485–493
workflow, 485

extending integrated imperative management system,
454–462

implementation, 448–466
preliminary setup, 447
server-side managed code and, 526–536

implementation steps, 526
RssEnabled property, 518

664

Really Simple Syndication

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 664

RssHandler HTTP handler, 291, 292, 293
applicationHost.config file and registering, 304
channel class, 295
compilation options, 303

add reference, 303
constructor, 296–297

private fields initialized by, 296–297
definition, 398–400
implementation, 293–294
IsReusable property, 296
item class, 295–296
new version

RssService and, 466
plugging into integrated request processing pipeline,

302–315
ProcessRequest method implemented by, 297–298
registration, IIS7 Web server-level, 303–304

declarative approach, 304
graphical approach/IIS7 Manager, 304–309
imperative approach, 304, 309–310
undo, 311

registration levels, 302–303
registration, RssHandlerCh8 application, 311–314

declarative approach, 311–312
graphical approach/IIS7 Manager, 312–313
imperative approach, 313–314

shortcomings, 398
using, 314–315

RssHandlerCh8 application, RssHandler HTTP handler
registration with, 311–314

RssHandlerConsoleApplication project, 309, 310
RssHandlerProj, Visual Studio and, 293, 306, 311
RssHelper class, 299, 300

GenerateRss method of, 300, 400
SqlRssProvider, 470–471

RssModule module, 524–526
RssModuleProvider module provider, 531–536

GetModuleDefinition method overridden by, 533
registration, 535–536

RssModuleService class, 526–531
implementation, 527–528

RssModuleServiceProxy class, 502–503
RssPage module page, 503–518, 582–585

declaration of members, 503–504
InitializeComponent method, 504–507
OnActivated method overridden by, 508
PageTaskList class, 512–515
Tasks property overridden by, 517

RssProvider base class, 448
RssProviderCollection class, 449–450
RssProviderConfigurationFeature class, 498–500

tasks, 500

RssProviderConfigurationSettings class, 493–498
RSS-related fields, 475
RSS_Schema.xml file, 451–452

content, 451
isExternalTraceSource and, 578–579
traceSource and, 578–579

RssSection class, 460–462
isExternalTraceSource and, 579–580
traceSource and, 579–580

RssSectionInfo class, 500–502
IsExternalTraceSource property and, 585–586
programming benefits, 500–501
TraceSource property and, 585–586

RssService class, 400, 580–582
implementation, 462–466
Initialize method, 464, 465
isExternalTraceSource attribute and, 578
LoadRss method, 465–466
RssHandler HTTP handler and, 466
TraceEvent method and, 548–550
traceSource attribute and, 578
TraceSource class and, 543–545

RssSettingsForm task form, 518–524
constructor, 522
implementation, 519–522
InitializeComponent method, 522–523
OnAccept method and, 524

RssWebSite node, 573
Runtime Status and Control API (RSCA), 587–589
RunWorkerCompletedEventArgs event data class, 205
RunWorkerCompletedEventHandler, 205, 235, 265,

359, 378, 441

S
<schedule> element, 42, 93
ScheduleCollection class, 93

Add method, 93
scriptProcessor attribute, 50
<section> element, 128
section groups, 25. See also specific section groups

rules, 25
SectionName property, 408
sections. See specific sections
<sectionSchema> element, 119–120, 339
security protocol, 609
<security> section, 55

elements, 55–60
SELECT database operation, 79, 80
Select Trace Providers, 575
SelectedProvider property, 408
SelectedProviderPropertyName property, 408–409

665

SelectedProviderPropertyName property

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 665

serialization, WCF and, 613
Server Manager tool, 14–19

launching, 14
ServerManager class, 102–103, 589–590

collection properties, 103
methods, 103

server-side managed code, 175, 269–286
deployment, 283–286
RSS provider-based service and, 526–536
steps to write, 269
UrlRewriterModule and, 381–390

service containers, 153–154
Service Model layer, 605, 609
service providers, 152, 153
ServiceContainer class, 154, 167
ServiceContractAttribute metadata attribute, 611
ServiceMetadataBehavior service behavior, 622

WCF service and, 622–625
services, 152. See also specific services

interfaces, 152
ServiceType property, 282, 389
Session State

icon, 68
Mode Settings, 69
page, 227

SET command, 81
Set Default Provider link button, 405
“Set Default Provider...” link button, 440
Set default provider task form, 493
Set Feature Delegation, 75
SetAttributeValue, 86
SetDefaultProvider method, 516–517
SetItemGroup method, 257
SetPropertyValue method, 164
Settings property, 409
SetUIReadOnly method, 210
severity event types, 542
<sharedListeners> section, 558, 559
ShellMainForm class, 169–170
ShouldTrace method, of SourceSwitch, 554
shutdownTimeLimit attribute, 40
Site class, 95–96, 596

members, 596
methods, 96

Site Level, 27
SITE object, 79
SiteCollection container, 103
<siteDefaults> element, 45
SiteId property, 593
site-level configuration file, 131–133
“SiteName,” 29
“SiteName/AppName,” 29–30

sites, 43
<sites>, 43–45

element, 95
Sites collection property, 103
Sites node (Web Sites node), 62, 66–68
SmallImage property, 165
smpAffinitized attribute, 42
smpProcessorAffinityMask attribute, 42
SourceFilter filter, 538, 568–570

constructor, 569
IisTraceListener and, 569
implementation, 568

SourceLevels enumeration, 542–543
members, 542–543

<sources> section, 551
SourceSwitch class, 538, 551

under the hood, 553–557
Level property, 554
OnValueChanged method of, 553
properties, 553
ShouldTrace method of, 554

SQL Server-specific classes, ADO.NET, 398
SqlDataReader, 298, 299
SqlRssProvider, 466–477, 491

class, 467–469
commandText, 474
commandType, 474
database, 477
implementation, 467–477
Initialize method, 471–473
Item class, 469–470
LoadRss method, 475
member fields, 480
private fields, 475
registration, 475–477
RssHelper class, 470–471

sslFlags attribute, 55
Start event type, 541, 542
Start method

ApplicationPool class, 89
Site class, 96

StartASyncTask method, 204, 205, 206, 235, 265,
359, 378, 441

startupTimeLimit attribute, 40
State property, 591
<staticContent> configuration section, 119, 121

schema, 124
stop button, 222
Stop event type, 541, 542
Stop method

ApplicationPool class, 89
Site class, 96

666

serialization

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 666

strongly-named assemblies, 269, 283, 293, 303, 311,
320, 322, 334, 340, 421

strongly-typed
objects, 134–135

benefits, 135
<myConfigSection> and, 134–135

properties, IntelliSense support for, 135, 208, 336,
340, 362, 390

SupportsScope property, 282, 389
Suspend event type, 541, 542
svcutil.exe tool, 627

WCF client and, 625, 627–632
web.config file and, 630–631

Switch base class, 538, 553
OnValueChanged method of, 553

switches, 538, 550
as configurable components, 551
instantiation and attachment, 539, 550–557

declarative, 550–554
imperative, 554–557

local, 551
shared, 539, 551

<switches> element, 551
SwitchSetting property, 553
<system.applicationHost> section group, 108

accessing configuration sections in, 108–113
adding application pool, 108–109
adding binding, 110–111
adding virtual directory, 112–113
adding Web application, 111–112
adding Web site, 109–110

child elements, 36–45
<system.diagnostics> section, 551, 558
System.ServiceModel.Activation.HttpHandler HTTP

handler, 618
System.ServiceModel.Activation.ServiceBuildProvider

build provider, 618, 619
<system.web> element, 25
System.Web.Security.RoleProvider, 410
<system.webServer> section group, 45, 340

<myConfigSection> configuration section in, 125, 128
sections, 45–60

System.Windows.Forms.GroupBox control, 199

T
task forms, 150. See also specific task forms
task items. See specific task items
task panels, 147, 149
TaskItem class, 158–159

properties, 158–159
subclasses, 159–163

TaskList class, 163–165, 216–217
definition, 163
GetTaskItems method, 216, 217

implementation, 216–220
methods, 164–165

TaskListCollection class, 166
tasks, 149–151
Tasks property, 193

MyCollectionPage overrides, 243
MyConfigSectionPage overrides, 220–221
RssPage module page overrides, 517
UrlRewriterPage overrides, 366–367

TCP transport protocol, 639
incoming requests over, 640

Text string property, 159
TextBox control, 184, 185
textbox controls, callback methods for TextChanged

event of, 507
TextChanged event of textbox controls, callback

methods for, 507
TextTaskItem

class, 159
task item, 174

TimeElapsed property, 593
TimeInModule property, 593
Title property, 165
“TRACE” conditional compilation symbol, 539, 550

defining, 550
trace events, 537

adding, 539, 546–550
trace filters, 538, 562

instantiation and attachment, 540, 562–570
trace listeners, 538

instantiation and attachment, 539, 557–562
declarative, 558–560
imperative, 560–562

local, 558
shared, 539, 558

Trace Output file, 576–578
trace sources, 538

instantiation, 540–545
TraceData method, 546–547
TraceEvent method, 546

overloads, 546
TraceEventCache object, 558
TraceEventType enumeration, 541–542

members, 541–542
TraceFilter base class, 562–563
TraceInformation method, 547–548
TraceListener base class, 557

tracing methods of, 557–558

667

TraceListener base class

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 667

traceSource attribute, 578
<rss> configuration section and, 578
RSS_Schema.xml file and, 578–579
RssSection class and, 579–580
RssService class and, 578

TraceSource class, 538
constructors, 540
RssService class and, 543–545

TraceSource property, 585
RssSectionInfo class and, 585–586

TraceTransfer method, 548
tracing, 537–570

components, 537–540
configurable, 578–587
tasks, 538–540

from within code, 538–550
from configuration file, 539–540, 550–570

Transfer event type, 541, 542
transport protocols, 110, 111, 608

TCP, 639
type attribute

<attribute> element, 120
<handlers> section, 50
<modules> section, 52

Type combo box, 325, 326
type-checking support, compiler, 135, 208, 336, 340,

362, 390

U
unattended setup option, 20–21
unattend.xml file, 20, 21
Unload member, 594
“Update collection item” link, 181, 240, 242
UPDATE database operation, 79, 81
update dependencies, 12

IIS-ASP, 12
IIS-ASPNET, 12
IIS-LegacyScripts, 12
IIS-ManagementConsole, 12
IIS-ManagementScriptingTools, 12
IIS-ManagementService, 12
IIS-NetFxExtensibility, 12
IIS-WebServer, 12

“Update URL rewriter rule” link, 347, 348, 364, 366
UpdateChannelSettings method, 530–531
UpdateCollectionItem method, 279–280

of MyCollectionPage, 246–247
UpdateCollectionItemIdentifier method, 185, 243
UpdateRequestCache event, 317
UpdateSettings method, 275–276
“UpdateSettings” string value, 188

UpdateTasks method, 173, 174
UpdateUI method, 170
UpdateUIState method, 201
UpdateUrlRewriterRule method, 369–370, 387
upgrading, IIS7 setup and, 21
up-to-date runtime data, for IIS7 runtime objects,

597–598
Url property, 593
<urlRewriter> configuration section, 338

registering, 339–340
UrlRewriter.browser file, content of, 395
UrlRewriterConsoleApplication, 344
UrlRewriterControlAdapter, 394
UrlRewriterHandlerFactory HTTP handler factory,

334–335
problems with, 337

UrlRewriterHandlerFactoryProj, Visual Studio and, 334
UrlRewriterHtmlTextWriter class, 394–395
UrlRewriterModule HTTP module, 318–321

applicationHost.config file and registering, 322–323
compilation options, 322
implementation, 320–321
plugging into integrated request processing pipeline,

322–332
problems with, 337
registration, IIS7 Web-server level

declarative option, 322, 323
graphical option/IIS7 Manager, 322, 323–327
imperative option, 322, 327–328
undo, 329

registration levels, 322
registration, URLRewriterModuleCh8 application,

329–332
declarative option, 329
graphical/IIS7 Manager option, 329–331
imperative option, 331–332

role of, 318, 319
using, 332–333

UrlRewriterModule managed module
configurability, 391–393

problems, 390–391
configuration support for, 338–339, 390
graphical management support for, 346–390

client-side managed code, 346–381
server-side managed code, 381–390

imperative management classes, testing of, 344–345
imperative management support for, 340–345, 390
rewriting non-ASP.NET URLs, 393

postback problems, 393–395
UrlRewriterModuleCh8 application, UrlRewriterModule

HTTP module registration with, 329–332

668

traceSource attribute

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 668

UrlRewriterModuleConsoleApplication project, 327–328
UrlRewriterModuleProvider custom module provider,

387–389
registration, 379–380

UrlRewriterModuleService server-side class, 351,
382–383

UrlRewriterModuleServiceProxy class, 350–351
UrlRewriterPage class, 350–358

ModulePage class and, 358
UrlRewriterPage module page, 346, 347, 351

communications with back-end server, 348–349
InitializeListPage method and, 358–359
OnActivated method and, 359
OnListViewDoubleClick method and, 370–371
OnListViewKeyUp method and, 371
OnListViewSelectedIndexChanged method and, 370
overrides Tasks property, 366–367
PageTaskList class, 364–366
registration, 380–381

UrlRewriterProj, Visual Studio and, 320, 322, 325, 329
UrlRewriterProj2, 340

ImperativeManagement directory, 340, 341
setup, 340
Visual Studio and, 340, 344

UrlRewriterRule class, 341–342
UrlRewriterRuleInfo class, 362
UrlRewriterRuleListViewItem class, 363
UrlRewriterRules class, 342–343

tasks of, 343
<urlRewriterRules> Collection element, 339
UrlRewriterRuleTaskForm task form, 347, 348

communications with back-end server, 349–351
constructors, 375–376
implementation, 371–375
IntializeComponent method and, 376–378
OnAccept method and, 378
OnWorkerCompleted method and, 380
OnWorkerDoWork method and, 378–379

URLREWRITER_schema.xml file, content of, 339
UrlRewriterSection class, 343–344
user membership service, 397
user profile service, 397
UserData property, 161, 162
userName attribute, 40

V
Validate method, 433
ValidateUserInputs method, 213
Value property, 553
VDIR object, 79

verb attribute, 50
Verb property, 593
Verbose event type, 541, 542
VerticalLayoutPanel, 171
View Application Pools link, 149
“View collections items” link, 180, 185, 216, 219, 225

adding to MyConfigSectionPage, 216–221
ViewCollectionItems method, 219–220
virtual directory, 44, 45

adding, in <system.applicationHost>, 112–113
Virtual Directory Level, 27
VirtualDirectory class, 100–101
<virtualDirectory> elements, 44, 100, 101
VirtualDirectoryCollection class, 101
<virtualDirectoryDefaults> element, 45
VirtualPath, 594
Visual Studio

configuration, 283
console applications added in, 105, 106, 107, 108,

134, 141
C#, 128, 131

IIS7 Manager and, 285
IntelliSense support for strongly-typed properties, 135,

208, 336, 340, 362, 390
MyApplication project and, 422
MyConfigSection added in, 176
.NET Framework and release cycle of, 28
private key, 283
Rss HandlerProj and, 293, 306, 311
UrlRewriterHandlerFactoryProj and, 334
UrlRewriterProj and, 320, 322, 325, 329
UrlRewriterProj2 and, 340, 344
Web application creation, 134

W
Warning event type, 541, 542
WAS. See Windows Process Activation Service
WAS-WindowsActivationService, 7
WCF. See Windows Communications Foundation
WCF Visual Studio Extensions, 606
Web applications, 146

adding, in <system.applicationHost>, 111–112
BugReportManagerServiceHost, 646

Default2.aspx file and, 646–647
Web garden, 42
Web sites

adding, in <system.applicationHost>, 109–110
BugReportManagerServiceHost, 636

Default.aspx file of, 636–638
Web sites node. See Sites node

669

Web sites node

In
de

x

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 669

web.config file, 570–571, 601
svcutil.exe and, 630–631

WebMgrShellApplication class, 153, 167
GetService method of, 168

WebServiceHandlerFactory handler factory, 334
Win32ManagementHost, 152
Windows Communications Foundation (WCF), 52, 605

behaviors, 611
bug report manager system and, 607–649
client, 625

adding Web reference in, 625–627
developing, 625–635
svcutil.exe tool and, 625, 627–632

endpoints, 608, 610, 638
addresses, 609
bindings, 608–609, 610, 638–646
contracts, 609

integration of ASP.NET and
in IIS7 environment, 605–649
taking advantage of, 636–638

layered framework, 605, 609
required software, 605–606
serialization/deserialization in, 613
service behaviors, 622
service contract, 611

developing, 611–614
implementing, 614–617

Service Model, 605, 609–610
attribute-based programming, 609
configuration-based programming, 609
imperative programming, 609

services, 608
administrative tasks, 619–625
advantages, 636–638
developing, 610–611
hosting, 617–619
imperative tasks, 610–619
ServiceMetadataBehavior and, 622–625

Windows Features dialog, 13–14
Windows Process Activation Service (WAS), 16, 34–35
<windowsAuthentication enabled> element, 57
wizard forms, 150–151
WorkerProcess class, 85, 587, 590–591, 594

properties, 591
WorkerProcessCollection class, 85, 103, 587, 590

members, 590
WorkerProcesses collection property, 103

WorkerProcessState enumeration, 591
workflow

for adding new provider to provider-based service, 402,
416, 420–435

for displaying ProviderConfigurationConsolidatedPage
module list page, 401, 415, 416–418

for extending integrated graphical management system,
485

for updating provider of provider-based service, 416,
435–436

for viewing providers of provider-based service, 416,
418–419

workspace pane, 63
World Wide Web. See WWW
WriteAttribute method, 301, 395
WWW (World Wide Web) Publishing Service, 35–36

X
XML elements/attributes. See also specific XML

elements and attributes
APPCMD tool and, 76–81
applicationHost.config file with, 77–79
IIS Manager and, 62–76
IIS7/ASP.NET integrated declarative schema extension

markup language, 117–124
categories, 117–118

XML nodes, 481
XmlDataDocument, 483, 484
XmlDocument, 483, 484
XmlReader class, 301, 484
XmlRssProvider, 448, 477–485, 491

implementation, 478–480
Initialize method, 480–482
LoadRss method, 482–483
member fields, 480
registration, 484–485
sample XML document, 481

XmlWriter class, 301, 484
XmlWriterSettings object, 300
XPath engine, 483
XPath expressions, 481–482
XPathDocument, 483, 484
XPathNavigator

random-access XML API, 302
XPath engine, 483

XPathNodeIterator, 482

670

web.config file

52539bindex.qxd:WroxPro 9/17/07 6:58 PM Page 670

	Professional IIS 7 and ASP.NET Integrated Programming
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: IIS 7 and ASP.NET Integrated Architecture
	Modular Architecture of IIS 7
	Extensible Architecture of IIS 7
	IIS 7 and ASP.NET Integrated Request Processing Pipeline
	IIS 7 and ASP.NET Integrated Configuration Systems
	IIS 7 and ASP.NET Integrated Administration
	Building a Customized Web Server
	Summary

	Chapter 2: Using the Integrated Configuration System
	Integrated Configuration System
	Protocol Listeners
	Windows Process Activation Service
	World Wide Web Publishing Service
	The Structure of the applicationHost.config File
	Summary

	Chapter 3: Managing the Integrated Configuration System from IIS Manager and the Command Line
	Server Management
	Internet Information Services (IIS) Manager
	Command-Line Tool
	Summary

	Chapter 4: Managing the Integrated Configuration System with Managed Code
	Class Diagrams
	ConfigurationElement
	ConfigurationElementCollectionBase<T>
	ApplicationPool
	ApplicationPoolCollection
	Site
	Application
	ApplicationCollection
	VirtualDirectory
	VirtualDirectoryCollection
	ConfigurationSection
	ServerManager
	Putting It All Together
	Summary

	Chapter 5: Extending the Integrated Configuration System and Imperative Management API
	IIS7 and ASP.NET Integrated Configuration Extensibility Model
	IIS7 and ASP.NET Integrated Imperative Management Extensibility Model
	Summary

	Chapter 6: Understanding the Integrated Graphical Management System
	Module Pages
	Tasks
	The IIS7 Manager Object Model
	Putting It All Together
	Summary

	Chapter 7: Extending the Integrated Graphical Management System
	Client-Side Managed Code
	Custom Module Pages and Task Forms in Action
	Proxies
	MyConfigSectionPage
	MyCollectionPage
	MyCollectionItemTaskForm
	Module
	Server-Side Managed Code
	Deployment
	Summary

	Chapter 8: Extending the Integrated Request Processing Pipeline
	Extending the Integrated Pipeline through Managed Code
	Managed Handlers
	Managed Modules
	Managed Handler Factories
	Extending the Integrated Pipeline with Configurable Managed Components
	Configuration Support for the URL Rewriting Managed Module
	Imperative Management Support for the URL Rewriting Managed Module
	Graphical Management Support for the URL Rewriter Managed Module
	Client-Side Managed Code
	Server-Side Managed Code
	Registering UrlRewriterModuleProvider
	Configurable UrlRewriterModule
	Rewriting Non-ASP.NET URLs
	Postback Problem with URL Rewriting
	Summary

	Chapter 9: Understanding the Integrated Providers Model
	Why You Need Provider-Based Services
	The Integrated Providers Model in Action
	Under the Hood of the Integrated Providers Model
	Summary

	Chapter 10: Extending the Integrated Providers Model
	Recipe
	Custom Provider Base Class
	Custom Provider Collection
	Extending the Integrated Configuration System
	Extending the Integrated Imperative Management System
	Implementing the Service Class
	Implementing Custom Providers
	Extending the Integrated Graphical Management System
	Summary

	Chapter 11: Integrated Tracing and Diagnostics
	Integrated Tracing Components
	Tasks Performed from within Your Code
	Tasks Performed from the Configuration File
	Putting It All Together
	Configurable Tracing
	Runtime Status and Control API
	LogRequest
	Summary

	Chapter 12: ASP.NET and Windows Communication Foundation Integration in IIS 7
	Installing the Required Software
	Bug Report Manager
	Windows Communication Foundation Service
	Windows Communication Foundation Endpoint
	Windows Communication Foundation Service Model
	Developing a WCF Service
	Developing a WCF Service Contract
	Implementing a WCF Service Contract
	Hosting a WCF Service
	Administrative Tasks
	Developing a Windows Communication Foundation Client
	Taking Advantage of ASP.NET and WCF Integration in IIS 7
	Using Different Bindings
	Putting It All Together
	Summary

	Index

